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BOMBIERI’S NORM VERSUS MAHLER’S MEASURE

JEROME DEGOT AND ODILE JENVRIN

Introduction

Factorization algorithms for polynomials with integer coefficients and one complex
variable use an a priori bound on the size of the coefficients in any factor of P.
The first bound of this type was given by Mignotte [5], using Mahler’s measure.
Then Beauzamy [2] and Beauzamy-Trevisan-Wang [4] gave sharper estimates, using
Bombieri’s norm. This leads to the natural question: for which polynomials is
Bombieri’s norm smaller than Mahler’s measure? We give an answer here, in terms
of the localization of the roots of P, more precisely a sufficient condition on the
modulus of the roots, for a polynomial with complex coefficients and one complex
variable to have its Bombieri’s norm smaller than its Mahler’s measure.

I. The results
Let
P(2) = a,7" +-~+ao=a,,n(z~(x,~)
i=1

be a polynomial of degree n, with complex coefficients and with complex zeros
(ci)1<i<n. For our problem, we can obviously assume P to be monic, thatis a, = 1.
Recall that, for a monic polynomial, Mahler’s measure of P, denoted by M (P), is

M(P) = [ [max, le:1)
i=1

and that Bombieri’s norm, denoted by [ P], is

"l 12
a.
[P] = (Z ;) .
= ()
Let D be the open unit disk, B its closure _and C be the unit circle. A first and trivial

observation is that if all roots of P lie in D, then M (P) < [P]. Indeed, in this case
M(P) = 1 and [P] > 1. The same holds if all roots are outside D. So, if we want

[Pl = M(P)
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this is possible only if some of the zeros are in D and the others are outside D. Our
main result is given by the following theorem:

THEOREM 1. Let n, ny, ny, ny be positive integers such that n = n| + ny + ns.
Assume that P is a polynomial of degree n with n| roots, say oy, ..., o,,, inside the
closed disk of center 0 and radius 0 < o < 1, ny roots, otp, 41, . . . , Oy, 4n, OUtside the
closed disk of center O and radius B > 1.

If the integers n, ny, ny, n3 and the real numbers o, B satisfy the condition

1\" nml+a® ml+ap nzl+a)”
t+apy (14+—) a+pm (2 2 el
(I +ap) (+ﬁ2) (1+4) (n1+aﬁ n 1+ B2 nl-l-ﬂ)
mlte m14p  om 2 \"
nl+af nl1+p2 nl+p -

then [P] < M(P).

We first recall main results about the Bombieri norm and its associated scalar
product of polynomials in several variables in order to use their corollaries in the
context of one complex variable polynomials. We then proceed to the proof of
Theorem 1, after establishing an inequality independant of this context of polynomials.
We eventually give a special case where Theorem 1 can be improved as well as
examples showing to which extent it only gives a sufficient condition.

I1. Bombieri norm and its associated scalar product

We recall in this section general results about the Bombieri norm, and its associated
scalar product. For their proofs, see [3].

Let
P(xy,...,xy) = Z agxy' Xy ¢))
Jee|=m

be a homogeneous polynomial in N variables x, ..., xy, with complex coefficients
and degree m. As usual, we write o« = (o), ..., o), || =) +--- + ap.

Foranyij,...,im, 1 <ij) <N,...,1<i, <N, we define

1 amp
Ciyoiy = — ———————,
et T ) 3y, - 0,

and by Taylor’s formula, we have

N

P(xi,...,xn) = Z CiteoninXiy *** Xy €3
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called the symmetric form of the polynomial.
For a polynomial P of degree m, Bombieri’s norm.is defined by

N 12
[P](m)=( Z Ici,..., i,,,|2> .

iyeenim=1

If we start with any polynomial P given as in (1), it can be written in many ways
in the form

N
P(xy,...,xy) = Z bi,..inXiy " Xiyy» 3)

1 ,m,l,n=l

but the symmetric representation (2) has a particular property, given by the following
proposition.

PROPOSITION 2.  Among all representations of P of the form (3), the symmetric
one in (2) is the one for which the l-norm is minimal.

There is a scalar product canonically associated with Bombieri’s norm: if P, Q
are two homogeneous polynomials with same degree m, written in symmetric form
as

N

Lyyeeey im=1

In fact, in order to define the scalar product, only one of the polynomials needs to
be written in symmetric form, according to the following proposition:

PROPOSITION 3. Let P = Zi.
(2), and let

Ciy....inXiy - * - Xi,, be written in symmetric form

Q = : : d]l vvvv jmle t ‘xjm
Jtseeesdi

be any homogeneous polynomial of degree m (the d’s need not be invariant under
permutation of indices). Then

[P, QO]= Z CivrinGiy i -

iyeensim
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We now investigate a few special situations which will be useful for the further
proofs.

