INNER PRODUCTS ON A GREEN RING FOR FINITE GROUPS WITH A CYCLIC P-SYLOW SUBGROUP

BY
I. Reiten and K.W. Roggenkamp

Introduction

Let G be a finite group with a cyclic p-Sylow subgroup and let R be an unramified extension of the p-adic integers, for some prime number p. Denote by p the radical of R and by K its field of quotients. Then L will be either R or $R / p=k$. In addition we assume k to be a splitting field for G. (This is a technical assumption which is only used in Lemma 1.2 to guarantee that the projectives in a minimal projective resolution of R over $R G$ are indecomposable. It is superfluous when $L=k$ (see [10]), and if the p-Sylow subgroup has order p [6], [14].) Let ${ }_{L G} M^{0}$ be the category of L-free finitely generated left $L G$-modules, and $\mathfrak{U}_{L}(G)$ the Green ring of the $L G$-modules in ${ }_{L G} M^{0}$, that is, the elements in $\mathfrak{A}_{L}(G)$ are generated by the isomorphism classes of modules $\mathrm{in}_{L G} M^{0}$. Addition is induced from the direct sum and multiplication from the tensor product over L. We often do not distinguish carefully between the modules in ${ }_{L G} M^{0}$ and the objects in $\mathfrak{U}_{L}(G)$.

Denote by L_{0} the trivial $L G$-module, and consider

$$
\mathscr{P}_{L_{0}}: \cdots \rightarrow Q_{i} \rightarrow Q_{i-1} \rightarrow \cdots \rightarrow Q_{0} \rightarrow L_{0} \rightarrow 0,
$$

a minimal projective resolution of L_{0}. We note that if $L=R$ and the p-Sylow subgroup of G has order p, then all nonprojective indecomposable R-free $R G$-modules in the principal block occur as syzygies in $\mathscr{P}_{R_{0}}$ [6], [14]. Let $\mathfrak{A}_{L}^{0}(G)$ be the subring of $\mathfrak{A}_{L}(G)$ generated by the finitely generated projective $L G$-modules and the syzygies in $\mathscr{P}_{L_{0}}$. If Ω_{i} is such a syzygy, then $\mathscr{P}_{L_{0}} \otimes_{L} \Omega_{i}$ gives a projective resolution of Ω_{i}, so that $\Omega_{j} \otimes_{L} \Omega_{i}$ decomposes into a direct sum of a projective and a syzygy module of Ω_{i}, which is also a syzygy of L_{0}. $\mathfrak{U}_{L}^{1}(G)$ denotes the ideal in $\mathfrak{A}_{L}^{0}(G)$ generated by the finitely generated projective modules.

In this note we study a bilinear form [,] on $\mathfrak{A}_{L}^{0}(G)$, and we show that this form is nondegenerate unless $L=R$ and the p-Sylow subgroup of G has order 2. To prove this, denoting by Q the rational numbers, we consider the associated ring $\tilde{\mathfrak{A}}_{L}^{0}(G)=Q \otimes_{Z} \mathfrak{H}_{L}^{0}(G)$ with corresponding ideal $\tilde{\mathfrak{A}}_{L}^{1}(G)$ and
define a related bilinear form 〈, >on the quotient $\overline{\mathfrak{A}_{L}^{0}(G)}=$ $\tilde{\mathfrak{A}}_{L}^{0}(G) / \tilde{\mathfrak{Q}}_{L}^{1}(G)$.

The bilinear forms we consider are described as follows.
For M, N in ${ }_{L G} M^{0}$, denote by $P(M, N)$ the projective homomorphisms, that is, the $\phi \in \operatorname{Hom}_{L G}(M, N)$ such that there exists a commutative diagram

with P projective. It was shown in [4] using almost split sequences that [,] $=\operatorname{dim}_{k} P(, \quad)$ is a symmetric nondegenerate bilinear form on $\mathfrak{A}_{k}(G)$, and there is a generalization to symmetric algebras in [3]. This is the form we consider when $L=k$. If X is indecomposable and in $\mathfrak{A}_{k}^{0}(G)$, then the dual \hat{X} of X as constructed in [4] using almost split sequences does not in general lie in $\mathfrak{A}_{k}^{0}(G)$, so the result for $\mathfrak{A}_{k}(G)$ can not be applied. If $L=R$ we define the form [,] by

$$
[M, N]=\operatorname{dim}_{k}\left(P(M, N)+\mathfrak{p} \operatorname{Hom}_{R G}(M, N)\right) / \mathfrak{p} \operatorname{Hom}_{R G}(M, N)
$$

for M, N in ${ }_{R G} M^{0}$. As for $L=k$ [4], we show that [M, N] is the number of times Q_{0}, the projective cover of the trivial module R_{0}, occurs as a summand in a direct sum decomposition of $\operatorname{Hom}_{R}(M, N)$. We reduce the problem of showing that [,] is nondegenerate on $\mathfrak{H}_{R}^{0}(G)$ (with the exceptions mentioned before), to the corresponding problem for $\mathfrak{U}_{k}^{0}(G)$.

Let P_{1}, \ldots, P_{e} be the nonisomorphic indecomposable projective $k G$-modules. Since the Cartan matrix

$$
C=\left(c_{i j}\right)_{1 \leq i, j \leq e}, \text { where } c_{i j}=\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(P_{i}, P_{j}\right),
$$

is known to have nonzero determinant, there is a dual basis $\left\{P_{1}{ }^{\perp}, \ldots, P_{e}{ }^{\perp}\right\}$ to $\left\{P_{1}, \ldots, P_{e}\right\}$ in $\tilde{\mathfrak{A}}_{k}^{1}(G)$ with respect to $[, \quad]$. For X, Y in $\tilde{\mathfrak{A}}_{k}^{0}(G)$ we define

$$
\langle X, Y\rangle^{\prime}=[X, Y]-\sum_{i=1}^{e}\left[P_{i}, Y\right]\left[X, P_{i}^{\perp}\right]
$$

Then \langle,\rangle^{\prime} vanishes on $\tilde{\mathfrak{A}}_{k}^{1}(G)$, and hence it induces a bilinear form $\left\langle,>\right.$ on $\tilde{\mathfrak{A}}_{k}^{0}(G)$. We also consider 〈, > as a form on the subgroup $\mathfrak{U}_{k}^{2}(G)$ of $\mathfrak{A}_{k}^{0}(G)$ generated by the indecomposable nonprojective modules. We prove that $\langle\quad, \quad\rangle$ is nondegenerate on $\tilde{\mathfrak{A}}_{k}^{0}(G)$.

Two algebras B and B^{\prime} are said to be stably equivalent if the module categories modulo projectives are equivalent categories. The form [,] is not invariant under stable equivalence. We can, however, prove along the way that the form $\langle, \quad\rangle$ on $\tilde{\mathfrak{A}}_{k}^{0}(G)$ is invariant under stable equivalence. We found
this fact, which is of interest in itself, surprising since \langle,$\rangle is defined$ entirely in terms of projective homomorphisms.

The proofs will be carried out so that they apply to blocks with a cyclic defect group and k_{0} replaced by a suitably chosen irreducible representation. We hope that our results can be used to get orthogonality relations like in [4], [16].

