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1. Introduction

There is a duality between two interesting classes of Banach spaces: the
Asplund spaces and the dual spaces with the Radon-Nikodm property. The
Radon-Nikod,m property can be defined for subsets of a Banach space and 0.
Reinov [17] and C. Stegall [23] have defined a class of subsets called the sets
which are measurable in themselves (Reinov) or the GSP sets (Stegall) which
have some properties in common with Asplund spaces. This paper is concerned
with such properties and with a generalization of the duality between these two
classes of sets.
Uhl [24] proved that if is a Banach space such that every separable

subspace of 5f has separable dual then 5f* has the Radon-Nikodm property.
The converse was obtained by Stegall [21] using a delicate construction.
We will assume that our Banach spaces are taken over real scalars. A Banach

space is an Asplund space [15] provided every continuous convex function f
on an open convex subset C of r is Fr6chet differentiable on a residual set of
points in C. Namioka and Phelps [15] showed that if 5f is an Asplund space
then every separable subspace of has separable dual. Again the converse fell
to a construction by Stegall [22]. To summarize, we have the following
theorem.

THEOREM 1.1. Each of the following statements about a Banach space
implies the other two.

(1) r is an Asplund space.
(2) Every separable subspace of : has separable dual.
(3) :T* has the Radon-Nikodjm property.

We turn statement (2) into a definition linking sets in a dual space with sets
in the predual.

DEFINITION 1.2. A subset K of a dual Banach space r, is separably
related to a subset A of W provided for every separable, bounded subset S of
A the set K is separable for the topology of uniform convergence on S.
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Usually we need to assume that K is weak* closed and often that it is
convex. For weak* compact nonconoex sets the Radon-Nikod,m property is
badly behaved, as examples in Section 4 will show and we use "RN sets" [18]
instead.

In Section 2 we show that a weak* compact subset K of W* is an RN set if
and only if K is separable related to 5f and that a bounded subset A of 5f is
measurable in itself if and only if 5f* is separably related to A. Then we
characterize sets which are separably related in terms of the images of the sets
under certain operators being RN sets or measurable in themselves.
To start Section 3 we derive a geometric characterization of the Radon-

Nidod,m property for weak* closed convex sets and use this to get a similar
result for pairs of separably related sets. We use that to obtain some results
about differentiability of convex functions using a construction due to Kenderov
[12]. As a corollary we see that a bounded set A is measurable in itself if and
only if every continuous convex function f on 5f has a residual set of points of
A-differentiability in the sense of Asplund and Rockafellar [1].
We thank Isaac Namioka and Robert Phelps for helpful and interesting

discussions about this subject.

2. RN sets and sets which are measurable in themselves

DEFINITION 2.1. Let K be a nonempty subset of a Banach space W. We
say that K has the Radon-Nikodj;m property if for any finite positive measure
space (f,E,/) and any vector measure m: Y. W that is /-continuous,
countably additive, of finite variation, with average range

AR(m) {tx(E)-lm(E) E , (E) > 0}

contained in K, m is representable by a Bochner/x-integrable function.
If K is a weak* compact subset of * then K is an RN set provided every

Radon probability measure on the weak* Borel subsets of K is supported
almost everywhere on a countable union of strongly compact subsets of K.
The following result can be found in [23] or [18].

PROPOSITION 2.2. The weak* closed, absolutely convex hull F*(K) of a
weak* compact RN set is an RN set and has the Radon-Nikodm property. A
weak* compact convex set C has the Radon-Nikodjm property if and only if C is
an RN set.

However, Example 4.1 will show that a weak* compact nonconvex set with
the Radon-Nikod,m property need not be an RN set.
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A class of sets which have properties similar to those of Asplund spaces was
introduced by Reinov [17]. In [18] he restated the definition a little differently.

DEFINITION 2.3. A bounded subset A of a Banach space Ar is measurable
in itself provided for each finite Radon measure/ on the weak* Borel subsets
of the dosed unit ball B(Ar*) of Ar* the set of functions {fx: x A} is
equimeasurable [8], where fx(x*)= x*(x) for each x* B(Y’*). Equimea-
surability means that there are weak* Borel sets E of arbitrarily small
/-measure such that the set of functions is relatively compact in
Thus relatively compact sets in Ar are measurable in themselves; actually,
weakly compact sets are too [23].

Stegall [23] defined this class of sets slightly differently and called them the
GSP sets: see the discussion in Reinov [18]. We will use Reinov’s terminology,
but we will use the following characterization rather than work with the
definition.

