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FAILURE OF F-PURITY AND F-REGULARITY
IN CERTAIN RINGS OF INVARIANTS

ANURAG K. SINGH

1. Introduction

Let ]q be a finite field of characteristic p, K a field containing it, and R
K[X Xn] a polynomial ring in n variables. The general linear group GLn (Fq)
has a natural action on R by degree preserving ring automorphisms. L. E. Dickson
showed that the subring of elements which are fixed by this group action is a poly-
nomial ring [Di], though for an arbitrary subgroup G of GLn(]q), the structure of
the ring of invariants RG may be rather mysterious. If the order of the group [G[ is
relatively prime to the characteristic p of the field, there is an RG-linear retraction
p: R RG, the Reynolds operator. This retraction makes RG a direct summand
of R as an RG-module, and so RG is F-regular. However when the characteristic p
divides G l, this method no longer applies, and the ring of invariants RG need not
even be Cohen-Macaulay. M.-J. Bertin showed that when R is a polynomial ring in
four variables and G is the cyclic group with four elements which acts by permuting
the variables in cyclic order, then the ring of invariants RG is a unique factorization
domain which is not Cohen-Macaulay, providing the first example of such a ring,
[Be]. Related work and bounds on the depth of RG can be found in the work of
R. M. Fossum and P. A. Griffith; see [FG]. More recently D. Glassbrenner studied
the invariant subrings of the action of the alternating group An on a polynomial ring
in n variables over a field of characteristic p, constructing examples of F-pure rings
which are not F-regular [G l], [G2]. Both these families of examples study rings of
invariants of K[X Xn under the action of a subgroup G of the symmetric group
on n elements, i.e., an action which permutes the variables, and Glassbrenner shows
that for such a group the ring of invariants is F-pure, see [G l, Proposition 0.6.7].
We shall construct examples which demonstrate that the ring of invariants for the

natural action of a subgroup G of GLn (Fq) need not be F-pure. We shall obtain such
examples with the group G being the symplectic group over a finite field. These
non F-pure invariant subfings are always complete intersections, and are actually
hypersurfaces in the case of G SPn(]q) < GLa(]q) acting on the polynomial
ring R K[X, X2, X3, X4]. These examples are particularly interesting if one is
attempting to interpret the Frobenius closures and tight closures of ideals as contrac-
tions from certain extension rings, since we have an ideal generated by a system of

Received May 27, 1997.
1991 Mathematics Subject Classification. Primary 13A35" Secondary 13A50.

() 1998 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

441



442 ANURAG K. SINGH

parameters and the socle element modulo this ideal is being forced into the expansion
of the ideal to a module-finite extension ring which is a separable, in fact Galois, ex-
tension. This element is also forced into an expanded ideal in a linearly disjoint purely
inseparable extension, being in the Frobenius closure of the ideal. It is noteworthy
that the element can be forced into expanded ideals in two such different ways.

Our results depend on the work of D. Carlisle and P. Kropholler where they show
that the ring of invariants under the natural action of the symplectic group on a
polynomial ring is a complete intersection [CK]. We obtain the precise equations
defining these complete intersections in some examples using the program Macaulay,
and in some other cases collect enough information to display that the invariant
subrings are not F-pure.

The second part of this paper deals with the alternating group An acting on the
polynomial ring R K[X Xn] by permuting the variables. We shall assume
that the characteristic p of K is an odd prime, and denote by Ra’’ the invariant subring
of this action. Since RA2 is a polynomial ring we shall always assume n > 3. If the

(n !) is relatively prime to the characteristic p of the field,order of the group An 7
the Reynolds operator makes Ra’’ a direct summand of R as an Ra’’-mOdule, and in
the language of tight closure, the existence of such a retraction is equivalent to the
ring RA" being F-regular; see Lemma 5.1. When p divides n or n 1, Glassbrenner
has shown that the invariant subring Ra’’ is no longer F-regular; see [G 1, Proposition
1.2.5]. We shall extend this result by showing that Ra" is F-regular if and only if p
does not divide IAn I.

The author wishes to thank Melvin Hochster for several interesting discussions.

2. F-purity and F-regularity

We recall some basic notation and definitions from [HH1], [HH2], [HH3].
Let R be a Noetherian ring of characteristic p > 0. We shall always use the letter

e to denote a variable nonnegative integer, and q to denote the e th power of p, i.e.,
q pe. For an ideal I (x xn) _c R we let I [q] (X xnq).

For an element x of R, we say that x 6 I F, the Frobenius closure of I, if there
exists q pe such that xq I [ql. We shall say that the ring R is F-pure if for all
ideals 1 of R we have IF I.
We shall denote by R the complement of the union of the minimal primes of R.

For an ideal I c_ R and an element x of R, we say that x 6 I*, the tight closure of I,
if there exists c 6 R such that cxq I [ql for all q pe >> 0. If I I* for all ideals
I of R, we say R is weakly F-regular. R is called F-regular if every localization is
weakly F-regular. These two notions are known to be the same if R is Gorenstein
[HH2, Corollary 4.7].