The organization of the paper is as follows. In Section 1 we reduce the case $L=R$ to the case $L=k$, and we show that \langle,$\rangle being nondegenerate$ on $\tilde{\mathfrak{A}}_{k}^{0}(G)$ implies that [,] is nondegenerate on $\overline{\mathfrak{A}{ }_{k}^{0}(G)}$. In Section 2 we show that \langle,$\rangle is invariant under stable equivalence and prove that it is$ nondegenerate on $\overrightarrow{\mathfrak{A}}_{k}^{0}(G)$. In Section 3 we give some examples, in particular showing that our results on invariance under stable equivalence do not have an obvious generalization. In Section 4 we consider a Brauer tree T and show that there is a Bäckström order Λ such that $\Lambda / \mathfrak{p} \Lambda=S$ is associated with the Brauer tree T, and the indecomposable Λ-lattices reduce modulo \mathfrak{p} exactly to the indecomposables occurring as syzygies in a minimal projective resolution of a simple module corresponding to an edge having one vertex which is a nonexceptional end point of the tree. Alternatively, we could prove the results on the forms working with this Λ, but this turned out not to be necessary. We include the construction since it seems interesting in itself, and may be thought of as an analogue of the result that for every Brauer tree there is some associated symmetric algebra [8] [9].

We would like to thank M. Auslander and A. Wiedemann for valuable discussions on some of the questions involved.

1. Connection between nondegeneracy of two forms

In this section we reduce the problem for orders and for algebras to a common setting. Then we show that if \langle,$\rangle is nondegenerate on \overline{\tilde{\mathfrak{N}}_{k}^{0}(G),}$ then [,] is nondegenerate on $\mathfrak{A}_{k}^{0}(G)$.

Let R and K be as before and Λ an R-order in the semisimple K-algebra A. We write $S=\Lambda / \mathfrak{p} \Lambda$, and let [,] ${ }_{\Lambda}$ denote our form on ${ }_{\Lambda} M^{0}$, [,] S_{S} the form on ${ }_{s} M^{0}$, as defined in the introduction for $R G$ and $k G$. The following fact was pointed out to us by M. Auslander.

Lemma 1.1. If Λ is a Gorenstein order, then for M, N in M^{0},

$$
[M, N]_{\Lambda}=[M / p M, N / \mathfrak{p} N]_{S}
$$

Proof. We recall that Λ is said to be a Gorenstein order provided Λ is an injective object in ${ }_{\Lambda} M^{0}$.

Reduction modulo \mathfrak{p} induces an R-linear map

$$
\rho: \operatorname{Hom}_{\Lambda}(M, N) \rightarrow \operatorname{Hom}_{S}(M / p M, N / \mathfrak{p} N)
$$

If $\phi \in P_{\Lambda}(M, N)$, then clearly $\rho(\phi) \in P_{S}(M / p M, N / p N)$, so there is an induced map ρ^{\prime} :

$$
P_{\Lambda}(M, N) \rightarrow P_{S}(M / \mathfrak{p} M, N / \mathfrak{p} N)
$$

If M is projective, then ρ is surjective, and dually, if N is an injective object in ${ }_{\Lambda} M^{0}$, then ρ is surjective. Since Λ is a Gorenstein order, ρ is surjective when N is projective. This implies that ρ^{\prime} is surjective. For given a factorization

where \bar{P} is projective in ${ }_{S} M^{0}$, there is a projective Λ-module P with $P / p P \simeq \bar{P}$, and by the above $\tilde{\alpha}$ and $\tilde{\beta}$ can be lifted to $\alpha \in P_{\Lambda}(M, P)$ and $\beta \in P_{\Lambda}(P, N)$. Hence $\beta \alpha$ lifts $\tilde{\phi}$. But then the commutative diagram

$$
\begin{gathered}
0 \rightarrow \mathfrak{p H o m} \operatorname{Hom}_{\Lambda}(M, N) \rightarrow \operatorname{Hom}_{\Lambda}(M, N) \xrightarrow{\rho} \operatorname{Hom}_{S}(M / \mathfrak{p} M, N / \mathfrak{p} N) \rightarrow 0 \\
\uparrow \quad \uparrow \\
0 \rightarrow \operatorname{Ker} \rho^{\prime}
\end{gathered} \rightarrow P_{\Lambda}(M, N) \xrightarrow{\rho^{\prime}} P_{S}(M / \mathfrak{p} M, N / \mathfrak{p} N) \rightarrow 0
$$

shows that $\operatorname{Ker} \rho^{\prime}=P_{\Lambda}(M, N) \cap \mathfrak{p} \operatorname{Hom}_{\Lambda}(M, N)$, and hence

$$
\begin{aligned}
P_{S}(M / \mathfrak{p} M, N / \mathfrak{p} N) & \simeq P_{\Lambda}(M, N) /\left(P_{\Lambda}(M, N) \cap \mathfrak{p} \operatorname{Hom}_{\Lambda}(M, N)\right) \\
& \simeq\left(P_{\Lambda}(M, N)+\mathfrak{p} \operatorname{Hom}_{\Lambda}(M, N)\right) / \mathfrak{p} \operatorname{Hom}_{\Lambda}(M, N)
\end{aligned}
$$

This finishes the proof of the lemma.
Lemma 1.2. With the notation of the introduction,

$$
R / p \otimes_{R} \mathscr{P}_{R_{0}} \simeq \mathscr{P}_{k_{0}}
$$

in particular,

$$
\mathfrak{A}_{R}^{0}(G) \simeq \mathfrak{A}_{k}^{0}(G), \mathfrak{A}_{R}^{1}(G) \simeq \mathfrak{A}_{k}^{1}(G)
$$

unless $p=2$ and the 2-Sylow subgroup of G has order 2 .

Proof. For an R-free $R G$-module X we write $\bar{X}=X / \mathfrak{p} X$. Since

$$
\bar{X} / \operatorname{rad} \bar{X} \simeq X / \operatorname{rad} X
$$

X has a simple top if and only if the same holds for \bar{X}. Since the p-Sylow subgroup of G is cyclic, it follows from [5] that all syzygies of R_{0} have a simple top. Since $\bar{R}_{0} \simeq k_{0}$, it follows that $R / p \otimes_{R} \mathscr{P}_{R_{0}}$ is a minimal projective resolution of k_{0}.

Let $\left\{\Omega_{i}\right\}$ be the syzygies in $\mathscr{P}_{R_{0}}$. We claim that $\Omega_{i} \simeq \Omega_{j}$ if and only if $\bar{\Omega}_{i} \simeq \bar{\Omega}_{j}$, unless $p=2$ and the 2-Sylow subgroup of G has order 2. To see this, let P be a p-Sylow subgroup of G and N the normalizer of P in G. Unless $p=2$ and P has order 2, the $R P$-modules $R_{0}, R P$ and the augmentation ideal $I_{R}(P)$ satisfy the hypothesis of [11, Theorem 1]. Since a syzygy in an $R N$ minimal resolution of R_{0} is a direct summand of one of the induced modules $R N \otimes_{R P} R_{0}, R N$ or $R N \otimes_{R P} I_{R}(P)$, the result follows for N. Using the first part of the proof we can pass from N to G with Green correspondence.

To complete the proof we use that Green correspondence from N to G commutes with tensor products and that for N the result follows from [11, Theorem 2].

We note that Lemma 1.2 reduces for normal P with more than two elements to [12, Theorem 5]. Observe also that the result is definitely false for $p=2$ and P of order 2.

We have the following consequence of Lemmas 1.1 and 1.2.
Proposition 1.3. Let the notation be as before and assume that the p-Sylow subgroup P of G is not of order 2. Then $\left\langle,>\right.$ is nondegenerate on $\hat{\mathfrak{A}}_{R}^{0}(G)$ if and only if it is nondegenerate on $\overline{\mathfrak{A}}_{k}^{0}(G)$.

As for $L=k$ [4], we have the following description of the form [,] for ${ }_{R G} M^{0}$.

Proposition 1.4. For M, N in ${ }_{R G} M^{0},[M, N]$ is the number of times the projective cover P_{0} of the trivial module L_{0} occurs as a summand in a direct sum decomposition of $\operatorname{Hom}_{R}(M, N)$.