THEOREM 2.4. (Reinov [18], Stegall [23]). A bounded subset A of a Bahach
space Y" is measurable in itself if and only if there is an Asplund space . and an
operator T: ---> Y" such that A c_ TB(. ) where B(r) denotes the closed unit
ball of ..

This result has a dual concerning RN sets.

THEOREM 2.5. (Rdnov [18], Stegall [23]). A weak* compact subset K of f *
is an RN set if and only if there is an Asplund space .oe and an operator T:
Y’---> such that K c_ T*B(.*) and the range of T is dense in

The duality between RN sets and sets which are measurable in themselves is
seen in the following theorem of Stegall [23].

THEOREM 2.6. Each of the following statements about an operator T: At___> q/

between Banach spaces implies both the others.
(1) The set TB() is measurable in itself.
(2) The set T *B(q/ * ) has the Radon-Nikodm property.
(3) There exist an Asplund space Av and operators TI: Ac . and T2:

0--> 2/such that T T2 T1.

We introduce the separability conditions by the following result.

PROPOSITION 2.7 (Stegall [23]). A weak* compact convex subset K of
has the Radon-Nikodm property if and only iffor every separable Banach space
2/and every operator T: Y" the set T*(K) is norm separable in *.
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For nonconvex sets we need to apply a result of R. Bourgin [3] and Haydon
[9l.

THEOREM 2.8. Let C be a weak* compact convex subset of* such that the
extreme points ofKform a norm separable set. Then K is the norm closed convex
hull of its extreme points and hence is itself norm separable.

COROLLARY 2.9. A weak* compact subset K of Y’* is an RN set if and only
if for every separable Banach space Y/and every operator T: Y" the set
T *(K ) is norm separable.

Proof Let C weak* conv(K). If K is an RN set then Proposition 2.2
says that C has the Radon-Nikodm property. Applying Proposition 2.7 to C
shows that for every separable q/and T: 3t the set T*(C) is separable
and hence T*(K) is separable.

Conversely if T*(K) is separable for any such operator T then T*(K) is
weak* compact and Milman’s theorem shows that the extreme points of weak*
conv T*(K) T*(C) are contained in T*(K) and thus form a norm sep-
arable set. By Theorem 2.8, the set T*(C) is norm separable. Finally Proposi-
tion 2.7 shows that C has the Radon-Nikodm property so that K is an RN
set.

DEFINITION 2.10. Let A be a bounded subset of a Banach space Y’. Define
a seminorm q/l on Y’* by q/l(x*)= sup(Ix*(x)l: x A). This seminorm
determines the (possibly non-Hausdorff) topology of uniform convergence on
A. Thus a subset K of Y’* is separably related to a subset H of Y" if and only
if for each bounded separable subset A of H the set K is separable in the
seminormed space (Y’*, q/l): we write this as "(K, q/l) is separable".

The following simple result is useful.

PROPOSITION 2.11. Suppose T: Y’ is an operator between Banach
spaces and let A be a bounded subset of . The mapping

T*" (2/*, qr(A)) (T**, q/l)
is an isometry between seminormed spaces.

Proof If y* * then

qrA)(Y*) sup{lY*(Y)I" Y T(A)}
sup {lY*(Tx)l" x A }

A}
=q(T*y*)

as required.
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COROLLARY 2.12. Let H be a bounded subset of 5Y and K be a subset of Y/ *.

If T: 5Y--> 3t is an operator then T *(K) is separably related to H if and only if
K is separably related to T(H).

Proof Let A be a separable subset of H, so T(A) is separable and if K is
separably related to T(H) then (K, qrA)) is separable. By Proposition 2.11,
(T*(K), q,) is separable.

Conversely, let T*(K) be separably related to H and let S be a separable
subset of T(H). For any countable dense subset L of S there is a countable
subset A of H such that L T(A). Now (T*(K),qA) is separable so
(K, qr(A)) (K, qL) is separable by Proposition 2.11. However qL qs since
L is dense in S so K is separably related to T(H).

We now relate this to the Radon-Nikod,m property.

THEOREM 2.13. A weak* compact set K in * is an RN set if and only ifK
is separably related to 5. A weak* closed convex set C in 5* has the

Radon-Nikodm property if and only if C is separably related to .
Proof From Proposition 2.2 and the first statement, the second statement

follows easily. So let K be a weak* compact subset of * with A any
bounded separable subset of Y’. Take = span(A) and T: Y" to be the
natural injection. By Corollary 2.9, the set T*(K)

___
* is separable, that is

(T*(K), qBe)) is separable.
Since A is contained in a finite scalar multiple of the unit ball B() it is

clear that (T*(K), q) is separable so by Proposition 2.11, (K, qT(A)) (K, qA)
is separable.