3. Symplectic invariants

We shall summarize in this section the results of Carlisle and Kropholler as pre-
sented in [B]. Let ]’q be a finite field of characteristic p, and K an infinite field
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containing it. L. E. Dickson showed that the ring of invariant forms under the natural
action of GLn (Fq) on the polynomial ring R K[X Xn] is a graded polyno-
mial algebra on the algebraically independent generators cn,i, where the c,,i are the
coefficients in the equation

FI
VEFq[X X,,]I

(T v) Tq’’
Cn,n_! Tq’’-’ ,,-z

+ Cn,n-2Tq + (-- )n cn,oT.

When working with a fixed polynomial ring R K[X X,], we shall drop
the first index, and write the generators of RGL’’tv") as co c_, the Dickson
invariants. It is clear that for any subgroup G of GLn (]q), the ring of invariants RG

is a module-finite extension of the polynomial ring RGL’(]q) K[0 Cn-l].
Let V be a vector space of dimension 2n over the field q, on which we have a

non-degenerate alternating bilinear form B. We may choose a basis e e2n for
V, such that B is given by

B(Zaiei, Zbjej)=alb2-a2bl+’"+a2-,b2n-a2b2n-i.
The symplectic group G Sp2 (’q) is the subgroup of GL2n(q) consisting of
the elements which preserve B. We consider the natural action of G on R
K[X Xzn]. In addition to the Dickson invariants, it is easily seen that R6

must contain

qix, +... +

Carlisle and Kropholler show that the Dickson invariants co 2n- along with the
above 2n form a generating set for R6, and that there are 2n relations, i.e.,
that R6 is a complete intersection. One may eliminate co cn_ and 2n using
n 4- of these relations, after which the remaining n relations are

where < < n and c2 1. Their results furthermore show that co 6

K[ 2,-] which is, in fact, a polynomial ring.

4. Rings of invariants which are not F-pure

We shall first show that the ring of invariants of G Sp4(]q) acting on the
polynomial ring R K[XI, X2, X3, X4] is not F-pure when q 2 or 3. Note
that Sp2 (]q) is the same as SL2(]q), and so the ring of invariants in that case is a
polynomial ring.
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EXAMPLE 4.1. Let R K[X, X2, 23, X4] and G Sp4(q) be the symplectic
group with its natural action on R. In the notation of the previous section, RG

K[c2, ca, 1, 2, 3], where the only relation is

We need to determine co as an element of K[, :2, 3]. When q 2, it can be
verified that co 5 + 23 + 32, and so

by which 3 E ((, 2)RG) F. Since 3 (, 2)RG, the ring RG is not F-pure.
In the case q 3, co can be expressed as an element of K[, , 3] by the

equation

C0 +334 6 213 ]04 ?0
Once again we see that 3 ((, 2)RG) F, and so Re is not F-pure.

Computations with Macaulay helped us determine the precise equations in these
examples.

THEOREM 4.2. Let ]q be afinitefield ofcharacteristic p, and K an infinite field
containing it. Let G Sp2 (q) be the symplectic group with its natural action on
the polynomial ring R K[X X2n ]. Ifn >_ 2 and q >_ 4n 4, then the ring of
invariants RG is not F-pure.

Proof In the notation of the previous section, the ring of invariants is RG

K[cn c2n-, ! 2-1], where there are exactly n relations, as stated
before. Using the relation with 1, we see that

whereas 2n- ( 2n-2)RG.
If RG is indeed F-pure, q q RG2n-I ( 2n-2) and so the expression of co as

an element of K[ 2n-] must have a monomial of the form ’ ,2 a2,,-,2n-l’
with a _< q 2 and a2 a2n- < q 1. Equating degrees, we have

deg co q (q2n-Ia (q + 1) -I- a2 (q2 + 1) + + a2n-1 -Jr- 1)
2n- 2n-

-ai-]- Zaiqi.
i=1 i=1

Examining this modulo q, we get that zi2n=-lai )q 1, where the bounds on

ai show that _< . < 2n 2 < q. Substituting this, we get q2" )q + _,i-( aiqi.
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Working modulo q2, we see that a q ,k, and continuing this way we get that
a2 a2n- q 1. Hence

qZn (q .)(q A- 1) -k- (q l)(q 2 -k- l) at-... -4- (q 1)(q2n-I -t- 1),

which simplifies to give )(q + 1) 2nq 2n q + 3. Since ) < 2n 2, this implies
that q < 4n 5, a contradiction.

Hence R6 is not F-pure. In particular s2,_ 6 ((s :2n-2) R6)F, the Frobenius
closure, r--I

COROLLARY 4.3. The ring of invariants of the symplectic group G Sp4(]Fq)
acting on the polynomial ring R K[X, X2, X3, X4] is not F-pure.

Proof We have, in the examples above, treated the case where q 2 or 3. When
q >_ 4, the result follows from the previous theorem. I--1

5. Rings of invariants of the alternating group

The invariant subring under the natural action of the alternating group An is
R a’’ K[e en, A] where ei is the elementary symmetric function of degree
in X Xn, and A I-Ii>j(Xi Xj). The element A is easily seen to be fixed by
all even permutations of X Xn, though not by odd permutations. However its
square, A2, is fixed by all permutations, and so is a polynomial in the algebraically
independent elements e en. Consequently the invariant subring Ra’’ is a hy-
persurface, in particular it is Gorenstein. The elements e en are an obvious
choice as a homogeneous system of parameters for Ra’, and the one-dimensional
socle modulo this system of parameters is generated by A.

