GOLOMB'S SELF-DESCRIBED SEQUENCE AND FUNCTIONAL DIFFERENTIAL EQUATIONS

Y.-F.S. PÉTERMANN and JEAN-LUC RÉMY

A sequence (word) W of positive integers is self-described or self-generating if $\tau(W)=W$, where $\tau(W)$ is the sequence consisting of the numbers of consecutive equal entries of W. A famous self-generating bounded sequence is Kolakoski's $\underbrace{1,}_{1 .} \underbrace{2,2,}_{2 .}, \underbrace{1,1}_{2 .}, \underbrace{2,}_{1 .} \underbrace{1,}_{1 .} \underbrace{2,2,}_{2,} \cdots$ (see [Ch]). In this paper we consider Golomb's sequence F, which is the only nondecreasing self-generating sequence taking all positive integral values, $\underbrace{1,}_{1 .} \underbrace{2,2,}_{2 .} \underbrace{3,3}_{2 .}, \underbrace{4,4,4}_{3 .} \underbrace{5,5,5,}_{3,} \underbrace{6,6,6,6}_{4 .} \cdots$. Let ϕ denote the golden number. We prove that

$$
F(n)=\phi^{2-\phi} n^{\phi-1}+\frac{n^{\phi-1}}{\log n} h\left(\frac{\log \log n}{\log \phi}\right)+O\left(\frac{n^{\phi-1}}{\log ^{2} n} \log \log n\right),
$$

where the real function h is continuous and satisfies $h(x)=-h(x+1)(x \geq 0)$. The method of proof is intimately connected with the more general problem of characterising the solution E_{1} of an approximate functional integral equation of the type

$$
E_{1}(t)=-\phi^{1-\phi} t^{\phi-2} \int_{2}^{\phi^{2-\phi} \phi-1} E_{1}(u) d u+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right)
$$

which we discuss in the second part of the paper.

1. Introduction

In the problem section of the American Mathematical Monthly in 1966, S.W. Golomb [Go] considered the unique nondecreasing sequence $\{F(n)\}_{n \geq 1}=$ $\{1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7 \ldots\}$ "self-described" by the two conditions $F(1)=1$ and $F(n)=|\{m: F(m)=n\}|(n \geq 1)$. At the time he only requested an asymptotic expression for $F(n)$ as $n \rightarrow \infty$. We have

$$
\begin{equation*}
F(n)=c n^{\phi-1}+E(n) \tag{1.1}
\end{equation*}
$$

1991 Mathematics Subject Classification. Primary 11B83; Secondary 11B37, 11N37, 34K15.
where $c=\phi^{2-\phi}, \phi=(\sqrt{5}+1) / 2$ is the golden number, and $E(n)=o\left(n^{\phi-1}\right)$. The first published complete proof of (1.1) is due to N.J. Fine [Fi]; D. Marcus [Ma] proposed a clever heuristical argument: see [Pé2] for a proof based on Marcus' idea.

More recently, I. Vardi [Va] asked for a more precise estimate for the error term $E(n)$ of (1.1). On the one hand he could establish

$$
\begin{equation*}
E(n)=O\left(\frac{n^{\phi-1}}{\log n}\right) \tag{1.2}
\end{equation*}
$$

on the other hand he conjectured that estimate (1.2) is optimal.
Conjecture 1. We have

$$
\begin{equation*}
E(n)=\Omega_{ \pm}\left(\frac{n^{\phi-1}}{\log n}\right) \tag{1.3}
\end{equation*}
$$

Vardi's Conjecture 1 is based on a heuristic argument, which led him to be more precise.

CONJECTURE 2. For $n \geq 2$ we have

$$
\begin{equation*}
E(n)=\frac{n^{\phi-1} h\left(\frac{\log \log n}{\log \phi}\right)}{\log n}+O\left(\frac{n^{\phi-1}}{\log ^{2} n}\right) \tag{1.4}
\end{equation*}
$$

where $h(x)$ satisfies

$$
\begin{equation*}
h(x+1)=-h(x) \quad \text { for } x \geq 0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
|h(x)|>0 \quad \text { for } x \in(0,1) . \tag{1.6}
\end{equation*}
$$

However, as Vardi himself pointed out, he was "not even able to show that $\lim \sup _{n \rightarrow \infty}|E(n)|=\infty$ ". This was proved by Y.-F.S. Pétermann [Pé1], who showed that $E(n)=\Omega_{ \pm}\left(n^{\phi-1-\epsilon}\right)$ for every $\epsilon>0$. Recently J.-L. Rémy [Ré] succeeded in verifying the truth of Conjecture 1 .