PROPOSITION 4. Let Py, ..., P, be homogeneous polynomials in N variables

X1y ..., XN, Withdegreesm,, ..., my. Letm = m;+---+my,and alsoletqy, ..., qnm
be homogeneous polynomials of degree 1. Then

1
[Pl e Pk» qi - qm] = —I’l? Z[Pl, do(l) - "q«ﬂml)]x" 'X[Pka 9o (m—m+1) "qrr(m)]v

where o runs over the set of all permutations of {1, ...m}.
COROLLARY 5. Let py,..., Pm»q1s---,qm be homogeneous polynomials of de-
gree 1, with variables x,, ..., xy. Then

1
[Pr Pmqr - qml =5 Y 1Pt do]l- - [Pms doom],

T oESy
where o runs over the set S, of all permutations of {1, ..., m}.
We now give an expression for the scalar product of two polynomials in one variable
z, with same degree m. This expression uses the zeros of both polynomials, and is an

obvious consequence of Corollary 5. We identify the one variable polynomial z — a
with the homogeneous two variables polynomial z — az’.

COROLLARY 6. Let P =(z—ay)---(z—aw), Q =(z—>by)---(z—by). Then

1 — —
[P, Q1= — 3 (I+abo) -~ (I +anboum),

ToeSy

where o runs over the set S, of all permutations of {1, ..., m}.

II1. Inequalities

In the following lemma we propose a wide extension of the well-known result

Z00)-07")

where n, m, k are positive integers, that is the number of subsets of k elements out of
a set of n +m items, itself divided in two parts of respectively n and m elements. This
equality can be further interpreted as the special case A = B = 1 in the inequality

= (0w ()
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where A and B denote positive real numbers. In this paragraph we give an inequality
of this type with six real numbers where the binomial coefficients above have been
extended to generalized multinomial coefficients.

Let n, i, j be any positive integers such thatz < nand j < n. From now on we
denote by (" ) the trinomial coefficient m ifi +j <n,else.

Lemma 7. Let ny, ny, n3, n be positive integers such that ny + n, + n3 = n, let
ki, ky be positive integers, and let A, B, C, D, E, F be positive real numbers such
that A> C > Eand B> D > F. We have

> (n' )( " )( & )A"'B"ch'DhEhFlz
i1+ji+H =k, ilviZ jl»jz 11312

ir+jp+h=k;

- n niA+n,C +n3E ki nB+n,D +n3F ko
- kl,k2 n n

Proof. The left-hand and right-hand sides of the inequality are the coefficients
of x¥1yk2 in the polynomials respectively p(x, y) and ¢ (x, y) defined by

px,y) =1+ Ax + By)"' (1 + Cx + Dy)"*(1 + Ex + Fy)™,

nA+n,C+n3zE nB+nyD+n3F \"
q(x,y)=(1+‘ e 3y).

Hence, it suffices to show that the coefficients of ¢g(x) — p(x) are all positive. If we

nowwritt A=C+I1I,B=D+J,C = E+G,D = F + H, the conditions become
G,H,I,J>0.

g(x) — p(x) = [(1 +Ex+Fy)+ 2" (Gx + Hy) + %(Ix n Jy)]

— [+ Ex+ Fy)+(Gx + Hy) + (Ix + Jy)|"
x [+ Ex+ Fy)+ (Gx+ Hy)]"” (1 + Ex + Fy)™

()= - )

x (14 Ex 4+ Fy)" ™ (Gx + Hy) (Ix + Jy)*

It now suffices to show that the coefficient

(o) (22 (= () ()
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is always nonnegative. In fact, a little factoring shows that it is equal to

nk(ny +ny)’
k'i!

k+i—1 . i k—1 NS .
(-0 -2 0t
i=0 n ny+ns =0 m/) i ni+n, —k

We haven > n;andn > n; +ny, —ksoforall jsuchthatO < j <k+i—1,

Therefore
k+i—1 . k—1 N .
1-2)- {02 -4
=0 n i=0 n /o ny+ny—k

k k=1 = j
> (1- 1 — = -
( n1+n2)l—[( "l)jl:([)( n1+n2—k)

< 1, and this ends the proof. O

k

since0 < 1 — R

IV. Proof of Theorem 1

In the context of polynomials with complex coefficients and one complex variable,
we now use the preceeding results to establish the following lemmas leading to the

proof of Theorem 1.