Proof. The corresponding result with R replaced by k was proved in [4]. Since $R G$ is a Gorenstein order, we want to use Lemma 1.1 to reduce to this case. If $P_{0}^{(s)} \mid \operatorname{Hom}_{R}(M, N)$, then clearly

$$
\left(P_{0} / \mathfrak{p} P_{0}\right)^{(s)} \mid \operatorname{Hom}_{k}(M / \mathfrak{p} M, N / \mathfrak{p} N)
$$

and $P_{0} / \mathfrak{p} P_{0}=\overline{P_{0}}$ is the projective cover of the trivial module k. Conversely, assume that

$$
\overline{P_{0}} \mid \operatorname{Hom}_{k}(M / \mathfrak{p} M, N / \mathfrak{p} N) \simeq \overline{\operatorname{Hom}_{R}(M, N)}
$$

and let $\operatorname{Hom}_{R}(M, N)=X$. We then have maps $\bar{\pi}: \bar{X} \rightarrow \overline{P_{0}}$ and $\bar{i}: \overline{P_{0}} \rightarrow \bar{X}$ such that $\bar{\pi} \bar{i}=\bar{e}=\bar{e}^{2}$. By the proof of Lemma 1.1, $\bar{\pi}$ can be lifted to $\pi: X \rightarrow P_{0}$ and \bar{i} to $i: P_{0} \rightarrow X$. Then $\pi i: X \rightarrow P_{0} \rightarrow X$ is an idempotent modulo \mathfrak{p}, and hence π is surjective, so that P_{0} is a summand of $X=\operatorname{Hom}_{R}(M, N)$.

We now show that it is sufficient for our problem to show that \langle,$\rangle is$ nondegenerate on $\tilde{\mathfrak{A}}_{k}^{0}(G)$, as a consequence of the following more general result.

Proposition 1.5. Let S be a k-algebra where all simples have k as endomorphism ring, whose Cartan matrix has nonzero determinant and where [,] is symmetric. Let \mathscr{D} be an additive subcategory of ${ }_{S} M^{0}$ containing the projectives, $\mathfrak{U}(\mathscr{D})$ the free abelian group having the isomorphism classes of indecomposable modules in \mathscr{D} as basis. If the form 〈 , 〉 is nondegenerate on $\tilde{\mathfrak{A}}(\mathscr{D}) / \tilde{\mathfrak{A}}^{1}(S)\left(\right.$ where $\mathfrak{U}^{1}(S)$ is generated by the projectives $)$, then $[$,$] is$ nondegenerate on $\mathfrak{A}(\mathscr{D})$.

Proof. Write X in $\tilde{\mathfrak{U}}(\mathscr{D})$ as $X=\sum_{i=1}^{e} a_{i} P_{i}+\sum_{i=1}^{t} b_{i} M_{i}$, where the M_{i} are the indecomposable nonprojective objects in \mathscr{D} and the a_{i} and b_{i} are in Q. Assume that $[X, Y]=0$ for all Y in $\tilde{\mathscr{A}}(\mathscr{D})$. Consider

$$
\langle X, Y\rangle=[X, Y]-\sum_{i=1}^{e}\left[X, P_{i}^{\perp}\right]\left[P_{i}, Y\right]
$$

We must then have that $\langle X, Y\rangle=0$. If P is indecomposable projective, then $\langle P, Y\rangle=0$. Hence we get that $\left\langle\sum_{i=1}^{t} b_{i} M_{i}, Y\right\rangle=0$ for all Y in $\tilde{\mathfrak{U}}(\mathscr{D}) / \tilde{\mathfrak{Q}}^{1}(S)$. Since \langle,$\rangle is assumed to be nondegenerate, we must have that all b_{i}$ are zero. Since [,] is nondegenerate on $\tilde{\mathfrak{A}}^{1}(S)$, we conclude that also all the a_{i} are zero. Since [,] is symmetric, this shows that [,] is nondegenerate on $\tilde{\mathfrak{U}}(\mathscr{D})$ and hence on $\mathfrak{A}(\mathscr{D})$.

2. Nondegeneracy of forms for Brauer trees

Let k be a field, T a Brauer tree with e edges and multiplicity m at the exceptional vertex, and S a corresponding k-algebra. For example the blocks of group algebras with cyclic defect group are given by a Brauer tree when k is a splitting field for the group [8], [9]. (See [10] for arbitrary k.) The edges are in one-one correspondence with the indecomposable projective S-modules P_{1}, \ldots, P_{e}. Consider an edge having a vertex which is a nonexceptional end point of the tree and the associated projective module Q_{0}. Then there is an exact sequence

$$
0 \rightarrow S_{0} \rightarrow Q_{2 e-1} \rightarrow \cdots \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow S_{0} \rightarrow 0
$$

where S_{0} is simple, all Q_{i} are indecomposable projective, and the resolution is
obtained by walking around the tree T [1], [5]. Denote by $\mathfrak{A}(S)$ the free abelian group whose elements are the isomorphism classes of finitely generated modules, by $\mathfrak{U}^{0}(S)$ the subgroup generated by the syzygy modules $\Omega^{i} S_{0}$, $0 \leq i<2 e$, and the indecomposable projectives and by $\mathfrak{A}^{1}(S)$ the subgroup generated by the indecomposable projectives.

Let $[, \quad]$ on $\tilde{\mathfrak{A}}^{0}(S)$ and $\langle, \quad\rangle$ on $\tilde{\mathfrak{A}}^{0}(S) / \tilde{\mathfrak{A}}^{1}(S)$ be the bilinear forms as defined before, where we use the fact that the Cartan matrix for S has nonzero determinant. We find a more suitable expression for \langle,$\rangle , enabling us to$ show that it is nondegenerate on $\tilde{\mathfrak{A}}^{0}(S) / \tilde{\mathfrak{A}}^{1}(S)$. Along the way we show the curious fact that \langle,$\rangle is invariant under stable equivalence.$

Let T_{1}, \ldots, T_{e+1} denote the vertices of the Brauer tree T and assume for all the lemmas that T is not

Then the modules $\Omega^{i} S_{0}, 0 \leq i<2 e$, are pairwise nonisomorphic, and we can think of them as belonging to exactly one of these vertices in the following way, which has to do with how the resolution is obtained by walking around the tree. Let S_{0} belong to the end point we start with. We associate $\Omega^{1} S_{0}$ with the other vertex of this edge. $\Omega^{2} S_{0}$ is placed at the other vertex of the edge of the projective cover of $\Omega^{1} S_{0}$, and so on. For $M=\Omega^{i} S$ we define $\operatorname{sig}(M)=$ $(-1)^{i}$. If M belongs to the vertex T_{j}, we define $\operatorname{sig} T_{j}=\operatorname{sig} M$. This is clearly well defined since T is a tree.

We have the following description of the modules belonging to a given vertex in the above sense.

Lemma 2.1. The indecomposable modules belonging to a given vertex T_{i} are the following: For each edge E with T_{i} as a vertex, take the uniserial module corresponding to winding around $T_{i} m_{i}$ times, starting with E and ending with the edge preceding E, where the composition factors are given from top to bottom. Here m_{i} is m at the exceptional vertex and 1 otherwise.

Proof. Assume some $\Omega^{t} S_{0}$ at T_{j} has this form. Let E be the edge corresponding to the projective cover of $\Omega^{t} S_{0}$. From the structure of indecomposable projectives $\Omega^{t+1} S_{0}$ is then of the desired form. It is associated with the other vertex of E, and the structure as uniserial module is given by starting with the edge following E. Since S_{0} itself has the desired form, these considerations prove the lemma.

The values $[P, M]$ and $[M, N]$, for M and N indecomposable in $\mathfrak{U}^{0}(S)$, depend heavily on the vertex to which the modules belong.

