VERDIER AND STRICT THOM STRATIFICATIONS IN O-MINIMAL STRUCTURES

TA LÊ LOI

0. Introduction

0.1 DEFINITION. An *o-minimal structure* on the real field $(\mathbf{R}, +, \cdot)$ is a family $\mathcal{D} = (\mathcal{D}_n)_{n \in \mathbf{N}}$ such that for each $n \in \mathbf{N}$:

- (1) \mathcal{D}_n is a boolean algebra of subsets of \mathbb{R}^n .
- (2) If $A \in \mathcal{D}_n$, then $A \times \mathbf{R}$ and $\mathbf{R} \times A$ belong to \mathcal{D}_{n+1} .
- (3) If $A \in \mathcal{D}_{n+1}$, then $\pi(A) \in \mathcal{D}_n$, where $\pi: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^n$ is the projection on the first *n* coordinates.
- (4) \mathcal{D}_n contains $\{x \in \mathbb{R}^n : P(x) = 0\}$ for every polynomial $P \in \mathbb{R}[X_1, \dots, X_n]$.
- (5) Each set belonging to \mathcal{D}_1 is a finite union of intervals and points. (o-minimality)

A set belonging to \mathcal{D} is called *definable* (in this structure). *Definable maps* are maps whose graphs belong to \mathcal{D} .

Many results in Semialgebraic Geometry and Subanalytic Geometry hold true for o-minimal structures on the real field. Recently, o-minimality of many interesting structures on $(\mathbf{R}, +, \cdot)$ has been established, for example, structures generated by the exponential function [W1](see also [LR] and [DM1]), real power functions [M2], Pfaffian functions [W2] or functions defined by multisummable powerseries [DS]. For more details on o-minimal structures we refer the readers to [D] and [DM2] (compare with [S]).

We now outline the main results of this paper. Let \mathcal{D} be an o-minimal structure on $(\mathbf{R}, +, \cdot)$. In Section 1, we prove that the definable sets of \mathcal{D} admit Verdier Stratification. We also show that the Verdier condition (w) implies the Whitney condition (b) in \mathcal{D} . Note that the theorems were proved for subanalytic sets in [V] and [LSW] (see also [DW]), the former based on Hironaka's Desingularization, and the latter on Puiseux's Theorem. But, in general, these tools cannot be applied to sets belonging to o-minimal structures (e.g., to the set $\{(x, y) \in \mathbf{R}^2: y = \exp(-1/x), x > 0\}$ in the structure generated by the exponential function). Section 2 is devoted to the study of stratifications of definable functions. In general, definable functions cannot be stratified to satisfy the strict Thom condition (w_f). However, if \mathcal{D} is polynomially

Received May 24, 1997.

¹⁹⁹¹ Mathematics Subject Classification 32S60, 14P10, 14B5.

^{© 1998} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

bounded, then its definable functions admit (w_f) -stratification. Our proof of this assertion is based on piecewise uniform asymptotics for definable functions from [M2], instead of Pawlucki's version of Puiseux's theorem with parameters, which is used in [KP] to prove the assertion for subanalytic functions.

Notations and conventions. Throughout this paper, let \mathcal{D} denote some fixed, but arbitrary, o-minimal structure on $(\mathbf{R}, +, \cdot)$. Definable means definable in \mathcal{D} . If $\mathbf{R}^k \times \mathbf{R} \ni (y, t) \mapsto f(y, t) \in \mathbf{R}^m$ is a differentiable function, then $D_1 f$ denotes the derivative of f with respect to the first variables y. As usual, $d(\cdot, \cdot)$, $\|\cdot\|$ denote the Euclidean distance and norm respectively. We will often use Cell Decomposition [DM2, Th. 4.2], and Definable Choice [DM2, Th. 4.5] in our arguments without citations. Submanifolds will always be embedded submanifolds.