In this paper we are concerned with Conjecture 2. We prove:
Theorem 1. We have

$$
\begin{equation*}
E(n)=\frac{n^{\phi-1} h\left(\frac{\log \log n}{\log \phi}\right)}{\log n}+O\left(\frac{n^{\phi-1} \log \log n}{\log ^{2} n}\right) \tag{1.7}
\end{equation*}
$$

where $h(x)$ satisfies

$$
\begin{equation*}
h(x+1)=-h(x) \quad \text { for } x \geq 0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
h \text { is continuous } \tag{1.8}
\end{equation*}
$$

Remark 1. Conjecture 1, which we know is true from Rémy's result [Ré], implies that the function h in Theorem 1 is not identically zero. It should also be noted that assertion (1.6) in Conjecture 2 is false: we can indeed prove that $h(0) \neq 0$ (see Remark 2 in Section 3), and this shows with (1.5) and (1.8) that there is a number α with $0<\alpha<1$ and $h(\alpha)=0$.

Hence we propose to modify assertion (1.6).
Conjecture 3. If h is as in Theorem 1 there is a number α with $0<\alpha<1$ and

$$
|h(x)|>0 \quad \text { for } x \in(\alpha, 1+\alpha)
$$

The rest of Section 3 is devoted to four other remarks.
The proof of Theorem 1 contains in fact an almost complete treatment of the approximate functional integral equation

$$
\begin{equation*}
E(t)=-c^{-\phi} t^{\phi-2} \int_{2}^{c^{\phi-1}} E(u) d u+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right) \tag{1.9}
\end{equation*}
$$

and its summatory counterpart (2.1) in Section 2 just below: this is discussed in Remarks 3 and 4.

But the error term bound of Theorem 1 is not as good as the bound conjectured in Conjecture 2: we extensively discuss in Remark 5 the exact and non trivial functional equation

$$
\begin{equation*}
d(t)=-t^{\phi-2} \int_{0}^{t^{\phi-1}} d(u) d u+1 \tag{1.10}
\end{equation*}
$$

which is of a type similar to (1.9), and for the solution of which the better error term bound holds. (By "non trivial" we mean that the function h associated to the solution is not identically zero).

In Theorem 2 of Remark 3 we show that the solution of an equation of type (1.9) satisfies (1.7), with (1.5) and (1.8): a sort of restricted converse to this is obtained in Theorem 4 of Remark 6, showing that a function $E(t)=t^{\phi-1} h(\log \log t / \log \phi) / \log t$ satisfies (1.9) for many choices of the function h.

Notation. In the sequel we shall frequently appeal without comment to classical properties of the golden number ϕ. Although all these properties can easily be inferred from the definition of ϕ, we state below a few of them for convenience.

$$
\phi^{2}=\phi+1, \quad \phi(\phi-1)=1, \quad(\phi-1)^{2}=2-\phi, \quad(\phi-1)^{3}=2 \phi-3
$$

Acknowledgements. This work was made possible by a temporary position as an invited professor granted to the first author by the Université Henri Poincaré-Nancy I. Both authors are very grateful to this institution for this opportunity to work together. They also wish to thank Ilan Vardi for his thorough reading of the manuscript and his useful comments and suggestions.

2. Proof of Theorem 1

Our starting point is the heuristic formula that led Vardi to his Conjecture 2.
LEMMA 1. We have

$$
\begin{equation*}
E(n)=-c^{-\phi} n^{\phi-2} \sum_{m \leq c n^{\phi-1}} E(m)+O\left(\frac{n^{\phi-1}}{\log ^{2} n}\right) \tag{2.1}
\end{equation*}
$$

Proof. Every $n \geq 1$ can be written uniquely as $n=G(m)-r$, where $0 \leq r<$ $F(m)$, and where $G(m)$ denotes the position of the last occurence of the integer m in the sequence F. We have

$$
\begin{equation*}
F(n)=F(G(m)-r)=m \tag{2.2}
\end{equation*}
$$

Now if we put $R(m):=\sum_{k \leq m} E(k)$, then, from Vardi's result (1.2), we clearly have

$$
\begin{equation*}
R(m)=O\left(\frac{m^{\phi}}{\log m}\right) \tag{2.3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
E(n)=E(G(m)-r)=-\frac{R(m)}{c m^{\phi-1}}\left(1+O\left(\frac{|R(m)|}{m^{\phi}}\right)\right)+O(1) \tag{2.4}
\end{equation*}
$$

(Equation (2.4) can easily be derived from Vardi's paper [Va]: see (10) of that paper; or see Lemma 3 in [Pél].) Thus, with (2.3), (2.2) and (1.2), we may write

$$
\begin{aligned}
E(n) & =-\frac{R(m)}{c m^{\phi-1}}+O\left(\frac{m}{\log ^{2} m}\right)=-\frac{R(F(n))}{c(F(n))^{\phi-1}}+O\left(\frac{F(n)}{\log ^{2}(F(n))}\right) \\
& =-\frac{R\left(c n^{\phi-1}+O\left(n^{\phi-1} / \log n\right)\right)}{c\left(c n^{\phi-1}+O\left(n^{\phi-1} / \log n\right)\right)^{\phi-1}}+O\left(\frac{n^{\phi-1}}{\log ^{2} n}\right) \\
& =-c^{-\phi} n^{\phi-2} R\left(c n^{\phi-1}\right)+O\left(\frac{n^{\phi-1}}{\log ^{2} n}\right) .
\end{aligned}
$$

This proves Lemma 1. Now we replace the sum in the approximate functional equation of Lemma 1 by an integral, which is smoother (differentiable) and thus easier to handle. For this we use a result of Segal's [Se].