Lemma 2.2. Let M and N be syzygies of S_{0}.
(a) $\left[P_{u}, P_{v}\right]$ is m_{i} if $P_{u} \neq P_{v}$ have T_{i} as a common vertex, is max $\left(m_{i}+1\right.$, $\left.m_{j}+1\right)$ if $P_{u} \simeq P_{v}$ and T_{i} and T_{j} are the corresponding vertices, and is 0 otherwise.
(b) $[P, M]=[M, P]$ is equal to m_{i} if M belongs to a vertex T_{i} of the edge corresponding to P, and is 0 otherwise.
(c) $[M, N]$ is $m_{i}-1$ if $M \simeq N$, is m_{i} if $M \neq N$, but M and N belong to the same vertex T_{i}, and is 0 otherwise.

Proof. (a) This follows directly from the description of the indecomposable projectives, since $\left[P_{u}, P_{v}\right.$] equals the number of times $P_{u} / \mathrm{r} P_{u}$ where r is the radical of S, occurs as a composition factor in P_{v}.
(b) This follows similarly, by counting composition factors.
(c) If M and N belong to the same vertex T_{i}, then $M / \mathrm{r} M$ occurs m_{i} times as a composition factor in N. From the description of M and N given in Lemma 2.1 it follows that each map from M to N which is not an isomorphism must factor through a projective module.

Let M and N belong to different vertices. If there is no edge connecting these vertices, then M and N have no common composition factors, so that there are no nonzero maps from M to N. If there is an edge connecting the vertices, M and N have one composition factor in common. But it is easy to see that any corresponding nonzero map can not factor through a projective module.

We shall need the following matrices associated with a Brauer tree, in addition to the Cartan matrix. The $(e+1, e)$ matrix $D=\left(d_{i j}\right), 1 \leq i \leq e+$ $1,1 \leq j \leq e$, is defined as follows:

$$
d_{i j}=\left\{\begin{array}{l}
m_{i} \quad \text { if } T_{i} \text { is a vertex of the edge corresponding to } P_{j} . \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

If for each $i, 1 \leq i \leq e+1$, we choose a module Ω_{i} at T_{i}, we have $d_{i j}=\left[P_{j}, \Omega_{i}\right]$. The matrix $\tilde{D}=\left(\tilde{d}_{i j}\right)$ is defined by

$$
\tilde{d}_{i j}= \begin{cases}1 & \text { if } T_{i} \text { is a vertex of the edge corresponding to } P_{j} \\ 0 & \text { otherwise } .\end{cases}
$$

There is the following relationship with the Cartan matrix C.
Lemma 2.3. $\quad C=D^{t r} \tilde{D}$.
Proof. We have $C=\left(c_{i j}\right)$, where $c_{i j}$ is m_{u} if $P_{i} \neq P_{j}$ have a common vertex T_{u}, is $\max \left(m_{u}+1, m_{v}+1\right)$ if $P_{i} \simeq P_{j}$ has vertices T_{u} and T_{v}, and is 0 otherwise. So clearly $\sum_{i=1}^{e+1} d_{i v} \tilde{d}_{i u}=c_{v u}$.

The next lemma provides an essential step in our proof.
Lemma 2.4.

$$
\sum_{i=1}^{e}\left[P_{i}, \Omega_{u}\right]\left[\Omega_{v}, P_{i}^{\perp}\right]=m_{u} \delta_{u v}-\operatorname{sig} T_{u} \operatorname{sig} T_{v} \frac{m}{m e+1}
$$

Proof. Let $X=\left(x_{u v}\right)_{1 \leq u, v \leq e+1}$ be the $(e+1, e+1)$ matrix defined by

$$
x_{u v}=\sum_{i=1}^{e}\left[P_{i}, \Omega_{u}\right]\left[\Omega_{v}, P_{i}^{\perp}\right]
$$

Let $C^{-1}=\left(\tilde{c}_{i j}\right)$. We then have

$$
x_{u v}=\sum_{i=1}^{e}\left[P_{i}, \Omega_{u}\right] \sum_{j=1}^{e} \tilde{c}_{i j}\left[\Omega_{v}, P_{j}\right]
$$

Since $\left[P_{i}, \Omega_{u}\right]=d_{u i}$ and $\left[\Omega_{v}, P_{j}\right]=d_{v j}$, this shows that $X=D C^{-1} D^{t r}$.
Define the $(e+1, e+1)$ matrix $Y=\left(y_{u v}\right)_{1 \leq u, v \leq e+1}$ by

$$
y_{u v}=\frac{1}{m e+1}\left(\delta_{u v}(m e+1) m_{u}-\operatorname{sig} T_{u} \operatorname{sig} T_{v}\right)
$$

We want to show that $X=Y$. To do this we first show that $Y \tilde{D}=D$, as we obviously have $X \tilde{D}=D$. For this, we have to show $\sum_{i=1}^{e+1} y_{u i} \tilde{d}_{i v}=d_{u v}$. Let v be fixed, and consider the corresponding projective module P_{v}. Let $T_{v_{1}}$ and $T_{v_{2}}$ be the vertices of the edge corresponding to P_{v}. We clearly have $\operatorname{sig} T_{v_{1}}=-\operatorname{sig} T_{v_{2}}$. If $u \neq v_{1}, v_{2}$, we have

$$
\sum_{i=1}^{e+1} y_{u i} \tilde{d}_{i v}=\frac{m}{m e+1}\left(-\operatorname{sig} T_{u} \operatorname{sig} T_{v_{1}}-\operatorname{sig} T_{u} \operatorname{sig} T_{v_{2}}\right)=0
$$

and in this case also $d_{u v}=0$. If $u=v_{1}$ we have

$$
\begin{aligned}
\sum_{i=1}^{e+1} y_{v_{1} i} \tilde{d}_{i v} & =m_{v_{1}}+\frac{m}{m e+1}\left(-\operatorname{sig} T_{v_{1}} \operatorname{sig} T_{v_{1}}-\operatorname{sig} T_{v_{1}} \operatorname{sig} T_{v_{2}}\right) \\
& =m_{v_{1}} \\
& =d_{v_{1} v} .
\end{aligned}
$$

The calculation for $u=v_{2}$ is the same, so that we have $Y \tilde{D}=D$.
Interpreting X and Y as maps from an $(e+1)$-dimensional rational vector space V to itself relative to the natural basis n_{1}, \ldots, n_{e+1}, we next want to prove that $\operatorname{Ker} X=\operatorname{Ker} Y$.
D and \tilde{D} have rank e since $C=D^{t r} \tilde{D} . \quad X$ has rank e since $X=D C^{-1} D^{t r}$. Since $X \tilde{D}=Y \tilde{D}$, we have rank $Y \geq \operatorname{rank} X=e$. Since

$$
r_{0}=\left(\operatorname{sig} T_{j} \frac{1}{m_{j}}\right)_{1 \leq j \leq e+1}
$$

is in $\operatorname{Ker} D$, hence in $\operatorname{Ker} X$, we need to show that r_{0} is in $\operatorname{Ker} Y$. We have

$$
\begin{aligned}
\left(r_{0} Y\right)_{j} & =\sum_{i=1}^{e+1} \frac{1}{m_{i}} \operatorname{sig} T_{i}\left(\delta_{i j} m_{i}-\frac{m}{m e+1} \operatorname{sig} T_{i} \operatorname{sig} T_{j}\right) \\
& =\operatorname{sig} T_{j}-\sum_{i=1}^{e+1} \operatorname{sig} T_{j} \frac{m}{m e+1} \cdot \frac{1}{m_{i}} \\
& =\operatorname{sig} T_{j}\left(1-\frac{m}{m e+1} \sum_{i=1}^{e+1} \frac{1}{m_{i}}\right) \\
& =\operatorname{sig} T_{j}\left(1-\frac{1}{m e+1} \sum_{i=1}^{e+1} \frac{m}{m_{i}}\right) \\
& =0
\end{aligned}
$$