Acknowledgements. I wish to thank the Fields Institute and the University of Toronto, where this paper was written, for hospitality and support. I also thank Chris Miller for many helpful suggestions.

1. Verdier stratifications

1.1. Verdier condition. Let Γ , Γ' be C^1 submanifolds of \mathbb{R}^n such that $\Gamma \subset \overline{\Gamma}' \setminus \Gamma'$. Let y_0 be a point of Γ . We say that the pair (Γ, Γ') satisfies the Verdier condition at y_0 if the following holds:

(w) There exist a constant C > 0 and a neighborhood U of y_0 in \mathbb{R}^n such that

$$\delta(T_{y}\Gamma, T_{x}\Gamma') \leq C \|x - y\|$$
 for all $x \in \Gamma' \cap U, y \in \Gamma \cap U$,

where $T_{y}\Gamma$ denotes the tangent space of Γ at y, and

$$\delta(T, T') = \sup_{v \in T, \|v\|=1} d(v, T')$$

is the distance of vector subspaces of \mathbf{R}^{n} .

Note that (w) is invariant under C^2 -diffeomorphisms.

1.2 DEFINITION. Let p be a positive integer. A definable C^p stratification of \mathbb{R}^n is a partition S of \mathbb{R}^n into finitely many subsets, called strata, such that:

(S1) Each stratum is a connected C^p submanifold of \mathbf{R}^n and also a definable set.

(S2) For every $\Gamma \in S$, $\overline{\Gamma} \setminus \Gamma$ is a union of strata.

We say that S is *compatible with* a class A of subsets of \mathbb{R}^n if each $A \in A$ is a finite union of some strata in S.

A definable C^p Verdier stratification is a definable C^p stratification S such that for all $\Gamma, \Gamma' \in S$, if $\Gamma \subset \overline{\Gamma'} \setminus \Gamma'$, then (Γ, Γ') satisfies the condition (w) at each point of Γ .

1.3 THEOREM (VERDIER STRATIFICATION). Let p be a positive integer. Then given definable sets A_1, \ldots, A_k in \mathbb{R}^n , there exists a definable C^p Verdier stratification of \mathbb{R}^n compatible with $\{A_1, \ldots, A_k\}$.

We first make an observation similar to that of [LSW]. Let (P) be a local property of pairs (Γ, Γ') at points y in Γ , where Γ, Γ' are subsets of \mathbb{R}^n , and where "local" means that if U is an open neighborhood of y, then (Γ, Γ') has property (P) at y if and only if $(\Gamma \cap U, \Gamma' \cap U)$ has property (P) at y. Let $P(\Gamma, \Gamma') = \{y \in \Gamma: (\Gamma, \Gamma') \text{ satisfies (P) at } y\}$.

1.4 PROPOSITION. Suppose that for every pair (Γ, Γ') of definable C^p submanifolds of \mathbb{R}^n with $\Gamma \subset \overline{\Gamma'} \setminus \Gamma'$ and $\Gamma \neq \emptyset$, the set $P(\Gamma, \Gamma')$ is definable and $\dim(\Gamma \setminus P(\Gamma, \Gamma')) < \dim \Gamma$. Then given definable sets A_1, \ldots, A_k contained in \mathbb{R}^n , there exists a definable C^p stratification S of \mathbb{R}^n compatible with $\{A_1, \ldots, A_k\}$ such that

(P) $P(\Gamma, \Gamma') = \Gamma$ for all $\Gamma, \Gamma' \in S$ with $\Gamma \subset \overline{\Gamma'} \setminus \Gamma'$.

Proof. Similar to the proof of [LSW, Prop. 2]. □

By the proposition, Theorem 1.3 is a consequence of the following.

1.5 PROPOSITION. Let Γ , Γ' be definable C^p -submanifolds of \mathbb{R}^n . Suppose that $\Gamma \subset \overline{\Gamma'} \setminus \Gamma'$ and $\Gamma \neq \emptyset$. Then $W = \{y \in \Gamma: (\Gamma, \Gamma') \text{ satisfies (w) at } y\}$ is definable, and dim $(\Gamma \setminus W) < \dim \Gamma$.