LEmmA A. Let $f(n)$ be a function of a positive integral variable, and suppose

$$
\sum_{n \leq x} f(n)=z(x)+E(x)
$$

where $z(x)$ is twice continuously differentiable, and $z^{\prime \prime}(x)$ is of constant sign for $x \geq 1$. Then

$$
\sum_{n \leq x} E(n)=\frac{1}{2} z(x)+(1-\{x\}) E(x)+\int_{1}^{x} E(t) d t+O\left(\left|z^{\prime}(x)\right|\right)+O(1)
$$

Lemma 2. If the definitions of the functions F and E of (1.1) are extended to the real arguments $t \geq 1$ by putting $F(t):=F([t])=: c t^{\phi-1}+E(t)$, then we have

$$
\begin{equation*}
E(t)=-c^{-\phi} t^{\phi-2} \int_{2}^{c t^{\phi-1}} E(u) d u+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right) \tag{2.5}
\end{equation*}
$$

Proof. If we put $f(m)=1$ when $m=1$ or $m=G(k)+1$ for some k, and $f(m)=0$ otherwise in Lemma A, then $F(x)=\sum_{m \leq x} f(m)=z(x)+E(x)$ where $z(x):=c x^{\phi-1}$. The hypotheses of Lemma A are satisfied and Lemma 2 is proved.

Now if we let

$$
\begin{equation*}
D_{0}(t):=-c^{-\phi} t^{\phi-2} \int_{2}^{c^{\phi-1}} E(u) d u \tag{2.6}
\end{equation*}
$$

we have of course

$$
\begin{equation*}
E(t)=D_{0}(t)+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right) \tag{2.7}
\end{equation*}
$$

so that from (2.6) and (2.7) we have

$$
\begin{equation*}
D_{0}(t)=-c^{-\phi} t^{\phi-2} \int_{2}^{c^{\phi-1}} D_{0}(u) d u+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right) \tag{2.8}
\end{equation*}
$$

Similarly if we put

$$
\begin{equation*}
D(t):=-c^{-\phi} t^{\phi-2} \int_{2}^{c t^{\phi-1}} D_{0}(u) d u \tag{2.9}
\end{equation*}
$$

we may write

$$
\begin{equation*}
D(t)=D_{0}(t)+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
D(t)=-c^{-\phi} t^{\phi-2} \int_{2}^{c t^{\phi-1}} D(u) d u+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right) \tag{2.11}
\end{equation*}
$$

We shall work with the approximate functional-differential equation (2.11), rather than with (2.5) or (2.8), which are "functional" but not "differential". By (2.7) and (2.10) it is indeed sufficient to prove the theorem for D instead of E. If we write

$$
\begin{equation*}
D(t)=\frac{t^{\phi-1}}{\log t} K(t) \tag{2.12}
\end{equation*}
$$

this defines a function $K(t)=O(1)$ which is differentiable for every $t \geq 2$. If similarly we write

$$
\begin{equation*}
D_{0}(t)=\frac{t^{\phi-1}}{\log t} K_{0}(t) \tag{2.13}
\end{equation*}
$$

then by (2.10) we have

$$
\begin{equation*}
K_{0}(t)=K(t)+O(1 / \log t) \tag{2.14}
\end{equation*}
$$

Lemma 3. We have

$$
\begin{equation*}
t K^{\prime}(t)+K(t)+K\left(c t^{\phi-1}\right)=O(1 / \log t) . \tag{2.15}
\end{equation*}
$$

Proof. First we differentiate expression (2.12).

$$
\begin{equation*}
D^{\prime}(t)=\frac{t^{\phi-1}}{\log t} K^{\prime}(t)+\frac{t^{\phi-2}}{\log t}(\phi-1) K(t)-\frac{t^{\phi-2}}{\log ^{2} t} K(t) \tag{2.16}
\end{equation*}
$$

Then we differentiate (2.9).