Conversely, if K is separably related to and T: Y" is an operator
from a separable Banach space q/ then S TB() is a separable bounded
subset of and (K, qs) is thus separable. Therefore (T*(K),qBe/)) is
separable, that is, T*(K) is norm separable and K is an RN set by Corollary
2.9.

Next we characterize separably related sets in terms of RN sets. Firstly we
note that closed absolutely convex hulls don’t interfere.

LEMMA 2.14. IfK is a subset of 5* which is separably related to a bounded
subset H of 5 then K is separably related to F(H).

Proof If A is a separable subset of F(H) then L H q span(A) is
separable and A F(L). Therefore qA < q and since (K, q) is separable so
is ( K, qA).

THEOREM 2.15. Let A be a bounded subset of r. There exist a Banach space
and an operator T: 2/ Y" such that A TB(2/)

_
F(A). A weak* compact
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subset K of * is separably related to A if and only if there exist a Banach space
q/ and an operator T: q/--, 3f such that T*(K) is an RN set and A

_
TB(Y/).

Proof Let = la(A ) and T: q---)W be defined by

r. E .(x).x, (.
xA

Then T is an operator with A
_

TB(q/) c F(A). If K is separably related to
A then K is separably related to TB(q/) by Lemma 2.14. By Corollary 2.12,
T*(K) is separably related to B() which implies that T*(K) is an RN set
by Theorem 2.13.

Conversely suppose that T: 3t---)Y" is an operator such that A c__ TB(q/)
and T*(K) is an RN set. Then T*(K) is separably related to B(q/) by
Theorem 2.13 and K is separably related to TB(q/) by Corollary 2.12. Thus K
is separably related to A.

For sets measurable in themselves we get the following result.

THEOREM 2.16. A bounded subset A of 5F is measurable in itself if and only if
* is separably related to A.

Proof Let be a Banach space and T: ---) Y" an operator such that

Theorem 2.15 exhibited one. If Y’* is separably related to A then by Lemma
2.14, 5f* is separably related to TB(q/) and it follows that T*B(SV*) is
separably related to B(q/), or equivalently aj, by Corollary 2.12. Therefore
T*B(Y’*) has the Radon-Nikod,m property and Theorem 2.6 shows that
TB(), and hence A, is measurable in itself.

Conversely, if A is measurable in itself there is an Asplund space 0 and an
operator T: .’--) 5f such that A c_ TB(&r) by Theorem 2.4. Since * has the
Radon-Nikod,m property, .* is separably related to B() and hence
T*(Sf*) is separably related to B(.’). Therefore 5f* is separably related to
TB() and thus to A.

LEMMA 2.17. If K is a weak* compact subset of 5F* which is separably
related to a bounded set A then F*(K) is separably related to F(A).

Proof By Lemma 2.14 we need only show that I’*(K) is separably related
to A. Let T: ---, Y" be given by Theorem 2.15 so that A

_
TB(q/) and

T*(K) is an RN set. By Proposition 2.2, F*(T*(K)) is an RN set. Since
F*(T*(K)) T*(F*(K)) the latter is an RN set and Theorem 2.15 shows
that F*(K) is separably related to A.
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To end this section we characterize separably related sets in terms of sets
which are measurable in themselves.

THEOREM 2.18. A weak* compact subset K of 5* is separably related to a
bounded subset A of if and only if there exist a Banach space . and an
operator S: . such that S(A) is measurable in itself and K S*B(*).

Proof Let .’ be the space of weak* continuous functions on K, equipped
with the supremum norm and let S: Y’--> be evaluation, that is, (Sx)(x*)
x*(x) for all x* K. Then for each x* - K, T*(,3x. ) x* where i. *
is the functional given by 8.(f)= f(x*) for f .. The unit ball of * is
the weak* closed absolutely convex hull of {$x*" x* K} so we have
K c_ S*B(*)= r*(K).

If K is separably related to A then F*(K) is separably related to A by
Lemma 2.17 so S*B(.*) is separably related to A. Thus B(’*) is separably
related to S(A) and Theorem 2.16 shows that S(A) is measurable in itself.