Hence we conclude that $\operatorname{Ker} X=\operatorname{Ker} Y$.
Since \tilde{D} has rank $e, \operatorname{Ker} \tilde{D}$ has dimension 1. Clearly the vector $\left(\operatorname{sig} T_{j}\right)_{1 \leq j \leq e+1}$ is in $\operatorname{Ker} \tilde{D}$. Let $y_{i}=n_{i}(X-Y)$. Since we have $X \tilde{D}=D=$ $Y \tilde{D}$, then $y_{i} \tilde{D}=0$, hence $y_{i}=\left(\alpha(i) \operatorname{sig} T_{j}\right)_{1 \leq j \leq e+1}$. Then we have

$$
X=Y+\left(\alpha(i) \operatorname{sig} T_{j}\right)_{1 \leq i, j \leq e+1}
$$

Since C is a symmetric matrix, X and Y are symmetric matrices. Hence

$$
\alpha(i) \operatorname{sig} T_{j}=\alpha(j) \operatorname{sig}\left(T_{i}\right)
$$

so that $\alpha(i)=\alpha \operatorname{sig} T_{\mathrm{i}}$. This shows that

$$
X=Y+\alpha\left(\operatorname{sig} T_{i} \operatorname{sig} T_{j}\right)_{1 \leq i, j \leq e+1}
$$

We now have

$$
\begin{aligned}
0 & =r_{0} \alpha\left(\operatorname{sig} T_{i} \operatorname{sig} T_{j}\right)_{j} \\
& =\sum_{i=1}^{e+1} \frac{1}{m_{i}} \operatorname{sig} T_{i} \alpha \operatorname{sig} T_{i} \operatorname{sig} T_{j} \\
& =\left(\sum_{i=1}^{e+1} \frac{1}{m_{i}}\right) \alpha \operatorname{sig} T_{j},
\end{aligned}
$$

so that $\alpha=0$, and hence $X=Y$. This finishes the proof of the lemma.

We now have the following expression for our form.
Proposition 2.5. Let S be a k-algebra given by a Brauer tree T different from
\qquad 1.

If M and N are indecomposable in $\mathfrak{H}^{0}(S)$, then

$$
\langle M, N\rangle=-\delta_{M, N}+\frac{m}{m e+1} \operatorname{sig} M \operatorname{sig} N .
$$

Proof. We have shown that

$$
\sum_{i=1}^{e}\left[P_{i}, N\right]\left[M, P_{i}^{\perp}\right]=\delta_{l j} m_{l}-\frac{m}{m e+1} \operatorname{sig} M \operatorname{sig} N
$$

if M belongs to T_{l} and N belongs to T_{j}. The result then follows from Lemma 2.2(c).

We have the following consequence.
Proposition 2.6. If T is a Brauer tree and S an associated k-algebra, then $\langle\quad, \quad\rangle$ is nondegenerate on $\tilde{\mathfrak{A}}^{0}(S) / \tilde{\mathfrak{A}}^{1}(S)$.

Proof. If T is

there is only one indecomposable nonprojective module in $\mathfrak{A}^{0}(S)$, and it is easy to see that $\langle, \quad\rangle$ is nondegenerate on $\tilde{\mathfrak{A}}^{0}(S) / \tilde{\mathfrak{A}}^{1}(S)$. For T otherwise, we arrange the $2 e$ indecomposable nonprojectives in $\mathfrak{U}^{0}(S)$ such that sig is +1 for the first e ones and -1 for the others, and get the following associated matrix by using Proposition 2.5:

$$
\frac{m}{m e+1}\left(\begin{array}{rrrrrr}
1 & & 1 & -1 & & -1 \\
1 & \ddots & & & & \\
1 & & -1 & 1 & -1 \\
-1 & & & \ddots & 1 \\
-1 & & -1 & 1 & & 1
\end{array}\right)-\left(\begin{array}{rrrrr}
1 & & & & \\
& \ddots & & & \\
& & \ddots & & \\
& 0 & \ddots & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right)
$$

By elementary operations this is reduced to:

$$
\left(\begin{array}{cccc}
-1 & & & \\
& \ddots & & * \\
& & -1 & \\
& 0 & & \\
& & -1+\frac{2 m}{m e+1}
\end{array}\right)
$$

Since we have assumed that $(e, m) \neq(1,1)$, the determinant is not zero.
We get the following main result by combining Propositions 1.5 and 2.6.
Theorem 2.7. Let T be a Brauer tree and S an associated k-algebra. Then [,] is nondegenerate on $\mathfrak{H}^{0}(S)$.

We end this section by pointing out the relationship with stable equivalence. Let S be a k-algebra over an algebraically closed field k given by a Brauer tree T. We recall that the indecomposable nonprojective objects M in $\mathfrak{A}^{0}(S)$ are uniquely determined by $\beta(M) \leq 1$, where $\beta(M)$ denotes the number of nonprojective indecomposable summands in the middle term L of an almost split sequence $0 \rightarrow N \rightarrow L \rightarrow M \rightarrow 0$ [13]. Since β is an invariant of stable equivalence [2], a correspondence is induced between the nonprojective indecomposables in $\mathfrak{H}^{0}(S)$ and $\mathfrak{H}^{0}\left(S^{\prime}\right)$ when S and S^{\prime} are stably equivalent k-algebras given by Brauer trees. Now S and S^{\prime} are known to be stably equivalent if and only if $e=e^{\prime}$ and $m=m^{\prime}$, where e^{\prime} is the number of simples for S^{\prime} and m^{\prime} the multiplicity of the exceptional vertex [7]. In particular, any k-algebra given by a Brauer tree is stably equivalent to a k-algebra given by a star with the exceptional vertex in the middle, that is, to a Nakayama algebra. Combining with Proposition 2.5 we therefore have the following.

Theorem 2.8. Let S and S^{\prime} be stably equivalent algebras over an algebraically closed field k, given by Brauer trees. The stable equivalence induces an isomorphism $\tilde{\mathfrak{A}}^{0}(S) / \tilde{\mathfrak{A}}^{1}(S) \rightarrow \tilde{\mathfrak{A}}^{0}\left(S^{\prime}\right) / \tilde{\mathfrak{A}}^{1}\left(S^{\prime}\right)$, and the isomorphism commutes with 〈 , >.

3. Examples

Let k be an algebraically closed field and S and S^{\prime} stably equivalent k-algebras given by Brauer trees. In Section 2 we showed that the form 〈 , > is invariant under stable equivalence when restricted to the additive subcategory generated by a special Ω-orbit of indecomposable modules. In the proof we used strongly properties of this Ω-orbit. We show here that the result is not necessarily true for any Ω-orbit, in particular, it does not necessarily hold for
the whole module category. We also show that the form [,] being nondegenerate may fail on arbitrary Ω-orbits by studying the situation for Nakayama algebras.