$$
\begin{align*}
D^{\prime}(t)= & -c^{-\phi}(\phi-2) t^{\phi-3} \int_{2}^{c t^{\phi-1}} D_{0}(u) d u \\
& -c^{-\phi} t^{\phi-2} \frac{\left(c t^{\phi-1}\right)^{\phi-1}}{\log \left(c t^{\phi-1}\right)} K_{0}\left(c t^{\phi-1}\right) c(\phi-1) t^{\phi-2} \\
= & (\phi-2) \frac{D(t)}{t}-\frac{t^{\phi-2}}{\log t} K_{0}\left(c t^{\phi-1}\right)+O\left(\frac{t^{\phi-2}}{\log ^{2} t}\right) . \tag{2.17}
\end{align*}
$$

Equating (2.16) and (2.17) (with a use of definition (2.12)) yields

$$
\frac{t^{\phi-2}}{\log t} t K^{\prime}(t)+\frac{t^{\phi-2}}{\log t} K(t)+\frac{t^{\phi-2}}{\log t} K_{0}\left(c t^{\phi-1}\right)=O\left(\frac{t^{\phi-2}}{\log ^{2} t}\right),
$$

and a division by $t^{\phi-2} / \log t$ with an appeal to (2.14) finishes the proof.

A key step in the proof of Theorem 1 is to ensure now that $K(t)$ is sufficiently near $K\left(c t^{\phi-1}\right)$. This will be done by an induction argument on m for t in intervals of the form [N_{m}, N_{m+1}], where $N_{0}, N_{1}, N_{2}, \ldots$ is a sequence of positive real numbers with

$$
\begin{equation*}
N_{m}=c N_{m+1}^{\phi-1}, \quad \text { that is } \quad N_{m+1}=\frac{c}{\phi} N_{m}^{\phi} \tag{2.18}
\end{equation*}
$$

for $m \geq 0$. We need a lower bound on N_{m}.

Lemma 4. If N_{0} is chosen large enough we have

$$
\begin{equation*}
N_{m}>3^{\phi^{\prime \prime \prime}} \tag{2.19}
\end{equation*}
$$

Proof. If $Q:=\phi^{\phi-2}=1 / c$ we have

$$
N_{1}=\frac{c}{\phi} N_{0}^{\phi}=\phi^{1-\phi} N_{0}^{\phi}=\left(\phi^{\phi-2} N_{0}\right)^{\phi}=\left(Q N_{0}\right)^{\phi}
$$

and in general, if $Q_{0}:=Q^{\phi^{2}}(=1 / \phi)$, we have

$$
\begin{aligned}
N_{m} & =\left(Q N_{m-1}\right)^{\phi}=\left(Q\left(Q N_{m-2}\right)^{\phi}\right)^{\phi}=\cdots=Q^{\phi+\phi^{2}+\cdots+\phi^{m}} N_{0}^{\phi^{m}} \\
& =Q^{\phi^{\phi^{m}-1}} \frac{\phi^{-1}}{\phi_{0}^{\prime \prime \prime}}=Q_{0}^{\phi^{\prime \prime \prime}-1} N_{0}^{\phi^{\prime \prime}}>\left(Q_{0} N_{0}\right)^{\phi^{\prime \prime}-1}>\left(3^{\phi^{2}}\right)^{\phi^{m}-1}
\end{aligned}
$$

provided N_{0} is chosen larger than $3^{\phi^{2}} / Q_{0}=\phi 3^{\phi^{2}}$. And we have

$$
\phi^{2}\left(\phi^{m}-1\right)=\phi^{m}\left(\phi^{2}\left(1-\phi^{-m}\right)\right) \geq \phi^{m}
$$

if $m \geq 1$. This concludes the proof if we note that since $N_{0}>3$, (2.19) also holds for $m=0$.

We are now in position to prove:
Lemma 5. For $t \geq 3$ we have

$$
\begin{equation*}
K(t)+K\left(c t^{\phi-1}\right)=O\left(\frac{\log \log t}{\log t}\right) \tag{2.20}
\end{equation*}
$$

Proof. Let $N_{0}, N_{1}, N_{2}, \ldots$ be a sequence of positive real numbers satisfying (2.18) for $m \geq 0$, and with N_{0} large enough to ensure the validity of (2.19). We show that there is an absolute positive constant C and a sequence of real positive numbers $M_{0}, M_{1}, M_{2}, \ldots$ with

$$
\begin{equation*}
M_{m+1}=\left(C+M_{m}\right)\left(1+\frac{C}{\log N_{m}}\right) \quad(m \geq 0) \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|K(t)+K\left(c t^{\phi-1}\right)\right| \leq \frac{M_{m}}{\log t} \tag{2.22}
\end{equation*}
$$

for $2 \leq t \leq N_{m}$. The proof is by induction on m. Estimate (2.22) holds for $m=0$ if we choose M_{0} large enough. Assume it is satisfied for some $m \geq 0$, and let $N_{m} \leq s \leq N_{m+1}$. Then we have $s=c \phi^{-1} t^{\phi}$ and $t=c s^{\phi-1}$ for some t with $t \leq N_{m}$. And by (2.11) and (2.12) we may write