Conversely, if S: :Y--, is an operator from 5f to a Banach space such
that S*B(*) contains K and S(A) is measurable in itself then B(*) is
separably related to S(A), so that S*B(*) is separably related to A and the
subset K must be separably related to A.

3. Geometric properties and differentiability of convex functions

In this section we will consider geometric properties of separably related sets
and obtain results about differentiability properties of convex functions whose
subdifferentials are constrained to lie in certain weak* closed convex sets. First
we need some results for the Radon-Nikodm property.

DEFINITION 3.1. If K is a bounded subset of a Banach space a slice of
K is any set of the form

S(x*,a, K) {x K: x*(x) > M(x*, K) a}
where a > 0, x* Y’* and M(x*,K) sup{x*(y)" y K}. If Y’= 3t* is
a dual space then a weak* slice of K c * is a set of the form S(y, a, K)
where a > 0 and y q/_c Y’*.
A bounded set K c Ar is dentable provided K has slices of arbitrarily small

diameter. We say that K c X is strongly exposed by a functional x* 5f*
provided there is x K (a strongly exposedpoint) such that x *(x) M(x *, K )
and if x. K with x*(x,,) ---> x*(x) then [Ix. xll --’ O.

The following theorem is due to Rieffel [19], Maynard [13], Davis and Phelps
[4], Huff [10], Phelps [16] and Bourgain [2]--see the book of Diestel and Uhl
[6] for an entertaining discussion of these and other equivalent properties.
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THEOREM 3.2. Each of the following statements about a closed convex subset
K of a Banach space implies all the others.

(1) K has the Radon-Nikodm property.
(2) Every bounded subset of K is dentable.
(3) Every closed bounded convex subset of K is strongly exposed by some

x* 5’*.
(4) Every closed bounded convex subset of K is the closed convex hull of its

strongly exposed points.

For dual spaces one can ask whether the slices can be taken to be weak*
slices.

THEOREM 3.3 (Namioka and Phelps [15]). A Banach space is an Asplund
space if and only if eoery bounded subset of * has weak* slices of arbitrarily
small diameter.

We use this to get a result for weak* closed convex sets having the
Radon-Nikod,m property.

PROPOSITION 3.4. A weak* closed convex subset C of a dual Banach space
Y" * has the Radon-Nikodj;m property if and only if every bounded subset K of C
has weak* slices of arbitrarily small diameter.

Proof If C is weak* closed and convex with the Radon-Nikod,m property
then the weak* closure of any bounded subset K of C is a weak* compact RN
set L. By Theorem 2.5 there exist an Asplund space ’ and an operator T:
Y’ ’ with T() dense in such that L T*B(r*). Let V be a subset of
B(.’*) such that K T*(V). For each e > 0, Theorem 3.3 provides a weak*
slice S(z, a, V) of V with diameter less than e. If y Z and Ily zll < a/4
then S(y, a/2, V) S(z, a, V) since M(y, V) > M(z, V) a/4.
However the range of T is dense in .’ so there is x such that

II Tx zll < a/4 and hence the diameter of the slice S S(Tx, a/2, V) is less
than e. Now,

v*(s) v: > v)-

(r,x* r,v: >  t(x, r,(v))-
S(x, a/2, T*(V))
S(x,a/2, K).

Since S has diameter less than e, the weak* slice S(x, a/2, K)= T*(S) has
diameter less than e. II TII. Thus K has weak* slices of arbitrarily small
diameter.
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The converse is clear from Theorem 3.2 since any weak* slice is a slice.

Next we convert this result into a statement about separably related sets.

THEOREM 3.5. A weak* closed conoex subset C of * is separably related
to a bounded subset A of : if and only if every bounded subset of C has weak*
slices of arbitrarily small qA-diameter.

Proof. We may assume without loss of generality that C is weak* compact
and convex. Suppose C is separably related to A. By Theorem 2.15 there is a
Banach space q and an operator T: q/ such that A TB(q) and
T*(C) has the Radon-Nikodaa property. Let K be a subset of C and e > 0.
Then T *(K) has a weak* slice S(y, a, T *(K)) of diameter less than e. Since

S( y, or, T*(K )) T *( S(Ty, or, K ))

it follows that S(Ty, a, K) has qre/-diameter less than e using Proposition
2.11. Thus K has a slice S(Ty, a, K) of qA-diameter less than e.