Let T be the Brauer tree
\qquad . \qquad . \qquad . 2.
(It should be noted that T is the Brauer tree of the principal 7-block of PSL (2.7).) Then the Cartan matrix C_{T} of an associated algebra is

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right)
$$

so that

$$
C_{T}^{-1}=1 / 7\left(\begin{array}{rrr}
5 & -3 & 1 \\
-3 & 6 & -2 \\
1 & -2 & 3
\end{array}\right)
$$

We then have

$$
P_{1}^{\perp}=1 / 7\left(5 P_{1}-3 P_{2}+P_{3}\right), \quad P_{2}^{\perp}=1 / 7\left(-3 P_{1}+6 P_{2}-2 P_{3}\right)
$$

and

$$
P_{3}^{\perp}=1 / 7\left(P_{1}-2 P_{2}+P_{3}\right)
$$

where P_{1}, P_{2}, P_{3} are the indecomposable projectives corresponding to the edges, from left to right. We have a stable equivalence with an algebra given by the tree T^{\prime},

since $e=3$ in both cases, and the m_{i} are the same. Here we have

$$
C_{T^{\prime}}=\left(\begin{array}{lll}
3 & 2 & 2 \\
2 & 3 & 2 \\
2 & 2 & 3
\end{array}\right)
$$

so that

$$
C_{T^{\prime}}^{-1}=1 / 7\left(\begin{array}{rrr}
5 & -2 & -2 \\
-2 & 5 & -2 \\
-2 & -2 & 5
\end{array}\right)
$$

If Q_{1}, Q_{2}, Q_{3} denote the indecomposable projectives, given in anticlockwise order, we have

$$
Q_{1}^{\perp}=1 / 7\left(5 Q_{1}-2 Q_{2}-2 Q_{3}\right), \quad Q_{2}^{\perp}=1 / 7\left(-2 Q_{1}+5 Q_{2}-2 Q_{3}\right)
$$

and

$$
Q_{3}^{\perp}=1 / 7\left(-2 Q_{1}-2 Q_{2}+5 Q_{3}\right) .
$$

Let $P_{i} / \mathrm{r} P_{i}=U_{i}$ and $Q_{i} / \mathrm{r} Q_{i}=V_{i}$. It is not hard to see that if F is a stable equivalence between algebras given by T^{\prime} and T, and we also denote by F the induced correspondence between the indecomposable modules, then we can have the following:

$$
\begin{aligned}
& F\left(V_{1}\right)=U_{1}, \quad F\left(\Omega V_{1}\right)=\Omega U_{1}=\binom{U_{2}}{U_{1}}, \\
& F\left(V_{2}\right)=F\left(\Omega^{2} V_{1}\right)=\Omega^{2} F\left(V_{1}\right)=\binom{U_{3}}{U_{2}}, \\
& F\binom{V_{1}}{V_{2}}=\mathrm{r}_{2}=U_{1} U_{3}, \\
& \left(\begin{array}{l}
V_{3} \\
V_{1} \\
V_{2} \\
V_{2} \\
V_{1}
\end{array}\right)={ }_{U_{1}} l_{U_{3}}^{U_{2}},
\end{aligned}
$$

We have the following:

$$
\begin{aligned}
& \left(\left(\begin{array}{l}
V_{3} \\
V_{1} \\
V_{2} \\
V_{3} \\
V_{1}
\end{array}\right),\binom{V_{1}}{V_{2}}\right)=0-1 / 7(5.2-2-2.2-2.2+5-2.2)=-1 / 7,
\end{aligned}
$$

$$
\begin{aligned}
& =1-1 / 7(5-3+2 \cdot 1-3+6-2 \cdot 2+1-2+2 \cdot 1) \\
& =3 / 7 \text {. }
\end{aligned}
$$

Hence $\langle, \quad\rangle$ is not invariant under stable equivalence on the Ω-orbit of

$$
\binom{V_{1}}{V_{2}}
$$

Now let Λ be an algebra given by a star with the exceptional vertex in the middle, that is, Λ is a basic symmetric Nakayama algebra. Let P_{1}, \ldots, P_{e} be the indecomposable projective modules and U_{1}, \ldots, U_{e} the corresponding simple modules. Let C be an indecomposable module and \mathscr{C} the additive category generated by the P_{i} and the syzygies $\Omega^{i} C$ of C. We can clearly assume that $l(C) \leq(m e+1) / 2$, where l denotes length, and we write $l(C)=t e+\alpha$, where $t<m / 2,1 \leq \alpha \leq e$. Let A_{i} be the indecomposable Λ-module of length te $+\alpha$ with $A_{i} / \mathrm{r} A_{i}=U_{i}$, and B_{i} the indecomposable Λ-module of length $(m-t-l) e+(e+1-\alpha)$, with $B_{i} / \mathrm{r} B_{i}=U_{i}$. Then the indecomposable objects of \mathscr{C} are the $P_{i}, A_{i}=B_{i}$ if e and m are odd and $t=(m-1) / 2$, $\alpha=(e+1) / 2$, and the P_{i}, A_{i}, B_{i} otherwise, $1 \leq i \leq e$. Using the structure of indecomposable modules over Nakayama algebras and that length considerations determine whether a map factors through a projective module, we get the following values for [,]:

$$
\begin{gathered}
{\left[A_{i}, A_{j}\right]=0 \quad \text { for all } i, j} \\
{\left[P_{i}, P_{j}\right]=\left\{\begin{array}{cl}
m+1 & \text { for } i=j \\
m & \text { for } i \neq j
\end{array}\right.} \\
{\left[P_{i}, A_{j}\right]=\left[A_{j}, P_{i}\right]=\left\{\begin{array}{cl}
t+1 & \text { if } i \in[j, j+\alpha+1] \\
t & \text { otherwise }
\end{array}\right.}
\end{gathered}
$$

Furthermore, if $A_{i} \neq B_{i}$, we have

$$
\begin{gathered}
{\left[P_{i}, B_{j}\right]= \begin{cases}m-t & \text { for } i \in[j, j+e-\alpha] \\
m-t-1 & \text { otherwise }\end{cases} } \\
{\left[B_{i}, A_{j}\right]=0=\left[A_{j}, B_{i}\right] \text { for all } i, j} \\
{\left[B_{i}, B_{j}\right]=m-2 t+x+y}
\end{gathered}
$$

where $x=0$ if $j \in[i+\alpha, i+e]$ and $x=-1$ otherwise, $y=0$ if $j \in[i+1$, $i+(e-\alpha)]$ and $y=-1$ otherwise, and all additions are considered modulo e.

Denoting the P_{i} by \mathscr{P}, the A_{i} by \mathscr{A} and the B_{i} by \mathscr{B}, we get the following matrices associated with the form in the two cases

$$
\begin{gathered}
M_{1}=\left(\begin{array}{c|c}
\mathscr{M}_{\mathscr{P}}^{\mathscr{P}} & \mathscr{M}_{\mathscr{P}}^{\mathscr{P}} \\
\hline \mathscr{M}_{\mathscr{P}}^{\mathscr{P}} & 0
\end{array}\right), \\
M_{2}=\left(\begin{array}{c|c|c}
\mathscr{M}_{\mathscr{P}}^{\mathscr{P}} & \mathscr{M}_{\mathscr{P}}^{\mathscr{A}} & \mathscr{M}_{\mathscr{P}}^{\mathscr{P}} \\
\hline \mathscr{M}_{\mathscr{P}}^{\mathscr{P}} & \mathscr{M}_{\mathscr{P}}^{\mathscr{P}} & 0 \\
\hline \mathscr{M}_{\mathscr{P}}^{\mathscr{P}} & 0 & 0
\end{array}\right)
\end{gathered}
$$

where \mathscr{M}_{y}^{x} denotes the matrix relative to x and y. Hence det $M_{1} \neq 0$ if and only if $\operatorname{det} \mathscr{M}_{\mathscr{P}}^{\mathscr{Q}} \neq 0$ and $\operatorname{det} M_{2} \neq 0$ if and only if $\operatorname{det} \mathscr{M}_{\mathscr{P}}^{\mathscr{A}} \neq 0$ and $\operatorname{det} \mathscr{M}_{\mathscr{O}}^{\mathscr{B}} \neq 0$.