To prove Proposition 1.5 we prepare some lemmas.

1.6 LEMMA. Under the notation of Proposition 1.5, W is a definable set.

Proof. Note that the Grassmannian $G_k(\mathbf{R}^n)$ of k-dimensional linear subspaces of \mathbf{R}^n is semialgebraic, and hence definable; δ and the tangent map: $\Gamma \ni x \mapsto T_x \Gamma \in G_{\dim \Gamma}(\mathbf{R}^n)$ are also definable. Therefore,

$$W = \{ y_0: \quad y_0 \in \Gamma, \exists C > 0, \exists t > 0, \forall x \in \Gamma', \forall y \in \Gamma \\ (\|x - y_0\| < t, \|y - y_0\| < t \Rightarrow \delta(T_v \Gamma, T_x \Gamma') \le C \|x - y\|) \}$$

is a definable set. \Box

1.7 LEMMA (WING LEMMA). Let $V \subset \mathbf{R}^k$ be a nonempty open definable set, and $S \subset \mathbf{R}^k \times \mathbf{R}^l$ be a definable set. Suppose $V \subset \overline{S} \setminus S$. Then there exist a nonempty open subset U of $V, \alpha > 0$, and a definable map $\bar{\rho}$: $U \times (0, \alpha) \longrightarrow S$, of class C^p , such that $\bar{\rho}(y, t) = (y, \rho(y, t))$ and $\|\rho(y, t)\| = t$, for all $y \in U, t \in (0, \alpha)$.

Proof. Similar to the proof of [L1, Lemma 2.7] \Box

To control the tangent spaces we need the following lemma.

1.8 LEMMA. Let $U \subset \mathbf{R}^k$ be a nonempty open definable set, and $M: U \times (0, \alpha) \longrightarrow \mathbf{R}^l$ be a C^1 definable map. Suppose there exists K > 0 such that $||M(y,t)|| \leq K$, for all $y \in U$ and $t \in (0, \alpha)$. Then there exists a definable set F, closed in U with dim $F < \dim U$, and continuous definable functions $C, \tau: U \setminus F \longrightarrow \mathbf{R}_+$, such that

 $||D_1M(y,t)|| \le C(y)$, for all $y \in U \setminus F$ and $t \in (0, \tau(y))$.

Proof. It suffices to prove this for l = 1. Suppose the assertion of the lemma is false. Since $\{y \in U: \lim_{t\to 0^+} \|D_1M(y,t)\| = +\infty\}$ is definable, there is an open subset B of U, such that

$$\lim_{t \to 0^+} \|D_1 M(y, t)\| = +\infty, \text{ for all } y \text{ in } B.$$

By monotonicity [DM2, Th. 4.1], for each $y \in B$, there is s > 0 such that $t \mapsto ||D_1M(y, t)||$ is strictly decreasing on (0, s). Let

 $\tau(y) = \sup\{s: \|D_1 M(y, \cdot)\| \text{ is strictly decreasing on } (0, s)\}.$

Note that τ is a definable function, and, by Cell Decomposition, τ is continuous on an open subset B' of B, and $\tau > \alpha'$ on B', for some $\alpha' > 0$. Let $\psi(t) = \inf\{\|D_1M(y,t)\|: y \in B', 0 < t < \alpha'\}$. Shrinking B', we can assume that $\lim_{t\to 0^+} \psi(t) = +\infty$. Then, for each $y \in B'$, we have

$$||D_1 M(y, t)|| > \psi(t)$$
, for all $t \in (0, \alpha')$.