$$
\begin{equation*}
D(s)=-c^{-\phi} s^{\phi-2} \int_{2}^{t} K(u) \frac{u^{\phi-1}}{\log u} d u+\frac{s^{\phi-1}}{\log ^{2} s} B(s) \tag{2.23}
\end{equation*}
$$

where $|B(s)| \leq B$ for an absolute constant B. First we show that there is an absolute constant C_{1} such that

$$
\begin{equation*}
\int_{2}^{t} K(u) \frac{u^{\phi-1}}{\log u} d u=\phi c^{-1} K(t) \frac{s}{\log s}+\vartheta_{1}(s) \phi c^{-1} \frac{s}{\log ^{2} s}\left(C_{1}+M_{m}\right)\left(1+\frac{C_{1}}{\log s}\right) \tag{2.24}
\end{equation*}
$$

for some function ϑ_{1} with $\left|\vartheta_{1}(s)\right| \leq 1$. Integrating by parts in (2.23) and replacing $\log t$ by $\phi^{-1} \log s+O(1)$ we obtain

$$
\begin{aligned}
\int_{2}^{t} K(u) \frac{u^{\phi-1}}{\log u} d u= & \phi c^{-1} K(t) \frac{s}{\log s}+O\left(\frac{s}{\log ^{2} s}\right) \\
& -\frac{1}{\phi} \int_{2}^{t} \frac{u^{\phi-1}}{\log u}\left(u K^{\prime}(u)-\frac{K(u)}{\log u}\right) d u
\end{aligned}
$$

and thus in order to obtain (2.24) it is clearly sufficient to show that

$$
\begin{equation*}
I:=\int_{2}^{t} \frac{u^{\phi-1}}{\log u}\left(\left|u K^{\prime}(u)\right|+\frac{|K(u)|}{\log u}\right) d u \leq \phi^{2} c^{-1} \frac{s}{\log ^{2} s}\left(C_{0}+M_{m}\right)\left(1+\frac{C_{0}}{\log s}\right) \tag{2.25}
\end{equation*}
$$

for some absolute constant C_{0}. Now there are absolute constants A and A_{1} with $|K(u)| \leq A(u \geq 2)$ and, by Lemma 3, with

$$
\left|u K^{\prime}(u)\right| \leq \frac{A_{1}}{\log u}+\left|K(u)+K\left(c u^{\phi-1}\right)\right|(u \geq 2)
$$

Thus on appealing to the induction hypothesis we have
$I \leq\left(A_{1}+A+M_{m}\right) \int_{2}^{t} \frac{u^{\phi-1}}{\log ^{2} u} d u \leq\left(A_{1}+A+M_{m}\right)\left(\phi^{2} c^{-1} \frac{s}{\log ^{2} s}+O\left(\frac{s}{\log ^{3} s}\right)\right)$, whence (2.25) and (2.24) follow. Now we use (2.12) and (2.24) in (2.23) and obtain

$$
\begin{equation*}
\frac{s^{\phi-1}}{\log s} K(s)=-\frac{s^{\phi-1}}{\log s} K(t)+\vartheta(s) \frac{s^{\phi-1}}{\log ^{2} s}\left(C_{2}+M_{m}\right)\left(1+\frac{C_{2}}{\log s}\right), \tag{2.26}
\end{equation*}
$$

where C_{2} is an absolute constant and ϑ some real function with $|\vartheta(s)| \leq 1$. Thus

$$
\left|K(s)+K\left(c s^{\phi-1}\right)\right| \leq \frac{\left(C_{2}+M_{m}\right)\left(1+\frac{C_{2}}{\log s}\right)}{\log s} \leq \frac{\left(C_{2}+M_{m}\right)\left(1+\frac{C_{2}}{\log N_{m}}\right)}{\log s} \leq \frac{M_{m+1}}{\log s}
$$

provided C has been chosen with $C \geq C_{2}$, whence the proof of the lemma will be complete if we ensure that a sequence of numbers satisfying (2.21) also satisfies

$$
\begin{equation*}
M_{m}=O(m) \quad(m \geq 1) \tag{2.27}
\end{equation*}
$$

Indeed, by Lemma 4 we have $t \geq 3^{\phi^{m-1}}$ if $N_{m-1} \leq t \leq N_{m}(m \geq 1)$, so that $m \leq \log \log t / \log \phi+O(1)$, and thus with (2.27) we will have

$$
\left|K(t)+K\left(c t^{\phi-1}\right)\right| \leq \frac{M_{m}}{\log t}=O\left(\frac{\log \log t}{\log t}\right)
$$