Conversely, suppose that every bounded subset of C has weak* slices of
arbitrarily small q-diameter and let and T: r be given by Theorem
2.15 so that A

_
TB(q/)

_
F(A). If V is a bounded subset of T*(C) then let

14" weak* conv(V) and using Zorn’s Lemma choose a minimal (under
inclusion) weak* compact convex subset K of C such that T*(K)= W. Let
e > 0 and let S(x, a, K) be a weak* slice of K with q-diameter less than e.
Then D K\ S(x, a, K) is weak* compact and convex so that T*(D) is a
weak* compact convex subset of IV. By minimality of K we have T *(D) : IV
and there exists y* W\ T*(D). Using the separation theorem we find
y q such that y*(y)> M(y, T*(D)), so y determines a slice S(y, fl, IV)
which does not intersect T*(D). Therefore

S(y, fl, W) T*(S(x,a,K))

and, since S(x, ct, K) has q,-diameter less than e and T* is an isometry from
(Sf*, q) into (*, norm) because qrne/ qA, the weak* slice

S(y, fl, V) c_ S(y, fl, W) c_ T*(S(x,a,K))

has diameter less than e. This shows that T*(C) has the Radon-Nikod,m
property and by Theorem 2.15 the set C is separably related to A.

COROLLARY 3.6. A bounded subset A of is measurable in itself if and only
if every bounded subset of * has weak* slices of arbitrarily small q-diameter.

Asplund and Rockafellar [1] introduced and studied the following generali-
zation of Fr6chet differentiability (which is the special case A B(
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DEFINITION 3.7. Let A be a bounded subset of a Banach space r. A real
valued function f defined on an open subset C of is said to be A-differentia-
ble at the point x C if there is x* * (called an A-gradient of f at x)
such that

lim sup It-l(f(x + ty) f(x)) x*(y)[ 0.
t-,O+ yA

Note that the set of A-gradients of f at x always has qA-diameter 1.

To state the next theorem we need to define the subdifferential [14].

DEFINITION 3.8. Let f be a continuous convex function on the open
convex subset C of 5f. The subdifferential Of is defined for x C by

Of(x) {x* r,. f(y) -f(x) > x*(y x)for all y C}.
Recall that a set is residual if its complement is of the first Baire category.

We will prove the following result as a corollary of some more general
results about continuity of monotone operators using a construction due to
Kenderov [12].

THEOREM 3.9. Let A be a bounded subset of the Banach space and let K be
a weak* closed absolutely convex subset of *. Then K is separably related to A
if and only if, for every continuous convex function f on an open convex subset C
of :Z" such that 8f(x) c_ Kfor all x C, the set ofpoints where f is A-differen-
tiable is residual in C.

DEFINITION 3.10. Let (r,) denote the set of all subsets of the dual
Banach space *. A mapping d/t’: (*) is a monotone operator
provided

x*(x- y) > y*(x- y)

whenever x, y W and x* t’(x) and y* t’(y). It is called maximal
monotone if its graph

{(x, x*). x x*

is not properly contained in the graph of any other monotone operator on r.
We say that ’ is locally bounded at a point x r provided there is a
neighbourhood U of x such that ’(U) u { t’(y): y U } is a bounded
subset of c,. The domain of is the set

D(’) ( x 5f: t’(x) is not the empty set),
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and if A is a bounded subset of r we say that t’ is A-continuous at a point x
* *) * /t’(xn) andof D(t’) provided qA(x, x 0 whenever xn ---, x, x

x* ’(x), or equivalently, for each e > 0 there exists a neighbourhood V of
x such that qA-diam /t’(V) < e.

We need some technical results.

LEMMA 3.11 (Rockafellar [20]). Let g be a monotone operator with D(dg)
containing the open set C. Then g is locally bounded at each point of C.

LEMMA 3.12 (Kenderov [11]). If g is a maximal monotone operator on
with D(g) containing an open set C then g is norm-weak* upper semicontinu-
ous at each point of C; that is, for each x C and each weak* neighbourhood V
of 0 in r. there is a (norm) neighbourhood U of x such that

 g(v)  g(x) + v.

For each x C the set ./g(x ) is weak * compact and convex.

LEMMA 3.13. Suppose g is a monotone operator on 5" with D(dg) contain-

ing an open set C and let K be a weak* closed convex subset of * such that
rig(x) N K is nonempty for all x in a dense subset S of C. Then rig(x) c_ K for
all x C.