This implies $|M(y, t) - M(y', t)| > \psi(t) ||y - y'||$, for all $y, y' \in B'$, and $t < \alpha'$. Therefore, $\psi(t) \le \frac{2K}{\operatorname{diam}B'}$, for all $t \in (0, \alpha')$, a contradiction. \Box

1.9 Proof of Proposition 1.5. The first part of the proposition was proved in Lemma 1.6. To prove the second part we suppose, contrary to the assertion, that $\dim(\Gamma \setminus W) = \dim \Gamma = k$.

Since (w) is a local property and invariant under C^2 local diffeomorphisms, we can suppose Γ is an open subset of $\mathbf{R}^k \subset \mathbf{R}^k \times \mathbf{R}^{n-k}$. In this case $T_y \Gamma = \mathbf{R}^k$, for all $y \in \Gamma$. Then by the assumption, applying Lemma 1.7, we get an open subset U of

 Γ , a C^p definable map $\bar{\rho}$: $U \times (0, \alpha) \longrightarrow \Gamma'$ such that $\bar{\rho}(y, t) = (y, \rho(y, t))$ and $\|\rho(y, t)\| = t$, and, moreover, for each $y \in U$,

$$\frac{\delta(\mathbf{R}^k, T_{(y,\rho(y,t))}\Gamma')}{\|\rho(y,t)\|} \to +\infty \quad \text{when } t \to 0^+.$$

On the other hand, applying Lemma 1.8 to $M(y, t) := \frac{\rho(y, t)}{t}$ and shrinking U and α , we have

$$||D_1\rho(y,t)|| \le Ct$$
, for all $y \in U, t \in (0,\alpha)$

with some C > 0. Note that $T_{(y,\rho(y,t))}\Gamma' \supset \operatorname{graph} D_1\rho(y,t)$. Therefore,

$$\frac{\delta(\mathbf{R}^{k}, T_{(y,\rho(y,t))}\Gamma')}{\|\rho(y,t)\|} \le \frac{\|D_{1}\rho(y,t)\|}{\|\rho(y,t)\|} \le C \quad \text{for } y \in U, 0 < t < \alpha.$$

This is a contradiction.

Note that Whitney's condition (b) (defined in [Wh]) does not imply condition (w), even for algebraic sets (see [BT]). And, in general, we do not have (w) \Rightarrow (b) (e.g., $\Gamma = (0,0), \Gamma' = \{(x, y) \in \mathbf{R}^2: x = r \cos r, y = r \sin r, r > 0\}$, or $\Gamma' = \{(x, y) \in \mathbf{R}^2: y = x \sin(1/x), x > 0\}$). In o-minimal structures such spiral phenomena or oscillation cannot occur. The following is a version of Kuo-Verdier's Theorem (see [K] and [V]).

1.10 PROPOSITION. Let Γ , $\Gamma' \subset \mathbb{R}^n$ be definable C^p -submanifolds $(p \ge 2)$, with $\Gamma \subset \overline{\Gamma'} \setminus \Gamma$. If (Γ, Γ') satisfies the condition (w) at $y \in \Gamma$, then it satisfies the Whitney condition (b) at y.

Proof. Our proof is an adaptation of [V, Theorem 1.5] and based on the following observation: If $f: (0, \alpha) \longrightarrow \mathbf{R}$ is definable with $f(t) \neq 0$, for all t, and $\lim_{t\to 0^+} f(t) = 0$, then, by Cell Decomposition and monotonicity [DM2. Th.4.1], there is $0 < \alpha' < \alpha$, such that f is of class C^1 and strictly monotone on $(0, \alpha')$. By the Mean Value Theorem and Definable Choice, there exists a definable function $\theta: (0, \alpha') \to (0, \alpha')$ with $0 < \theta(t) < t$, such that $f(t) = f'(\theta(t))t$. Since $|f(t)| > |f(\theta(t))|$, by monotonicity, $\lim_{t\to 0^+} \frac{f(t)}{f'(t)} = 0$.

