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TAME KUMMER EXTENSIONS AND STICKELBERGER
CONDITIONS

BY

L. N. CHILDS

In this paper we show that rings of integers of tame Kummer extensions of
algebraic number fields K with Galois group G, cyclic of odd prime power
order, need not represent classes in the class group C1 (Or.G) which are
images under the action of Stickelberger elements.
More explicitly, let be an odd prime, G a cyclic group of order ",

A Aut (G). Let

0 t(6)6-,

where /in A acts on a in G by cS(a) crt), 0 < t(cS) < , (t(),/) 1.
Let J ZA ZA0, the Stickelberger ideal [9, page 27].
Let R be the ring of integers of an algebraic number field K containing

Q(0, a primitive/-th root of unity. Let CI (RG) denote the group of iso-
morphism classes of rank one projective RG-modules. Then___there is an action
of A on C1 (RG) induced by the action of A on G. Let RG be the maximal
order of RG,

1
RG= Rex(c=Hom(G,C)) where ex=? X(-).

The action of A on G induces an action of A on RG by 6(ez)= ez-,, so
that 6( a.z.ex)= axex. Then we have an induced action of A on
Cl (RG)= z C1 (R)ez.

Let denote either RG or RG. We are interested in knowing whether
rings of integers of tame extensions L of K with group G yield elements in
C1 (’), where C1 ()a is generated by the elements A for A C1 () and
in J. For n 1, L. McCulloh [10] has shown this is so.

In this paper we show that for n 2 there exists a Kummer extension L of
degree z over a number field K so that the class of S O,. is not in
CI (RG). This example shows that McCulloh’s description of classes of rings
of integers of tame extensions in terms of actions on the class group by
Stickelberger elements does not have a straightforward extension from the
prime order case to the prime power order case.
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Our example also shows that if one defines a product on the set of rings of
integers of tame extensions by Ot. 0,. ring of integers of the Harrison
product Lt L2 then the map from rings of integers to the .class group is not
a homomorphism. This is in contrast to the unramified case [6], and further
complicates the problem of characterizing the classes of rings of integers of
tame extensions.
The approach we take is as follows" given a ring of integers S of a tame

extension L of K with group G, if the class of S is in C1 (RG)J, then the class

of S RRG is in C1 (RG)a (xo CI (R)ez)a. By choosing K, L appro-
priately, we show that this latter situation cannot hold.

Notation. For an integer a, tr(a) denotes the remainder upon dividing a
by l’; hence 0 _< tr(a) < l’.

1. Description of the class group

Throughout__G is a cyclic group of order n, an odd prime. Let a’ denote
either RG or RG. Then C1 (z’) may be described as a group of idele classes,

(1.1) C1 () - J(KG)/(KG)*U(M)
(cf. [4]); the map is as follows" Let M be a rank one projective M-module.
Then Mo, the semilocalization of M "at (l)", is free, so

M(o
for some basis clemcnt___v. Also, for any prime p prime to (l), M, R, Gu,
(note--away from (/), RG RG). So u, %v for some % in KG. For p[(l),
set % 1. View % in K,G, the completion of KG at p; then the vector of
%’s, (%) defines an idele in J(KG). The isomorphism of (1.1) is then defined
by sending the class of M to th.__e class of (%).

In general, if z RG or RG, R is semilocal, and M is a rank one projec-
tive ’-module, then M is free, M a’v. If RG, then the basis element v

generates a normal basis {tr(v)la G}. If RG, then v generates an
R-basis {.wxl G} of M where wx ex v. Following [5, Sectio_.__n 2], we call a
set {wx} of non-zero elements of the rank one projective RG-module M a
Kummer basis if for all ;, $ in d, e, wz di,, wz and {wz} is an R-basis of

M. If {wx} is a Kummer basis of M, then v wx is an RG-basis of M.
Note that if {wx} is a Kummer basis of M, then, since trex g(tr)ex, an easy

computation shows that
Rwx ex M M where Mx {a M la(a) (tr)a for all tr in G}.

When a’ RG, C1 (RG) x C1 (R)ex; given local basis elements v, u for
M as above, the local basis elements corresponding to the component
C1 (R)ex are the Kummer basis elements ex v wx and ex u,. That is, for each
p and ;t, exu, %.x wx for some %. K*; the idele (%.x), of J(K) yields, as
in (1.1), a class in J(K)/K*U(R) - C1 (R) which is the component of the class
of M corresponding to ez in C1 (RG). We shall exploit this use of Kummer
bases below.
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2. Stickeiberger conditions

In [2] we showed that if M is a ZA-module, written additively, then a is in
MJ iff there exists b in M so that a oOb for all in A, the Z-submodule of
ZA generated by and ( t(6)l A).

In particular, if a is in MJ, then there is some b in M so that

lna lnOb t(6)6- l(b).