In fact we prove that

$$
\begin{equation*}
M_{m} \leq(m+1) C_{3} \prod_{0 \leq i<m}\left(1+C \phi^{-i}\right)(m \geq 0) \tag{2.28}
\end{equation*}
$$

where C_{3} denotes $\max \left(C, M_{0}\right)$. This is sufficient to ensure that (2.27) holds: the product in (2.28) is bounded by an infinite product that converges, since $\phi>1$. We prove (2.28) by induction on m. It holds for $m=0$. Assume it is satisfied for some $m \geq 0$. Then by Lemma 4 we have

$$
\begin{aligned}
M_{m+1} & =\left(C+M_{m}\right)\left(1+\frac{C}{\log N_{m}}\right) \leq\left(C+M_{m}\right)\left(1+\frac{C}{\phi^{m}}\right) \\
& \leq(1+m+1) C_{3} \prod_{0 \leq i<m}\left(1+C \phi^{-i}\right)\left(1+C \phi^{-m}\right)
\end{aligned}
$$

The proof of Lemma 5 is now complete.
Now we define the function k by

$$
k\left(\frac{\log \log t}{\log \phi}\right)=K(t)
$$

and we prove:
LEmMA 6. For $x \geq 1$ we have

$$
\begin{equation*}
k(x)+k(x-1)=O\left(x \phi^{-x}\right) \tag{2.29}
\end{equation*}
$$

Proof. First note that

$$
\frac{\log \log \left(c t^{\phi-1}\right)}{\log \phi}=\frac{\log \log t}{\log \phi}-1+O\left(\frac{1}{\log t}\right) .
$$

Then note that by Lemmas 3 and 5 we have

$$
K^{\prime}(t)=O\left(\frac{\log \log t}{t \log t}\right)
$$

which with

$$
K^{\prime}(t)=\frac{k^{\prime}\left(\frac{\log \log t}{\log \phi}\right)}{t \log t \log \phi}
$$

implies that

$$
\begin{equation*}
k^{\prime}\left(\frac{\log \log t}{\log \phi}\right)=O(\log \log t) \tag{2.30}
\end{equation*}
$$

whence, in particular,

$$
k\left(\frac{\log \log t}{\log \phi}-1+O\left(\frac{1}{\log t}\right)\right)=k\left(\frac{\log \log t}{\log \phi}-1\right)+O\left(\frac{\log \log t}{\log t}\right)
$$

Thus

$$
K(t)+K\left(c t^{\phi-1}\right)=k\left(\frac{\log \log t}{\log \phi}\right)+k\left(\frac{\log \log t}{\log \phi}-1\right)+O\left(\frac{\log \log t}{\log t}\right)
$$

An appeal to Lemma 5, and the change of variable $x=\log \log t / \log \phi$, conclude the proof.

Let now $x_{0} \geq 0$ be fixed, and consider the sequences

$$
\begin{equation*}
x_{i}:=x_{0}+2 i \quad \text { and } \quad y_{i}:=k\left(x_{i}\right) \quad(i \geq 0) \tag{2.31}
\end{equation*}
$$

With the help of Lemma 6, by adding and subtracting terms of the form $(-1)^{j+1} k\left(x_{0}+\right.$ $j)(j \geq 1)$, it is not difficult to see that $\left\{y_{i}\right\}$ is a Cauchy sequence and thus converges to some real number, which we call $h\left(x_{0}\right)$. Similarly, for $x_{0} \geq 1, y_{i}^{\prime}$ converges to $h\left(x_{0}-1\right)$, where $y_{i}^{\prime}:=k\left(x_{i}-1\right)(i \geq 0)$. And again by Lemma 6 we see that

$$
\begin{equation*}
h\left(x_{0}\right)+h\left(x_{0}-1\right)=\lim _{i \rightarrow \infty}\left(k\left(x_{i}\right)+k\left(x_{i}-1\right)\right)=0 . \tag{2.32}
\end{equation*}
$$

We need a precise bound for the quantity $|h(x)-k(x)|$.
LEMMA 7. We have

$$
\begin{equation*}
k\left(\frac{\log \log t}{\log \phi}\right)=h\left(\frac{\log \log t}{\log \phi}\right)+O\left(\frac{\log \log t}{\log t}\right) \tag{2.33}
\end{equation*}
$$

Proof. Put $x=x_{0}=\log \log t / \log \phi$. Then with the notation (2.31) we have

$$
|h(x)-k(x)|=\lim _{i \rightarrow \infty}\left|y_{i}-y_{0}\right|
$$

Now with Lemma 6 we have

$$
\begin{aligned}
\left|y_{i}-y_{0}\right| & \leq\left|y_{1}-y_{0}\right|+\left|y_{2}-y_{1}\right|+\cdots+\left|y_{i}-y_{i-1}\right| \\
& =O\left(\sum_{i \geq 0}(x+2 i) e^{-(x+2 i) \log \phi}\right) \\
& =O\left(x e^{-x \log \phi}\right)
\end{aligned}
$$

and the lemma is proved.