We see that if $\alpha=e$, then

$$
\mathscr{M}_{\mathscr{P}}^{\mathscr{A}}=\left(\begin{array}{ll}
t+1 & t+1 \\
t+1 & t+1
\end{array}\right)
$$

so that $\operatorname{det} \mathscr{M}_{\mathscr{P}}^{\mathscr{P}}=0$. So in this case the form is degenerate.
The case we have studied before is $t=0, \alpha=1$. Assume more generally that $\alpha=1$ and $t\langle m / 2$. Then

$$
\mathscr{M}_{\mathscr{P}}^{\mathscr{P}}=\left(\begin{array}{cccc}
t+1 & t & \cdots & t \\
t & \ddots & & \vdots \\
& & \ddots & t \\
t & \cdots & & t+1
\end{array}\right)
$$

has determinant $t e+1 \neq 0$ so that $\operatorname{det} M_{1} \neq 0$ when $t=(m-1) / 2$ and $\alpha=1=(e+1) / 2$. If

$$
(t, e) \neq((m-1) / 2,1)
$$

then

$$
\mathscr{M}_{\mathscr{B}}^{\mathscr{B}}=\left(\begin{array}{ccc}
(m-2 t-1)(m-2 t) & & (m-2 t) \\
(m-2 t)(m-2 t-1) & & (m-2 t) \\
(m-2 t)(m-2 t) & \ddots & \\
(m-2 t-1)
\end{array}\right)
$$

has determinant

$$
\begin{gathered}
(m-2 t-1)+(e-1)(m-2 t) \quad \text { if } e \text { is odd } \\
-(2 m-4 t-1)-(e-2)(m-2 t) \quad \text { if } e \text { is even. }
\end{gathered}
$$

Therefore $\operatorname{det} \mathscr{M}_{\mathscr{E}}^{\mathscr{F}}$ is not zero.

4. Construction of Bäckström orders associated with a given Brauer tree

Let T unequal to

be a Brauer tree with e edges and $e+1$ vertices, and let m be the multiplicity
of the exceptional vertex. Let $k=R / \mathfrak{p}$ with R and \mathfrak{p} as before. We know that there is some k-algebra S where the structure of the indecomposable projectives is given by the Brauer tree T. We give an analogue of this result for orders, in showing that there is some R-order Λ associated with T in a natural way. Even though this turned out not to be needed to prove our main result, we include the construction of this order, since it should be of interest in itself.

When S denotes a k-algebra given by T, we let \bar{S}_{0} be a simple S-module corresponding to an edge, one of whose vertices is a nonexceptional end point of the tree. Let

$$
\overline{\mathscr{P}}_{\bar{S} 0}: \cdots \rightarrow \overline{Q_{2 e-1}} \rightarrow \cdots \rightarrow \overline{Q_{1}} \rightarrow \overline{Q_{0}} \rightarrow \overline{S_{0}} \rightarrow 0
$$

be a minimal projective resolution of \bar{S}_{0}. As we have mentioned, the syzygy modules $S_{0}=\bar{\Omega}_{0}, \bar{\Omega}_{1}, \ldots \bar{\Omega}_{2 e-1}$ are all indecomposable and nonisomorphic. The edges to which the \bar{Q}_{i} belong only depend on the edge of \bar{S}_{0}.

We recall that an R-order Λ is said to be a Bäckström order provided there is a hereditary R-order Λ with $\operatorname{rad} \Lambda=\operatorname{rad} \Gamma$. The representation theory of Bäckström orders is well understood [15], and for details on Bäckström orders we refer to [14].

We have the following main result of this section.
Theorem 4.1. With the above notation there exists a Bäckström R-order Λ satisfying:
(i) $\Lambda / \mathfrak{p} \Lambda \simeq S$, where S is given by the tree T.
(ii) Λ has exactly $3 e$ nonisomorphic indecomposable R-free modules, which are the syzygies of one irreducible lattice.
(iii) If $M \in{ }_{\Lambda} M^{0}$ is indecomposable, then so is $M / \mathrm{p} M$. In particular, there exists $S_{0} \in{ }_{\Lambda} M^{0}$ with $S_{0} / \mathfrak{p} S_{0}$ and the minimal projective resolution of S_{0} reduces to a minimal projective resolution of \bar{S}_{0} modulo \mathfrak{p}.

Proof. We first define a map

$$
\mathscr{K}:\left\{\bar{\Omega}_{i}\right\}_{0 \leq i<2 e} \rightarrow\{1, \ldots, e+1\}
$$

where $\{1, \ldots, e+1\}$ represent the vertices of T. The minimal projective resolution $\overline{\mathscr{P}}_{\bar{S}_{0}}$ of \bar{S}_{0} is constructed by walking around the Brauer tree. So as one walks from \bar{Q}_{i-1} to \bar{Q}_{i} one passes exactly one vertex which we define to be $\mathscr{K}\left(\bar{\Omega}_{i}\right)$. Then $\operatorname{card}\left(\mathscr{K}^{-1}(j)\right)=n(j)$ is the number of edges meeting in j. If j is not the exceptional vertex, we associate with j the following hereditary order

$$
\Gamma_{j}=\left(\begin{array}{ccccc}
R & \mathfrak{p} & \cdots & & \mathfrak{p} \\
R & R & \mathfrak{p} & & \\
\vdots & & \ddots & & \vdots \\
R & R & & R & R
\end{array}\right)_{n(j) \times n(j)}
$$

and we label the indecomposable Γ_{j} - lattices in the following way:

$$
Q_{j, i}=\left(\begin{array}{c}
\mathfrak{p} \\
\vdots \\
\dot{p} \\
R \\
\vdots \\
R
\end{array}\right)_{n(j) \times 1} \quad\{i-1 \quad ; 1 \leq i \leq n(j)
$$

Then $\operatorname{rad}_{\Gamma_{j}}\left(Q_{j, i}\right)=Q_{j, i+1}$, where $i+1$ is taken modulo $n(j)$. For the exceptional vertex j_{0}, let \tilde{R} with radical \mathfrak{p} be the totally ramified extension of R of degree m, let

$$
\Gamma_{j_{0}}=\left(\begin{array}{ccccc}
\tilde{R} & \tilde{p} & & \cdots & \tilde{p} \\
\vdots & \tilde{R} & \tilde{p} & & \vdots \\
\tilde{R} & & \cdots & \tilde{R} & \mathfrak{p} \\
& \cdots & & \tilde{R}
\end{array}\right)_{n\left(j_{0}\right) \times n\left(j_{0}\right)}
$$

and label the indecomposable $\Gamma_{j_{0}}$-lattices as above. Let $\Gamma=\prod_{j=1}^{e+1} \Gamma_{j}$. We note that for each indecomposable projective Γ-module P we have $P / \operatorname{rad}_{\Gamma} P \simeq$ $R / p=k$. Before we give the rather technical definition of our Bäckström order Γ, we illustrate the situation by means of two examples.

Example 1. Let T be a star with the exceptional vertex in the centre:

The exceptional vertex has multiplicity m and gets the number $e+1$, and i is the other end point of the edge corresponding to the indecomposable projective module $\bar{P}_{i}, 1 \leq i \leq e$. Then we have

$$
\Gamma=\prod_{i=1}^{e} R_{i} \times\left(\begin{array}{ccccc}
\tilde{R} & \mathfrak{p} & & \cdots & \mathfrak{p} \\
\vdots & \tilde{R} & & & \vdots \\
& & \ddots & \tilde{R} & \mathfrak{p} \\
\tilde{R} & & \cdots & & \tilde{R}
\end{array}\right)_{e \times e} \quad, \quad R_{i}=R
$$

In $\Gamma / \mathrm{rad} \Gamma$ we consider the e-dimensional k-algebra

$$
k_{1} \times \cdots \times k_{e}, \quad k_{i}=k
$$

where k_{j} is diagonally embedded in

$$
Q_{j, 1} / \operatorname{rad} Q_{j, 1} \oplus Q_{e+1, j} / \operatorname{rad} Q_{e+1, j}
$$

Then Λ is the pullback of the diagram

Example 2. [14]. The Mathiew group M_{11} at $p=11$ has for the principal block the Brauer tree

where 5 is the exceptional vertex and has multiplicity 2.
Hence

$$
\Gamma=R \times\left(\begin{array}{cc}
R & \mathfrak{p} \\
R & R
\end{array}\right) \times\left(\begin{array}{cccc}
R & \mathfrak{p} & \mathfrak{p} & \mathfrak{p} \\
R & R & \mathfrak{p} & \mathfrak{p} \\
R & R & R & \mathfrak{p} \\
R & R & R & R
\end{array}\right) \times R \times \tilde{R} \times R .
$$