LEMMA 5.1. With the above notation, the following are equivalent:

(1) R a’’ K[e en, A] is F-regular.
(2) Ra’’ is a direct summand of R K[XI Xn] as an Ra"-module.
(3) A (el en)R.

Proof (1) =:> (2). By [HH3, Theorem 5.25], an F-regular ring is a direct
summand of any module-finite extension ring.

(2) =:> (3). Since Ra" iS a direct summand of R, we have

(e en)R f-) Ra’’ (el en)Ra’’.
(3) = (1). The elements e en form a system of parameters for the Goren-

stein ring Ra’’ and A is the socle generator modulo this system of parameters. If A
is in the tight closure of (e, en)Ra’’, then A 6 (el en)R* (e en)R.
Hence A cannot be in the tight closure of (e en)Ra’’ by which Ra’’ is F-regular.
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Consequently our aim is to establish that A 6 (e e,)R, whenever p divides

IAI. We shall henceforth denote this ideal by I (e en)R.

LEMMA 5.2. Let Tj denote the sum ofall monomials ofdegree in the variables

Xj Xn. Then Tj I wheneveri > j > 1. In particular, Ti I forall
l<i<n.

Proof Observe that Tj Tji_, Xj_, TjiZ, Given Tj with/ > j > 1, we may
use this formula to rewrite Tj as a sum of terms which are multiples of T. Since T
is the sum of all the monomials of degree in X Xn, it is certainly an element
of 1, and so Tj

LEMMA 5.3. The ideal I (e en R generatedby the elementary symmetric
functions contains the elements X X- yn-2 yn-2Xn-l’ Xn "’n-I "’n-2

Xnn-l n-2 i-I i-I n-I n-2Xn_ X Xi_ X Xn_ X2X 1.

Proof We shall use the fact that Ti I for < < n, Lemma 5.2. This already
says that X T 6 I, and since I is symmetric in the Xi, we also have X_ 6 I.
Next, X-IT_-,’ I, but examining this using X_, 6 I we see that X-! X,- 6 I.
We proceed by induction.

Since T/’5- 6 l, we know thatX-I n-2. i-X,_ X T/’f 6 l, butusingtheinductive
hypothesis this gives

Xnn X ...X X_ I. I-I

LEMMA 5.4. In the above notation, A =_ (n!)X X, X2 (mod I)

Proof Let r (Xr XI)(Xr X2)... (Xr Xr-l). Then A 6,6,_ 2.
We shall show that 6r --= rXrr- (mod I + (Xr+ Xn)R) for 2 < r < n. Note
that for r n, this says , nX,-I (mod I).

Fix r, where 2 < r < n. Let fi be the elementary symmetric function of degree
in the variables X Xr-. Then

ft" (--Xr)J-I (mod I + (Xr+l Xn))R,

and using this repeatedly, we see

fi (-Xr)i(modJ) where J I + (Xr+ X,)R.

Consequently

t (X Xl)(X X2)... (X Xr_l)

X.-I X;-2(XI -1--’’’-]- Xr-I) -+’""-}- (-l)r-lxI Xr-I
--= Xrr-I-X-2f[ +’"+(-1)r-fr-l (mod J)

Xrr -I Xrr-Z(-Xr) -+-... - (-I)r-l(-Xr)r-I (mod J)

rXrr -! (mod J).
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Since X 6 I, when evaluating the term
6n_ (mod I + XnR), and using this we get

(mod I), it is enough to consider

8nSn- n(n I)X-I Xn_ln-2 (mod I).

Proceeding in this manner, one obtains from the above calculations that A

nn-I 82 (n!)X-l n-2X,_ X2 (rood I). The point is that since 3n3-1 "-3r
n(n 1) (r)X- -2 r- (mod I) wehave66_Xn_ X ...r(Xr Xn)

_c I, by Lemma 5.3 and so when evaluating the product 36n-1 r-I (mod I),
one need only consider the element 6r-I modulo the ideal I

We are now ready to prove the main result of this section.

THEOREM 5.5. Let R K[XI Xn] be a polynomial ring in n variables over

afield k ofcharacteristic p, an oddprime, and let the alternating group An act on R by
permuting the variables. Then the invariant subring Ra’’ is F-regular (equivalently,

(n!) isR a’’ is a direct summand of R) ifand only if the order of the group An
relatively prime to p.

Proof. As we noted, it suffices to show that A 6 I (el en) R. By Lemma
5.4, A (n!)X- n-2Xn_ X2 (mod I), and so the result follows. I--I

Remark 5.6. Proposition 0.6.7 in [G1] shows that RA’’ is always F-pure. Conse-
quently when the characteristic p of the field K is an odd prime dividing JAn [, Ra’’

is an F-pure ring which is not F-regular.
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