We are now in a position to compare the values of the Mahler measure of a
polynomial in one variable P, M (P), and its Bombieri norm, [ P]. Let us just recall

that for

P@=2"+a,12"" 4+ tay=[]@—a),
i=1

M(P) = [ [max(1, |ai])
i=l

n-(£%)

i

where a, = 1.
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LEMMA 8. Let n, ny, ny, ns, be positive integers such that n = n; + ny + ns.
Assume that P is a polynomial of degree n with n, roots, say oy, ..., o, inside the
closed disk of center O and radius o« < 1 and n; roots, oy, 41, . . . , 0p,1n, OUtside the
closed disk of center O and radius 8 > 1. Then

(Pl _lGt+a)"@+ph) =@+ "]
M(P) ~ B '

Geometrically speaking, Lemma 8 confirms the fact shown by Beaucoup [1] that
[P] is maximum when all roots of P lie on the same line, for instance here the real
axis.

Proof of Lemma 8.  First consider any polynomial P with k roots, say oy, ..., o
inside the closed unit disk and the n — k others outside. Then, by Corollary 6,

[P] 2 1 n
(M(P)) = 2 [0

oeS, i=l

where the complex numbers A, () may take the following values:
If i <k issuchthato (i) < k then A,',,(,') =14 O (iy-
Ifi <kissuchthato (i) >k + 1 then Ajp(y = o + =—

Uiy

Ifi > k + 1is such that o' (i) < k then Ao ) = To () + -

Ifi > k + 1 is such that o (i) > k + 1 then A;p;) = 1 + ;a_—‘:

Note that all those numbers A;s(y have their moduli less than or equal to 2. We
now look for a better majorization of ('1%)‘))2 when P satisfies the hypothesis of
Lemma 8. For example, ifi <nyandn; +1 <o(i) <n) +ny, then || < <1
and l&q(i)l >8> 1 then

Lt sy car)

< oi| + —=
@iy B

[Aisiy] = I

1
=0+ =
U (i)

Uo (i)
Similarly, we get the following majorizations on the |A;s(;)|:
Ifi <njando(i) < ny, |Aici| <1 + a2,
Ifi <mjando(@)>n;+ny+1,|Aicihl < 140.
Ifn)+1<i<ni+nando() <ni,|Aisnl <o+ 5.
Ifni+1<i<n+nandn +1=<0@) <n +ny Al =1 +;}2-.

Ifni+1<i<n +nando()=n +n+1,|Ai;nl < 1+%.
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Ifi >n;+ny+land o (i) <nyp, [Aiginy| < 1 +a.

Ifi>n +ny+landn; 4+ 1 <o) <n;+na,|Aigi] < 1+ %.
Ifi>ni+n+lando@@) =>n+ny+ 1, |Aici| <2.

This finishes the proof of Lemma 8.

Note that the above inequalities are all reached in the case of P = (z + o)™
@+p)" (z+D"m.

As a consequence of Lemma 8, we may assume from now on for the proof of
theorem 1 that P = (z + &)™ (z+ B)" (z + 1)™.
LEMMA 9. We have

[+ )" (z+ B)"(z+ D"
ﬁZ

ny

I 1\"
= —=U+ap)" (1+ =) (d+p"
) (I +ap) ( ﬂ2> (I+p)

ni ns3 no
x
k1|+k2|X+I:(3|=n| (kl I k13) (k31 ) k33> <k21, k23)

ki3tkay+kiz=n3
(i) () (157) ()
X
I+ o 1+ apf 1+ 8 1+ 8
1 +aB ki 1+ 8 ka3
X _ .
1+ ﬂz 1+ '32
Proof of Lemma 9. Let P = (z + )" (z + B)"2(z + D™ = q{'qy’q3" where

q1, g2, g3 denote respectively the factors of P, thatis, z + «, z + 8, z + 1. Using
Proposition 4, we get

1 n n
[P]2 - ;—' Z[ql Yoy Gonn] [6122’ Go(m+1) " o (n+ny)]

" oEes,
n:
X[%z’ Gony4n+ 1) " Ga(my]-

For any fixed o in S,,, letk;, k|2, k;3 denote the number of factors equal respectively to
q1, 92, g3 in the product g, (1) - - - Gon,)- Similarly, define k2, ka2, k23 for the product
Qo +1) - * Go(n,+ny as Well as k3y, kza, ksz fOr @on,+ny+1) - - - qony. Therefore the
integers (k;;) <. j<3 satisfy the relations

3 3
n,~=Zkij=Zlkj,~ for i=1,2,3. 4)
j=1 j=
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Thus, we get

[p]2 — % Z(l +a2)kll(1 + ﬂz)knzkss(l +Ot/3)k'2+k2'(l + ot)k'3+k3'(1 + ﬂ)k23+k32.