We embed $k_{1} \times \cdots \times k_{5}$ into $\Gamma / \operatorname{rad} \Gamma$ in the following way, denoting

$$
Q_{i, j} / \operatorname{rad}_{\Gamma} Q_{i, j}
$$

by $\bar{Q}_{i, j}$, where each map is a diagonal embedding:

$$
\begin{gathered}
k_{1} \rightarrow \bar{Q}_{1,1} \oplus \bar{Q}_{2,1}, \quad k_{2} \rightarrow \bar{Q}_{2,2} \oplus \bar{Q}_{3,1} \\
k_{3} \rightarrow \bar{Q}_{3,2} \oplus \bar{Q}_{4,1}, \quad k_{4} \rightarrow \bar{Q}_{3,3} \oplus \bar{Q}_{5,1}, \quad k_{5} \rightarrow \bar{Q}_{3,4} \oplus \bar{Q}_{6,1} .
\end{gathered}
$$

Again, Λ is the pullback in the diagram

where the embedding $k_{1} \times \cdots \times k_{5}$ is induced from the above.
In both examples it is not hard to see that the claimed statements are true.
We now want to define Λ in general. We label the vertices and edges, with the associated projectives, as we meet them on our walk around the tree, starting with vertex 1 corresponding to S_{0}. We give an inductive definition of the embedding

$$
\prod_{i=1}^{e} k_{i} \rightarrow \Gamma / \mathrm{rad} \Gamma, \quad k_{i}=k
$$

Corresponding to the edge 1 associated with \bar{P}_{1} we have the diagonal embedding $k_{1} \rightarrow Q_{1,1} / \mathrm{rad}_{\Gamma} Q_{1,1} \oplus Q_{2,1} / \mathrm{rad} Q_{2,1}$. Assume that we have embedded $k_{\mathrm{i}}, i<i_{0} \leq e$, into $\Gamma / \mathrm{rad} \Gamma$ as we followed the walk around the tree. Since T is a tree, the i_{0}-th edge meets the vertex $i_{0}+1$, and the other vertex of this edge is i_{1} with $i_{1}<i_{0}$. Assume we have already passed r edges meeting in the vertex i_{1}. Then we define the diagonal embedding

$$
k_{i_{0}} \rightarrow Q_{i_{1}, r+1} / \operatorname{rad} Q_{i_{1}, k+1} \oplus Q_{i_{0}, 1} .
$$

We define Λ as the pullback of

We want to show that Λ satisfies the desired properties. Λ is a Bäckström order [15] with associated species a disjoint union of e copies of A_{3}, and so there are $3 e$ indecomposable modules in ${ }_{\Lambda} M^{0}$ which all occur as syzygy modules of any nonprojective indecomposable. We prove that $\Lambda / p \Lambda$ is given by T by induction on the number of edges of T. Let T be
with the exceptional vertex of multiplicity $m(>1)$. Then S is uniserial of length $m+1$ over k. Moreover, if \tilde{R} is a totally ramified extension of R of
degree m, then Λ is the pullback of the diagram

where $k \rightarrow k \times k$ denotes the diagonal embedding, and so $\Lambda / p \Lambda$ is uniserial of length $m+1$ over k, that is $\Lambda / p \Lambda$ is given by T.

Now let e be the last edge we meet on our walk that has not been met before. Then one end point i_{0} of e must be an end point of T. Let T^{\prime} be the tree obtained from T by omitting e and i_{0}. Let $m_{i_{0}}$ be the multiplicity of i_{0}. Let j_{0} be the other end point of e, with multiplicity $m_{j_{0}}$. We then have the following picture:

Let $S_{T^{\prime}}$ be an algebra of T^{\prime} and $\Lambda_{T^{\prime}}$ the constructed order of T^{\prime}. Then passing from $S_{T^{\prime}}$ to some S given by T means leaving the structure of the projective \bar{P}_{i} for $i \neq n_{j}$ invariant and changing $\bar{P}_{n_{j}}$ by inserting $m_{j_{0}}$ copies of the simple module S_{e} at the appropriate places in the composition series. We add a new indecomposable projective module \bar{P}_{e}. For the order we have

$$
\Gamma_{j_{0}}=\left(\begin{array}{cccc|c}
\hat{R} & \hat{p} & \cdots & \hat{p} & \hat{p} \\
\vdots & & & \vdots & \\
\hat{\hat{R}} & & & \hat{R} & \hat{p} \\
\hline \hat{R} & \cdot & \cdots & & \hat{R}
\end{array}\right)_{\left.n_{s}+1\right) \times\left(n_{s}+1\right)}
$$

where the framed region is $\Gamma_{\chi_{0}}^{\prime}$ corresponding to T^{\prime}. Here $\hat{R}=R, \mathfrak{p}=\mathfrak{p}$ if j_{0} is not exceptional and $\hat{R}=\tilde{R}, \hat{p}=\tilde{\tilde{p}}$ if j_{0} is exceptional.

Moreover, we have to add $\Gamma_{i_{0}}=\tilde{R}$, where $\tilde{R}=R$ if i_{0} is not exceptional and $\tilde{\tilde{R}}=\tilde{R}$ if i_{0} is exceptional. Now it is easily seen that $\Lambda / p \Lambda$ is given by T.

References

1. J. Alperin and G.J. Janusz, Resolutions and periodicity, Proc. Am. Math. Soc., vol. 37 (1973), pp. 403-406.
2. M. AUSLANDER AND I. Reiten, Representation theory of artin algebras V: Methods for computing almost split sequences and irreducible morphisms, Comm. Algebra, vol. 5 (1977), pp. 519-544.
3. __, Modules determined by their composition factors, Illinois J. Math., vol. 29 (1985), pp. 280-301
4. D. Benson and R. Parker, The Green ring of a finite group, J. Algebra, vol. 87 (1984), pp. 290-331.
5. J.A. Green, Walking around the Brauer Tree, J. Austral. Math. Soc., vol. 27 (1974), pp. 197-213.
6. \qquad , Vorlesungen über modulare Darstellungstheorie endlicher Gruppen, Vorlesungen aus dem Math. Inst. Giessen, Heft 2, 1974.
7. P. Gabriel and C. Riedtmann, Group representations without groups, Comment. Math. Helv. vol. 54 (1979), pp. 240-287.
8. G.J. Janusz, Indecomposable modules for finite groups, Ann. of Math. (2), vol. 89 (1969), pp. 209-241.
9. H. Kupisch, Unzerlegbare Moduln endlicher Gruppen mit zyklischer p-Sylow Gruppe, Math. Zeitschr., vol. 108 (1969), pp. 77-104.
10. G. Michler, Green correspondence between blocks with cyclic defect groups I, J. Algebra, vol. 39 (1976), pp. 26-51.
11. I. Reiner, Relations between integral and modular representations, Mich. Math. J., vol. 13 (1966), pp. 372-375.
12. _ Integral representation algebras, Trans. Amer. Math. Soc., vol. 124 (1966), pp. 111-121.
13. I. Reiten, Almost split sequences for group algebras of finite representation type, Trans. Amer. Math. Soc., vol. 233 (1977), pp. 125-136.
14. K. Roggenkamp, Integral representations and structure of finite groups rings, Presses de L'Université de Montréal, 1980, pp. 1-165.
15. K. Ringel and K. Roggenkamp, Diagrammatic methods in the representation theory of orders, J. Algebra, vol. 60 (1979), pp. 11-42.
16. P. Webb, On the orthogonality coefficients for character tables of the Green ring of a finite group, to appear.

Universität Stuttgart

Stuttgart, West Germany