Proof Without loss of generality we may assume that dg is maximal
* K N dg(xn)monotone. Let z C and choose x, S with x, z. If x,

for each n then by local boundedness of t’ at z (Lemma 3.11) and weak*
closedness of K, there is a weak* convergent subnet of (x,) converging weak*
to z* K. Now z* ’(z) by Lemma 3.12. Thus t’(z)N K is nonempty
for each z C.
Now suppose x C and x* ’(x). If x* K then the separation

theorem gives y r such that x*(y) > sup(v*(y): v* K }. For > 0
small enough, the point z x + ty is in C so we can find z* K N ,At’(z).
Then

z*(z-x)>_x*(z-x)

by monotonicity so that

z*(y) >_ x*(y) > sup{v*(y)" v* K) >= z*(y).

This contradiction shows that t’(x)
___

K.

THEOREM 3.14. Suppose g is a monotone operator on and the weak*
closed convex subset K of :* is separably related to the bounded subset A of .



240 SIMON FITZPATRICK

If C is an open set contained in D() such that (x) 0 K is nonempty for all x
in a dense subset of C then the set ofpoints ofA-continuity of is residual in C.

Proof Without loss of generality we may assume that ’ is maximal
monotone so that by Lemma 3.13, ’(x)_ K for all x C. Define open
subsets V of C by

Vn (y C: there is a neighbourhood U of y
such that the q,-diameter of t’(U) is less than n

for n 1, 2, 3,... and let G N,V.. Clearly G is the set of points where ’ is
A-continuous and each V, is open, so by the Baire category theorem we need
only show that each V, is dense in C.

Suppose that x C and e > 0. By Lemma 3.11 there is an open subset C
of C, containing x, such that ’(C1) is a bounded subset of K. Let W be an
open subset of C1 containing x with diameter less than e. The bounded subset
t’(W) of K has a weak* slice S S(z, a, /g(W)) of qA-diameter less than
n- by Theorem 3.5. Take any v* S and let v W be such that v* Mc’(v).
For sufficiently small > 0 the point y- v + tz is in W and if y* ’(y)
then we have y*(y v) > v*(y v) and hence y*(z) >_ o*(z). It follows that
’(y)

_
S. Since there is fl R such that

s },
by Lemma 3.12 we can find an open neighbourhood U of y such that U

_
W

and t’(U) is contained in the weak* open set ( x * Y" *" x*(z) >/3 }. Since

’(U)
__
t’(W) we have t’(U)

_
S which has qA-diameter less than n 1.

Thus y V, and I]Y- x I] < e by our restriction on the diameter of W. As
required, we have shown that V, is dense in C.

To use this to obtain results about convex functions we note that if f is a
continuous convex function on an open set C then Of is monotone. Minty [14]
showed that C __c D(0f) and that 0f is maximal monotone if one defines it
correctly for points outside of C. For differentiability we need the following
result which is implicit in [1].

PROPOSITION 3.15. Suppose that f is a continuous convex function on an open
convex subset C of a Banach space f and that A is a bounded subset of .

(a) If Of is A-continuous at a point x C then f is A-differentiable at x.
(b) If A -A and f is A-differentiable at x C then each member of

Of(x) is an A-gradient off at x and the q,-diameter of Of(x) is zero.

Proof (a) Letx* Of(x), y A and t>0. Ifx+ ty C then

x*(ty) <_ f(x + ty)-f(x) <_ y*(ty) for any y* af(x + ty),
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so that

0 < t-l(f(x + ty) -f(x)) x*(y) < y*(y) x*(y) < qA(Y* X*).

Now the A-continuity of Of at x implies that

lim sup(qA(y* x*)" y* Of(x + ty), y A} 0;
t-,0+

therefore

lim sup It-l(f(x + ty) -f(x)) x*(y)[ 0.
t-*O+ yA

(b) Let x* Of(x) and let y* be any A-gradient of f at x. For > 0 we
have x*(y) < t- l(f(x + ty) f(x)) so taking the limit as 0 + we see
that x*(y)< y*(y) for all y A. If A -A then x*(y)= y*(y) for all
y A and hence x* is also an A-gradient of f at x.

COROLLARY 3.16. Let f be a continuous convex function on an open convex
subset C of a Banach space Y’. If the weak* closed convex subset K of Y’* is

separably related to the bounded subset A of r and if Of(x) K is nonempty
for all x in a dense subset of C then f is A-differentiable at a residual set of
points in C.

Proof Theorem 3.14 shows that the set of points where Of is A-continuous
is residual in C and Proposition 3.15 shows that f is A-differentiable at each of
those points.

For the converse we consider a particular type of convex function.