Now we prove the proposition. By a C^2 change of local coordinates, we can suppose that Γ is an open subset of $\mathbf{R}^k \subset \mathbf{R}^k \times \mathbf{R}^l$ (l = n - k), and y = 0. Let $\pi: \mathbf{R}^k \times \mathbf{R}^l \longrightarrow \mathbf{R}^l$ be the orthogonal projection. Since (Γ, Γ') satisfies (w) at 0, there exists C > 0 and a neighborhood U of 0 in \mathbf{R}^n , such that

(*)
$$\delta(T_{y}\Gamma, T_{x}\Gamma') \leq C \|x - y\|, \text{ for all } x \in \Gamma' \cap U, y \in \Gamma \cap U.$$

If the condition (b) is not satisfied at 0 for (Γ, Γ') , then there exists $\epsilon > 0$, such that $0 \in \overline{S} \setminus S$, where

$$S = \{ x \in \Gamma' \colon \delta(\mathbf{R}\pi(x), T_x \Gamma') \ge 2\epsilon \}.$$

351

Since $S \cap \{x: \|x\| \le t\} \ne \emptyset$, for all t > 0, by Curve selection [DM2, Th.4.6], there exists a definable curve $\varphi: (0, \alpha) \longrightarrow S$, such that $\|\varphi(t)\| \le t$, for all t. By the above observation, we can assume φ is of class C^1 . Write $\varphi(t) = (a(t), b(t)) \in \mathbb{R}^k \times \mathbb{R}^l$. Then $\|b'(t)\|$ is bounded. Since $\varphi((0, \alpha)) \subset \Gamma'$, $a \ne 0$. Shrinking α , we can assume $a'(t) \ne 0$, for all t. Since $\lim_{t \to 0^+} a'(t)$ exists, we have $\delta(\mathbb{R}a'(t), \mathbb{R}a(t)) \to 0$, when $t \to 0$. Therefore

(**)
$$\delta(\mathbf{R}a'(t), T_{\varphi(t)}\Gamma') \ge \epsilon$$
, for all t sufficiently small.

On the other hand, we have

$$\delta(\mathbf{R}a'(t), T_{\varphi(t)}\Gamma') = \frac{1}{\|a'(t)\|} \delta(a'(t), T_{\varphi(t)}\Gamma') = \frac{1}{\|a'(t)\|} \delta(b'(t), T_{\varphi(t)}\Gamma')$$

$$\leq \frac{\|b'(t)\|}{\|a'(t)\|} \delta(\mathbf{R}b'(t), T_{\varphi(t)}\Gamma').$$

From (*) and (**), we have $\epsilon \leq C \|a(t)\| \frac{\|b'(t)\|}{\|a'(t)\|}$. By the observation, the right-hand side of the inequality tends to 0 (when $t \to 0$), which is a contradiction.

Note that Theorem 1.3 and Proposition 1.10 together yield an alternative proof of the Whitney Stratification Theorem for o-minimal structures on the real field in [DM2].

2. (\mathbf{w}_f) -stratifications

Thoughout this section, let $X \subset \mathbb{R}^n$ be a definable set and $f: X \longrightarrow \mathbb{R}$ be a continuous definable function. Let p be a positive integer.

2.1 DEFINITION. A definable C^p stratification of f is a definable C^p stratification S of \mathbb{R}^n compatible with X, such that for every stratum $\Gamma \in S$ with $\Gamma \subset X$, the restriction $f|_{\Gamma}$ is C^p and of constant rank.

For each $x \in \Gamma$, $T_{x,f}$ denotes the tangent space of the level of $f|_{\Gamma}$ at x, i.e. $T_{x,f} = \ker D(f|_{\Gamma})(x)$.