In order to conclude the proof of Theorem 1 it thus remains to prove:
Lemma 8. The function h is continuous.
Proof. Suppose on the contrary that h is not continuous at some x. Then there is a sequence $\epsilon_{i} \rightarrow 0$ with

$$
\left|h(x)-h\left(x+\epsilon_{i}\right)\right| \geq C>0,
$$

where C is some positive constant. By (2.31), for every positive integer j we have

$$
\left|h(x+2 j)-h\left(x+2 j+\epsilon_{i}\right)\right| \geq C .
$$

Now if we write $x+2 j=\log \log t_{j} / \log \phi$, then by Lemma 7 we have

$$
h(x+2 j)-h\left(x+2 j+\epsilon_{i}\right)=k(x+2 j)-k\left(x+2 j+\epsilon_{i}\right)+A\left(t_{j}, i\right) \frac{\log \log t_{j}}{\log t_{j}}
$$

where $\left|A\left(t_{j}, i\right)\right| \leq A$ for some absolute constant A. But we can choose $j=j_{0}$ such that for $t=t_{j_{0}}$ we have

$$
A \frac{\log \log t}{\log t} \leq \frac{C}{2},
$$

whence

$$
\left|k\left(x+2 j_{0}\right)-k\left(x+2 j_{0}+\epsilon_{i}\right)\right| \geq \frac{C}{2}
$$

for every i, which contradicts the continuity of k.
The proof of Theorem 1 is now complete.

3. Remarks

Remark 2. As we mentioned it in the introduction (Remark 1), Vardi's assertion in his Conjecture 2 that $|h(x)|>0$ for $x \in(0,1)$ is not correct, and this follows from $h(0) \neq 0$. We very briefly indicate how this latter fact can be proved. If we write

$$
E(t)=\frac{t^{\phi-1}}{\log t} k_{1}\left(\frac{\log \log t}{\log \phi}\right)
$$

then Rémy proved in [Ré] that

$$
\left|k_{1}(u)\right| \geq a \quad\left(u \in[m+\alpha, m+\beta] ; m \geq m_{0}\right)
$$

where a, α and β are explicit real constants with $\alpha<\beta$ and $a>0$. By refining the computations needed to achieve that, it is possible to choose the constants a, α and
β in such a way that the additional condition $\alpha<0<\beta$ be satisfied. (We obtain $\alpha=-0.0018$ and $\beta=0.2948$, with $a=0.0007486$.) Thus $\left|k_{1}(m)\right| \geq a$ for $m \geq m_{0}$, whence

$$
|h(0)|=|h(m)|=\lim _{m \rightarrow \infty}|h(m)|=\lim _{m \rightarrow \infty}\left|k_{1}(m)\right| \geq a>0
$$

Remark 3. It should be noted that in Section 2 we prove more than just Theorem 1. In fact we gave an almost complete proof of the following result.

THEOREM 2. Let E_{1} be an integrable real function defined on $[2, \infty)$ which is a solution of some approximate functional equation of the type

$$
\begin{equation*}
E_{1}(t)=-c^{-\phi} t^{\phi-2} \int_{2}^{c^{\phi-1}} E_{1}(u) d u+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right) \tag{3.1}
\end{equation*}
$$

Then the conclusions of Theorem 1 hold for E_{1} instead of E.
Proof. We have to ensure that the proof of Theorem 1 is valid from equation (2.6) on, if we replace E by E_{1}. From this point on the only property of E we use (other than equation (2.5)) is Vardi's result (1.2) (which is used in the derivations of equations (2.17) and (2.24)). So we only need to show the following.

LEMMA 9. If E_{1} is a solution of an equation of type (3.1), then

$$
\begin{equation*}
E_{1}(t)=O\left(\frac{t^{\phi-1}}{\log t}\right) \tag{3.2}
\end{equation*}
$$

Proof of the lemma. Let N_{0}, N_{1}, \ldots be a sequence of real numbers as in (2.18), with N_{0} large enough to ensure the validity of Lemma 4. We prove by induction on m that if $\ell \in\left[2, N_{m}\right]$, then

$$
\begin{equation*}
\left|E_{1}(\ell)\right| \leq A_{m} \frac{\ell^{\phi-1}}{\log \ell} \tag{3.3}
\end{equation*}
$$

for some increasing sequence of positive real numbers exceeding $1, A_{0}, A_{1}, \ldots$ with