DEFINITION 3.17. Let W be a weak* compact convex subset of Y’*. The
gauge function for W is the function gw: 5f R where

gw(x) M(x, W) sup(x*(x)" x* W) for allxW.

This is clearly a continuous convex function defined on all of Y’. It is easily
seen (see Giles’ book [7]) that Ogw(X ) {x* W: x*(x)= gw(X)}. The
following proposition is similar to a result in [1].

PROPOSITION 3.18. Suppose A c Y" is bounded, A -A and W is a weak*
compact convex subset of 5*. If gw is A-differentiable at a point c then x
determines weak* slices of W of arbitrarily small qA-diameter.

Proof Let x* be an A-gradient for gw at x. By 3.15(b) we may take x* in
Ogw(X ). If x does not determine weak* slices of W with arbitrarily small
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* W with x*(x) M(x, W)qA-diameter we can find e > 0 and points x
such that qA(x*. x*) > e. Since A -A there are Yn A such that

x.* (yn) x*(yn) >e for each n.

* < and hence x*(x + y)< gw(X + y) for all* 14/" we have x gwSince x
y &r’. Therefore

x*(y) <= gw(X + y) gw(x) + fin
where

o.ft. gw(X) x* (x) M(x, W) x

There exists t > 0 such that gw(X + ty)- gw(x)- x*(ty) <= et/2 whenever
0 < t < 6 and y A, from the definition of an A-gradient. Thus setting t
we have

< <_ g. (x + + tL-
< BFfln + e/2

which is impossible since fin 0.

COROLLARY 3.19. If A is a bounded subset of 5Y with A -A and K is a
weak* closed convex subset of 5Y * such that every continuous convex function f:
5Y R with Of(x) c_ Kfor all x 5Y has a point ofA-differentiability, then K is
separably related to A.

Proof Let V be a bounded subset of K and let W weak* conv(V). Then
f gw has Of(x)_ W K for all x . Thus there is a point x 5f at
which gw is A-differentiable. By Proposition 3.18, x determines weak* slices
of W of arbitrarily small q,-diameter. Therefore x determines weak* slices of
V of arbitrarily small q,-diameter and K is separably related to A by Theorem
3.5.

COROLLARY 3.20. If K is a weak* closed convex subset of 5Y* then each of
the following statements implies both the others.

(1) K has the Radon-Nikodjm property.
(2) K is separably related to
(3) Every weak* compact convex subset of K is strongly exposed by some

point of

Proof Proposition 3.4 shows that (3) implies (1). If K is separably related
to 5f then for any weak* compact convex subset W of K the gauge function
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gw is B(Sf)-differentiable at some point x c by Corollary 3.16 and then
Corollary 3.18 shows that W is strongly exposed by x.

The following result completes the proof of Theorem 3.9.

PROPOSITION 3.21. Suppose that A is a bounded subset of and K is a
weak* closed convex subset of Y’* such that every continuous convex function f
on with Of(x) K U Kfor all x Y" is A-differentiable at a residual set

ofpoints in . Then K is separably related to A.

Proof We note that K is separably related to A if K is separably related to
each countable subset of A, so we may assume that A (yn: n 1, 2, 3,... }
is itself countable. The set H if{ n-lyn" n 1, 2, 3,... ) is compact since A
is bounded so H is measurable in itself.

Let f be any continuous convex function on 5f with Of(x)_ K for all
x Y" and define a continuous convex function g on Y" by g(x) f(- x) for
all x Y’. Note that Og(x)c_ -K for all x 5f. Then there are residual
subsets Gl, Gz and G of , such that f and g are A-differentiable at each
point of G and G2 respectively while by Corollary 3.16 f is H-differentiable
at each point of G since 5f* and H are separably related. Let G be the
residual subset G (-G2)O G of Ar and let x G. Thus there are ele-
ments x*, y* and z* of Ar* such that

(a)

(b)

lim suPlt-l(f(x + ty) f(x)) x*(y.)l O,
t-*0+ n

lim sup lt-( f(x ty) f(x)) Y*(Y) I-- o
t--O + n

since g(-x + tyn)= f(x ty,) and

lim sup It-l(f(x + th) f(x)) z*(h)l= O.
t-*O+ hH

Formula (c) implies that z*(h)= limto+t-l(f(x + th)-f(x)) for each
h A u -A so that (a) and (b) hold with z* replacing x* and (-y*)
respectively. Therefore

lim sup It-(f(x + th) f(x)) z*(h)l- o.
t-*O+ hAto-A

That is, f is (A W -A)-differentiable on the residual subset G of Y’. By
Corollary 3.19, K is separably related to A t A hence to A.