Let Γ , $\Gamma' \in S$ with $\Gamma \subset \overline{\Gamma'} \setminus \Gamma'$. We say that the pair (Γ, Γ') satisfies the *Thom* condition (a_f) at $y_0 \in \Gamma$ if and only if the following holds:

(a_f) For every sequence (x_k) in Γ' , converging to y_0 , we have

$$\delta(T_{y_0,f},T_{x_k,f}) \longrightarrow 0.$$

We say that (Γ, Γ') satisfies the *strict Thom condition* (w_f) at y_0 if:

 (\mathbf{w}_f) There exist a constant C > 0 and a neighborhood U of y_0 in \mathbf{R}^n , such that

$$\delta(T_{y,f}, T_{x,f}) \leq C \|x - y\|$$
 for all $x \in \Gamma' \cap U, y \in \Gamma \cap U$.

Note that the conditions are C^2 -invariant.

The existence of stratifications satisfying (w_f) (and hence (a_f)) for subanalytic functions was proved in [KP] (see also [B] and [KR]). For functions definable in o-minimal structures on the real field we have:

2.2 THEOREM. There exists a definable C^p stratification of f satisfying the Thom condition (a_f) at every point of the strata.

Proof. See [L2]. □

2.3 *Remark.* In general, definable functions cannot be stratified to satisfy the condition (w_f) . The following example is given by Kurdyka.

Let $f: (a, b) \times [0, +\infty) \longrightarrow \mathbf{R}$ be defined by $f(x, y) = y^x$ (0 < a < b). Let $\Gamma = (a, b) \times 0$, and $\Gamma' = (a, b) \times (0, +\infty)$. Then the fiber of $f|_{\Gamma'}$ over $c \in \mathbf{R}_+$ equals

$$\left\{ \left(x, y(x) = \exp\left(-\frac{1}{tx}\right)\right) \colon x \in (a, b) \right\}, \quad t = -\frac{1}{\ln c}$$

Then $\frac{y'(x)}{y(x)} = \frac{1}{tx^2} \to +\infty$, when $t \to 0^+$, for all $x \in (a, b)$, i.e., $\frac{\delta(T_{x,f}, T_{(x,y(x)),f})}{\|y(x)\|}$ cannot be locally bounded along Γ .

The remainder of this section is devoted to the proof of the existence of (w_f) -stratification of functions definable in polynomially bounded o-minimal structures.

2.4 DEFINITION. A structure \mathcal{D} on the real field $(\mathbf{R}, +, \cdot)$ is *polynomially bounded* if for every function $f: \mathbf{R} \longrightarrow \mathbf{R}$ definable in \mathcal{D} , there exists $N \in \mathbf{N}$ such that

 $|f(t)| \le t^N$ for all sufficiently large t.

For example, the structure of global subanalytic sets, the structure generated by real power functions [M2], or by functions given by multisummable powerseries [DS] are polynomially bounded.

2.5 THEOREM. Suppose that \mathcal{D} is polynomially bounded. Then there exists a definable C^p stratification of f satisfying the condition (w_f) at each point of the strata.

Note. The converse of the theorem is also true: If \mathcal{D} is not polynomially bounded, then it must contain the exponential function, by [M1]. So the function given in Remark 2.3 is definable in \mathcal{D} and cannot be (w_f) -stratified.

2.6 PROPOSITION. There exists a definable C^p stratification of f.

Proof (cf. [DM2, Th. 4.8]). First note that if $f: \Gamma \longrightarrow \mathbf{R}^l$ is a C^1 definable map on a C^1 -submanifold Γ of \mathbf{R}^n , then the set

 $P = \{ y \in \Gamma : \exists t > 0, \forall x \in \Gamma(||x - y|| < t \Rightarrow \operatorname{rank} f(x) = \operatorname{rank} f(y)) \}$

is definable and $\dim(\Gamma \setminus P) < \dim \Gamma$.

Therefore, applying Proposition 1.4, we have a C^p stratification of f. \Box

By the previous proposition and Proposition 1.4, Theorem 2.5 is implied by the following.