Let ( (;(1) and if ;t Z, denote the idempotent ez of R-- by ek.
Now consider M C1 (RG)= vz,-x

k=0 C1 (R)ek. If a k akeiksin CI (RG),
then there exists b in Cl (RG), then there exists b in C1 (RG) such that
la POb, that is,

In- In-

lae 10 be
k=O k=O

,,Xt(b)6-tkobkek’)
Since 6-t(Xk)= X 6 ;tk/t* X?tk’t*’, we have

In-

(2.1) lnakek t()bket.tkt()
k=O k=O

In--

k=O

Equating coecients of e for each k, 0 N k N 1, we have

(2.2) la t()b,a_,,

where recall, t() is the remainder upon dividing by ".

3. Tame extensions

Let L be a tame Galois extension of K with group G, cyclic of order P. Let
R, $ be the rings of integers of K, L, respectively. Then $0 is unramified over
R0, so there exists v in S so that Se) RoGv with ..(v) 1. For ; (, let

zx X(a)-ia’(v)= Pezv.
t’= 1 + (1- 0r for some r in R;Then a(zz)= .(a)z and so, if g(a)= , zz

t is a unit in Let zz z.hence zz R0.
Let Sx {s e S la(s) g(a)s for all a in G} for ;( in (, and let o Sz,

the Kummer order of S [5]. Since So RoGv, an easy computation shows
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that St Rtt)z; since zt" is a unit in Rtt), if Z Z, Rtozx R(t)gk. Hence
S-

_
Rz

Let S S

(3.1) LEMMA. Stl) -- Stt)= Sty) (R) RG.

Proof. Replace R by Rt), and drop the localization subscript (/) in this
proof.
Now RG x Rex, and the map RG RG sends to x ex x Z()ex"

So g ex S. Let b" g--- g be multiplication by g, the order of G. Then

and

X(cr)cr-t(sz) e S for each X.

Clearly is 1-1. To show is onto, let S RGg; then .,x Rex g. If
b Sx, b a z(), then

a(b) a- z() Z(a)a, z().

Hence a,_, Z(a)a, for all a, z, so

b ax Z(z- x)z() at 9ez .
Then b $(axexa in $S.

It follows easily that {zk/l"lk 0, 1, 1" 1} is a Kummer basis for

4. The strategy

Let K be a number field containing Q((), ( a primitive n root of unity, and
let R Or.

(4.1) PROPOSITION. If d in R such that d 1 (mod (1 0*) where e is suffi-
ciently large, and L K[z], z"= d, then L is unramified at all primes p of R
dividin9 (1).

Proof. It suffices to show that d is an P-th power in Kp, the completion
of K at p, for then p will split completely in L. But for e sufficiently large, the
exponential and logarithm functions may be defined, and an P-th root of d
may be obtained as exp ((log d)/P): see [8-1, Chapter V, 3.6, page 151.
Now restrict to n 2, and assume K contains a primitive 12 root of unity.
Let (d)= 1,. ,

’1 ’2,...
,. Suppose (q, l)= 1 Let L K[z], z’ d. Then

{z/l2} is a Kummer basis for e at all primes Q 4: 1, ,, and in parti-
cular at (/).
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Pick a prime #i # and drop the subscript i. Let n be a uniformizing
parameter at , i.e., Ra, rrR,. Then zl’= nul for some unit ul in R,.
Let qh 1 + 12s, and let w zh/rd. Then

zl2)h 7qh
wl2 sl2 7sl /’/2 717/’/2,

u2 a unit of R..

Thus w is a root of the Eisenstein polynomial xl’
rru2, so OL,# S

R,[w] and {wil0 < </2} is a Kummer basis for S, as an R, G-module (cf.
I-1]); moreover,

zl + 12s Zsq
Wq U UZsq ,sq

for some unit u of R,. So for 1 < s < 1,

S,l’s {a S ltr(a) s(a)a} Sa, c Kz’S= R, w’2(’s),

where t2(m remainder on dividing m by 12. The /s-components
s 1, l- 1, of the idele associated to S at #’, satisfy

Wt2(qls) Is 2z,.ls(z /l

and %,.is is obtained as follows"

wt2(Is) wlS(wt2tls)-Is)
(glZ)lswl2t(t2(qls) qls)/12].

So, recalling that 12 is a unit mod #’, there is a unit u of R, so that

O(#,ls UT[(t2(qls) qls)/12] t/[(tl(qs) qs)/l].