We summarize some of the results of this section in the following two
theorems.
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THEOREM 3.22. Each of the following statements about a weak* closed
convex subset K of * and a bounded subset A of implies all the others.

(1) K is separably related to A.
(2) Every bounded subset ofK has weak* slices of arbitrarily small qA-diame-

ter.

(3) Every continuous convex function f on such that Of(x) c_ F(K) for all
x r is A-differentiable on a residual subset of

(4) Every continuous convex function f on an open convex subset C of such
that Of(x) N K is nonempty for a dense set of x in C is F(A)-differentiable on a
residual subset of C.

(5) Every monotone operator g on r such that D(g) contains an open set
C with g(x)

_
Kfor all x C is A-continuous on a residual subset of C.

THEOREM 3.23. (a) A weak* closed convex subset K of Y’* has the

Radon-Nikodm property if and only if every continuous convex function f on 3f
with Of(x) c_ Kfor all x 3f is Frbchet differentiable at a residual set ofpoints
in .

(b) A bounded subset A c is measurable in itself if and only if every
continuous convex function f on Y" is A-differentiable at a residual set of points
in .qf.

4. Examples

The following construction is useful for generating counterexamples.

Example 4.1. A weak* compact nonconvex set K with the Radon-Nikodm
property need not be an RN set.

Let V be a compact Hausdorff topological space and let

i o v} c(v)*

where By denotes the evaluation functional Sv(f)= f(v) (v V, f C(V)).
Then K is a weak* compact subset of C(V)* and the norm-closed linear span
of K is isometric to lx(g) which has the Radon-Nikodm property (see [5]).
Thus K has the Radon-Nikodrn property. However if V [0, 1] is the unit
interval with its usual topology then C(V) is separable and K is not norm
separable so that K is not an RN set by Theorem 2.13.

Example 4.2. A norm-closed nonconvex set S c ." with the Radon-
Nikod,m property such that its convex hull fails the Radon-Nikod,m prop-
erty.



SEPARABLY RELATED SETS 245

Let Y" be any Banach space with strictly convex norm but not having the
Radon-Nikodtm property. See Diestel’s lecture notes [5] for examples. Let

S (x z: Ilxll- 1}

be the unit sphere. Since conv(S) B(Y’) we see that conv(S) does not have
the Radon-Nikodm property (else Y" would). However, suppose (f, ,/X) is a
finite positive measure space and m" Y" is a/x-continuous vector measure
with average range contained in S. If E and E2 are disjoint sets in with
positive/x-measure then

m(E LJ E2)
/X(E1 I,.) E2 )

m(E1)+m(E2)

((Ei_-(E2)) m(E1) /X( E2) ) m( E2)
El) +/X(E2) /X(E2)

and since

m(Ex) m(E2)
and

m(E rE2)
/X(E1) /X(E2) /X(E IO E2)

are all in S, strict convexity implies that they are all equal. It follows that,
fixing a set E of positive measure, m(E)= [m(E1)//X(E1)]/X(E ) for any
E . Therefore S has the Radon-Nikodm property.

PROPOSITION 4.3. Let K be a weak* compact RN set in * and let T:
be an operator. Then T*K is an RN set.

Proof Since K is separably related to TB(q/) the weak* compact set
T*(K) is separably related to B(q) and T*(K) is an RN set (Theorem 2.13,
Corollary 2.12).

In [23, Corollary 1.11] it was incorrectly stated that Proposition 4.3 was true
with nonconvex sets with the Radon-Nikodm property replacing RN sets.

Example 4.4. A weak* compact set K with the Radon-Nikodm property
and an operator T: --. Ar such that T*(K) does not have the Radon-
Nikodm property.

In Example 4.1 choose V to be the unit ball of lo 11" with its weak*
topology. Let T: 11 C(V) be defined by Ta E,=la,f where f(v) is the
nth coordinate of v 1oo. Then T*(8o)= v B(lo ) for each 8o K and
T*(K) B(lo ) which does not have the Radon-Nikod,m property since
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1o 1’ is not separable while 11 is separable. However K has the Radon-
Nikodm property.

Finally a suggestion of the need for weak* compactness.

Example 4.5. A norm-closed convex subset C of r,
Radon-Nikod#m property but is not separably related to 5f.

which has the

Let r= C[0,1] which is separable and let K be as in Example 4.1 If C
conv(K) then C has the Radon-Nikodrn property but is nonseparable.
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