2.7 PROPOSITION. Suppose that \mathcal{D} is polynomially bounded. Let Γ , Γ' be definable C^p submanifolds of \mathbb{R}^n . Suppose $\Gamma \subset \overline{\Gamma'} \setminus \Gamma'$, $\Gamma \neq \emptyset$, and $f \colon \Gamma \cup \Gamma' \longrightarrow \mathbb{R}$ is a continuous definable function such that $f|_{\Gamma}$ and $f|_{\Gamma'}$ have constant rank. Then

(i) $W_f = \{x \in \Gamma: (w_f) \text{ is satisfied at } x\}$ is definable, and

(ii) $\dim(\Gamma \setminus W_f) < \dim \Gamma$.

Proof. The proof is much the same as that for the condition (a_f) in [L2]. (i) Since $x \mapsto D(f|_{\Gamma})$ is a definable map (see [DM2]), the kernel bundle of $f|_{\Gamma}$ is definable. Therefore,

$$W_f = \{y_0: y_0 \in \Gamma, \exists C > 0, \exists t > 0, \forall x \in \Gamma', \forall y \in \Gamma \\ \|x - y_0\| < t, \|y - y_0\| < t \Rightarrow \delta(\ker D(f|_{\Gamma})(y), \ker D(f|_{\Gamma'})(x) \\ \leq C \|x - y\| \}$$

is definable.

(ii) To prove the second assertion there are three cases to consider. Case 1. rank $f|_{\Gamma} = \operatorname{rank} f|_{\Gamma'} = 0$. In this case

 $W_f = \{y \in \Gamma: (\Gamma, \Gamma') \text{ satisfies Verdier condition (w) at } y\}.$

The assertion follows from Theorem 1.3.

Case 2. rank $f|_{\Gamma} = 0$ and rank $f|_{\Gamma'} = 1$. Suppose the contrary: dim $(\Gamma \setminus W_f) < \dim \Gamma$. Since (w_f) is C^2 invariant, by Cell Decomposition, we can assume that Γ is an open subset of $\mathbf{R}^k \subset \mathbf{R}^k \times \mathbf{R}^{n-k}$, and $f|_{\Gamma'} > 0$, $f|_{\Gamma} \equiv 0$. So $T_{y,f} = \mathbf{R}^k$, for all $y \in \Gamma$. Let

$$A = \{ (y, s, t) \colon (y, s) \in \Gamma \cup \Gamma', t > 0, f(y, s) = t \}.$$

354

Then A is a definable set. By Definable Choice and the assumption, there exists an open subset U of Γ , $\alpha > 0$, and a definable map θ : $U \times [0, \alpha) \longrightarrow \mathbb{R}^{n-k}$, such that θ is C^p on $U \times (0, \alpha)$, $\theta|_{\Gamma} \equiv 0$, and $f(y, \theta(y, t)) = t$, and, moreover, for all $y \in U$, we have

(*)
$$\frac{\|D_1\theta(y,t)\|}{\|\theta(y,t)\|} \ge \frac{\delta(\mathbf{R}^k, T_{(y,\theta(y,t)),f})}{\|\theta(y,t)\|} \to +\infty, \text{ when } t \to 0^+.$$

On the other hand, by [M2, Prop. 5.2], there exist a nonempty open subset B of U and r > 0, such that

(***)
$$\theta(y,t) = c(y)t^r + \varphi(y,t)t^{r_1}, y \in B, t > 0$$
 sufficiently small.

where *c* is C^p on *B*, $c \neq 0$, $r_1 > r$, and φ is C^p with $\lim_{t\to 0^+} \varphi(y, t) = 0$, for all $y \in B$. Moreover, by Lemma 1.8, we can suppose that $D_1\varphi$ is bounded. Substituting (**) to the left-hand side of (*) we get a contradiction.