If we have an idele which has (up to local unit factors) local components
n.’ at #i, i= 1, r, and 1 elsewhere, its image in C1 (R) under the iso-
morphism of (1.1) (with G (1)) is the class of the ideal l-I,"= #’,"’. Hence, the
image of S in

1-1

M E Cl (R)e,s

(the part of C1 (RG) corresponding to els, s 1, l- 1) is

= lsels where
s=l i=1
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Now M is a ZA-direct summand of Cl (RG). If is in MJ, then there
exists ts_ se, in M so that a’" ,-0; in particular, following (2.2),

t,- r- ,2(a) (s 1, l- 1)ll’:tttst2(a- 1))
A

For s 1,

r- ,,_(,) (s 1, l- 1).l|’Otl(Stl(a- 1))

d Ht2(a)
tt(a_ 1)

beA

For s l- 1,

’a/1((| 1)tl(a- 1)).

But (l- 1)t1(6 -i) 12 t2(6 -1) (mod/), so

tl((l 1)tl(6-1)) tl(l2 t2(6-

and so

Multiplying, get

(4.2) (’xM’,- 1)t2 1-I ,2

Since for each s, 1 _< s _<1-1, there are elements of A (Z//2Z)* with
t(6-) s, we get

for some ideal . Now

and
i=1

fi .’j(tl(l(|- i))-q(t- 1))/!(4.3) t-1 ,.-
i=1

So

Hence (4.2) becomes

(4.4) ..t
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(4.5) PltOPOSlTION. Let K c Q(0, ( a primitive 12-root of unity. If there
exists d 1 (mod (1 Ore), m sufficiently large, such that

(d) a,1*, ,,
and (1-[’= #’-’)t is not the class of an a power in C1 (Or), then there exists
a tame extension L of K, namely L K(dt/2), with Galois group G cyclic of
order 12 so that the class of 0. is not in C1 (Or G).

It suffices to choose m >_ l(21- 1).

5. An example

Let K be a number field containing a 12 root of unity ( such that C1
has a cyclic direct summand of degree a. Such a field can be found by a
result of Sonn [11-1.

Let e be as in (4.1) (for n 2) and (1 ()e .
Let I,,, be the subgroup of ideals of K prime to , S. the subgroup of

principal ideals (d), d--1 (mod ). Then I./S. is a finite group mapping
surjectively onto C1 (Or,).
By Dirichlet’s theorem [7, p. V-3] every class in I./S. contains infinitely

many primes ideals of K.
Let a’ be a class in I,,,/S,,, whose image in CI (Or,) generates the cyclic

direct summand of degree . Suppose a’ has order k in I,,,/S,,,. Let #,
#k-1 be primes in a’.

Let (d) 22, k-1 with d -= 1 (mod ).
Let L K[z], z d. Then, by (4.1), L is a tame extension of K.
So Proposition (4.4) yields the equation #" r, which cannot be

solved since # generates a cyclic direct summand of C1 (Or) of order a.
Hence:

(5.1) THEOREM. There exists a number field K and a tame Galois extension
L of K with Galois group G cyclic of order 12 for which the class in C1 (Or, G)
of 0. is not in CI (Or, G).

(5.2) Remark. Let T(R, G) denote the set of R-algebras S which are inte-
gral closures of R in Galois extensions L of K with group G, which are
tamely ramified. Let N(R, G) be the subset consisting of S such that L/K is
unramified (at all finite primes).

There is a multiplication (Harrison product) on Galois extensions L/K,
given by

Lt’L2=(L=(.)r,L2)o where OG={(tr, tr-t)Gx G).
This induces a multiplication on T(R, G) by letting St" $2 be the integral
closure of R in Lt" L2. This multiplication on N(R, G) makes N(R, G) into
an abelian group, and Garfunkel and Orzech [6] have shown that the map
z: T(R, G)--C1 (RG), z(S) the class of S in CI (RG), is a homomorphism
when restricted to N(R, G). But the example of (5.1) shows that z need not be
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a homomorphism on T(R, G). For if L is the quotient field of S and L is a
Galois extension of K with group G, cyclic of order 12, then/2" is the trivial
Galois extension, z Hom (G, K). Hence the/2-fold product of S with itself
in T(R, G) is isomorphic to Horn (G, R), which is trivial in C1 (RG). But
taking the example of (5.1) for S, if the class of S, raised to the 12 power, were
trivial in C1 (RG), then the class of (S ()RRG), raised to the 12 power in
C1 (RG)= C1 (R)ek, would be trivial. But the image of (S( RG in
C1 (R)eto-1 can be obtained from (4.3) with q 2:

dl- i)[1(2/- 1)-2(/- 1)]// - 1.

So if the 12 power of the class of S were trivial in C1 (RG), then the 12 power
of the class of #i- would be trivial in CI (R). But we chose #t in the
example of (5.1) so that the class ofi-t2 is non-trivial. Hence"

(5.3) If multiplication in T(R, G) is defined by letting S $2 be the inte-
gral closure of R in Lt L2, the Harrison product of L and L2, then the
"take the class" map from T(R, G) to CI (RG) need not be a homomorphism.
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