T o€ES,

For any given integers (k;;)<; j<3 satisfying (4), let C(k;;) be the number of permu-
tations of S,, which map k), k12, k3 (respectively ka1, k22, kp3) indicesin {1, ..., n;}
(respectivelyin{n;+1, ..., n1+ny}) ontoky; (respectively k;;) indicesin {1, ..., n},
k12 (respectively kp;) indicesin {n; +1, ..., n;+n,} and k3 (respectively k,3) indices
in{n; +ny+1,...,n}. Aroutine computation of the coefficient C(k;;) gives

ni ny nj3
Ck;))=n !( )n !( )n !( )
! "Nk ki) \kara ks ) \kay ks

1
2 _ .
PP =— Y Cly
© kntka tka i =n
kiz+koz+ksz=n3

x (1 + az)kn a+ '32)n2—k2|—k232k33
x (1 + aﬁ)k2|+n|—kn—kl3(1 + a)k|3+k31(] + ﬁ)k23+n3—k31—k33

1
= —(+ap"(+p0+p" 3 Clky
: ki ko +k3y=n;
ki3+koz+ksz=n3

() (Ha) (58) ()
1+ap 1+ap 1+ 8 1+8
1+Olﬂ kai 1+ﬁ ka3

X
(%) (%)

1
= (o) (1 + 2" (1 + )"

(n.,ng)
2 (o) ) ()
btk =n, K11, K13/ \ka1, ka3 / \kay, ka3

ki3+ka+ksz=n3
1402\ [ 1 4+a \ 1 4+a\o 2\l
X(1+aﬁ) <1+aﬂ) <1+ﬂ> (1+ﬂ)
1+apB ki 14+ 8 k23
X 3 s
1+ g2 1+p2

which is our claim.

Then
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Proof of Theorem 1. Apply Lemma7to Lemma9 as well as Lemma9toLemma 8
with ky = ny, kp = n3,

_l+er o l4a  l4a 2 _14ap 148
T l4a8’ T I+af’ T I+ BT T I+ B T 48T 142

Itis easily seenthat A>C > F >0and B> D > F > 0.

Comment. One may be surprised that Lemma 7 requires six real numbers A, B,
C, D, E, F in the given order. One might expect this lemma to hold for any positive
real numbers but counterexamples show that an order between them has to be given.
In these two independent results, the most surprising is that these restricted hypothesis
of Lemma 7 happen to hold precisely in the context of Lemma 9. We do not believe
this to be a coincidence but the true reason is still an open question to us.

V. Special cases and examples

Some special cases of the sufficient condition for [P] < M (P) given in Theorem
1 are worth mentioning here as an illustration. First consider a polynomial P whose
roots are well apart the unit circle, that is such that n3 = 0. Then a sufficient condition
on P is given by ny, ny, n, a, B such that

np 2 n2
(1 + _1_) (n_‘(] +a?) + QM)) <1
n n

ﬂZ ] + ﬂ2
Moreover, add the condition for n even that ny = np = 7; then Theorem 1 gives
—B++/2(8*=B2-1)
ﬂ>,/'+2‘/§and b 2ﬂzﬁ+|ﬁ <o < 1.

A great simplification of Theorem 1 can also be obtained in the case of a polynomial
P with n3 = 0, n; roots concentrated at the origin and n; other roots outside the unit

circle. Setting @ = 0 in Theorem 1 gives (1 + #)"2(”;L + ';—Zrlﬂz)'” < 1 but a better

bound is given by 8 > \/% . For a detailed proof of this result, ask the authors.

The table gives examples showing to what extent Theorem 1 only gives a sufficient
condition.
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We denote by RES the left-hand side of the inequality in Theorem 1.

n P(2) RES [P] | M(P) Comments

9| z—=0,1H*Gz—-2*@c+1 0,979 | 13,9 16

10| (z=0,14*z—-2)*+1D?[1,9>1]19,4| 16 Th. 1 and claim unsat.

13 z—-0,19%z—-2°z+1) 0,6 43,5 64

14 @-0,1H°:z—-2°c+1D*|1,3>1]60,8| 64 Th. 1 unsat., claim sat.

13| z-0,14)7(z—-2°@¢+1) 0,6 20, 1 32

14 z-0,14"z-20c+1)?[1,2>1]27,7] 32 Th. unsat., claim sat.

12 (z—0,14)7(z -2)° 0, 341 14,6 32 case ny3 =0, n| # n,

12 (z—=0,14)%(z —2)° 0,356 | 31,3 64 caseny =0,n, =n,

12 2%(z —2)° 0,1 18,7 64 [casea =0,n;=0n, =n,

12 7(z—1,31) I,1>1] 3,4 3,8 Th. 1 unsat., claim sat.

VE=y/Z~1,309
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