Case 3. rank $f|_{\Gamma} = \operatorname{rank} f|_{\Gamma'} = 1$. If dim $(\Gamma \setminus W_f) = \dim \Gamma$, then the condition (w_f) is false for (Γ, Γ') over a nonempty open subset B of Γ . It is easy to see that there is $c \in \mathbf{R}$ such that (w_f) is false for the pair $(\Gamma \cap f^{-1}(c), \Gamma')$ over a nonempty open subset of $B \cap f^{-1}(c)$, and hence open in $\Gamma \cap f^{-1}(c)$. This contradicts Case 2. \Box

2.8 *Remark.* If the structure admits analytic cell decomposition, then the theorems hold true with "analytic" in place of " C^{p} ". Our results can be translated to the setting of analytic-geometric categories in the sense of [DM2].

REFERENCES

- [B] K. Bekka, Regular stratification of subanalytic sets, Bull. London Math. Soc. 25 (1993), 7–16.
- [BT] H. Brodersen and D. Trotman, Whitney (b)-regularity is weaker than Kuo's ratio test for real algebraic stratifications, Math. Scand. 45 (1979), 27–34.
- [D] L. van den Dries, *Tame topology and o-minimal structures*, LMS Lecture Notes, Cambridge University Press, to appear.
- [DM1] L. van den Dries and C. Miller, On the real exponential field with restricted analytic functions, Israel J. Math. 85 (1994), 19–56.
- [DM2] _____, Geometric Categories and o-minimal structures, Duke Math. J. 84 (1996), 497–540.
- [DS] L. van den Dries and P. Speissegger, *The field of reals with multisummable series and the exponential function*, preprint, 1997.
- [DW] Z. Denkowska and K. Wachta, Une construction de la stratifications sous-analytiques avec la condition (w), Bull. Polish Acad. Math. 35 (1987), 401–405.
- [K] T. C. Kuo, The ratio test for analytic Whitney stratifications, Proceedings of Liverpool Symposium I, Lecture Notes 192, Springer verlag, 1971.
- [KP] K. Kurdyka and A. Parusiński, (w_f)-stratification of subanalytic functions and the Lojasiewicz inequality, C.R. Acad. Sci. Paris Série 1 318 (1994), 129–133.
- [KR] K. Kurdyka and G. Raby, Densité des ensembles sous-analytiques, Ann. Inst. Fourier 39 (1989), 735-771.
- [L1] T. L. Loi, Whitney stratification of sets definable in the structure R_{exp}, Banach Center Publications, Vol 33, 1996, 401–409.

[L2]	, Thom stratification for functions definable in o-minimal structures on $(\mathbf{R}, +, \cdot)$, C.R.
	Acad. Sci. Paris Série I 324 (1997) 1391–1394.
[LR]	J. M. Lion and J. P. Rolin, Théorème de Gabrielov et fonctions log-exp-algebriques, preprint, 1996.
[LSW]	S. Lojasiewicz, J. Stasica and K. Wachta, Stratifications sous-analytiques. Condition de Verdier,
	Bull. Polish Acad. Math. 34 (1986), 531–539.
[M1]	C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259.
[M2]	, Expansions of the real field with power functions, Ann. Pure Appl. Logic 68 (1994),
	79–84.
[S]	M. Shiota, "Geometry of subanalytic and semianalytic sets, Abstract" in Real analytic and alge-
	braic geometry (F. Broglia et al. eds.), W. de Gruyter, 1995, 251–275.
[V]	J. L. Verdier, Stratification de Whitney et theoreme de Bertini-Sard, Invent. Math. 36 (1976),
	295–312.
[W1]	A. Wilkie, Model completeness results for expansions of the ordered field of real numbers by
	restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-
	1094.
[W2]	, A general theorem of the complement and some new o-minimal structures, manuscript,
[]	1996.
[Wh]	H. Whitney, <i>Tangents to an analytic variety</i> , Ann. of Math. 81 (1965), 496–549.
[** 11]	11. Winney, Tangenis to an analytic variety, Ann. of Main. of (1903), 490–549.

Department of Mathematics, University of Dalat, Dalat, Vietnam

356