$$
A_{m+1}=A_{m}\left(1+C \phi^{-m}\right)
$$

for an absolute constant C. This will imply that there is an absolute constant A with $A_{m}<A$ for every m, whence the lemma. For A_{0} large enough, (3.3) holds for $m=0$ and $m=1$. Suppose (3.3) holds for some $m \geq 1$, and let $L \in\left[N_{m}, N_{m+1}\right]$. Then $L=c \phi^{-1} \ell^{\phi}$ and $\ell=c L^{\phi-1}$ for some $\ell \in\left[N_{m-1}, N_{m}\right]$. Note that from Lemma 4 we can infer $\log \ell \geq \phi^{m-1}$. For some absolute constants B, B_{1}, B_{2} and B_{3} we have

$$
\left|E_{1}(L)\right| \leq \frac{1}{c \ell^{\phi-1}} \int_{2}^{\ell}|E(u)| d u+B \frac{L^{\phi-1}}{\log ^{2} L}
$$

$$
\begin{aligned}
& \leq \frac{A_{m}}{c \phi \ell^{\phi-1}}\left(1+\frac{B_{1}}{\log \ell}\right) \frac{\ell^{\phi}}{\log \ell}+B \frac{L^{\phi-1}}{\log ^{2} L} \\
& \leq \frac{A_{m} L^{\phi-1}}{\log L}\left(1+\frac{B_{2}}{\log \ell}\right) \leq \frac{A_{m} L^{\phi-1}}{\log L}\left(1+B_{3} \phi^{-m}\right) \leq A_{m+1} \frac{L^{\phi-1}}{\log L}
\end{aligned}
$$

provided C has been chosen with $C \geq B_{3}$.

Remark 4. If a function E_{1} of the positive integers satisfies a functional equation of the type

$$
\begin{equation*}
E_{1}(n)=-c^{-\phi} n^{\phi-2} \sum_{k \leq c n^{\phi-1}} E_{1}(k)+O\left(\frac{n^{\phi-1}}{\log ^{2} n}\right) \tag{3.4}
\end{equation*}
$$

then it is not difficult to show, by an argument similar to that of Lemma 9, that

$$
E_{1}(n)=O\left(\frac{n^{\phi-1}}{\log n}\right)
$$

It then easily follows that the extended function $E_{1}(t)=E_{1}([t])$ satisfies a functional equation of type (2.5), and thus that Theorem 2 applies to E_{1}.

It should be noted at this point that if one replaces the error term of (3.4) by $O\left(n^{\phi-1} / \log ^{1+\epsilon} n\right)$ where $0<\epsilon<1$, then Theorem 2 can still be proved for E_{1}, the only difference in its conclusions being that the error term in the expression of E_{1} in terms of h is now $O\left(n^{\phi-1} \log \log n / \log ^{1+\epsilon} n\right)$.

In the remark on page 3 of [Va] a relation less precise than (3.4) (without error term and with the symbol \approx instead of $=$) is displayed, followed by an assertion, the most natural interpretation of which appears to be that the function $n^{\phi-1} h(\log \log n / \log \phi) / \log n=: E_{2}(n)$ is a solution to (3.4) (possibly with a larger error term) when $h(x+1)=-h(x)$. But we just saw that for E_{2}, with $h(x+1)=-h(x)$, to be an asymptotic solution of (3.4), it is at least necessary that h be continuous.

And in fact there are continuous functions h with $h(x+1)=-h(x)$ such that E_{2} is not a solution of (3.4). In order to verify the latter, first note that a necessary condition for a function $E_{2}(n)=O\left(n^{\phi-1} / \log n\right)$ to be a solution of (3.4) is $E_{2}(n+1)-E_{2}(n)=$ $O\left(n^{\phi-1} / \log ^{2} n\right)$. Thus, if

$$
E_{2}(n)=\frac{n^{\phi-1}}{\log n} h\left(\frac{\log \log n}{\log \phi}\right)
$$

a necessary condition is

$$
h\left(\frac{\log \log (n+1)}{\log \phi}\right)-h\left(\frac{\log \log n}{\log \phi}\right)=O\left(\frac{1}{\log n}\right)
$$

We can find a sequence of positive integers $n_{i} \rightarrow \infty(i \rightarrow \infty)$ such that the integral parts $\left[\log \log n_{i} / \log \phi\right]$ are all of the same parity, and such that the fractional parts
$\delta_{i}:=\left\{\log \log n_{i} / \log \phi\right\}$ decrease to 0 as $i \rightarrow \infty$. By making the sequence sparse enough we may also assume that $\epsilon_{i+1}<\delta_{i}<\epsilon_{i}$, where $\epsilon_{i}:=\left\{\log \log \left(n_{i}+1\right) / \log \phi\right\}$. Thus if we put $h\left(\delta_{i}\right)=1 / n_{i}$ and $h\left(\epsilon_{i}\right)=1 / n_{i}+1 / \sqrt{\log n_{i}}$, we can complete the construction of a continuous function h with $h(x+1)=-h(x)$ and such that

$$
h\left(\frac{\log \log (n+1)}{\log \phi}\right)-h\left(\frac{\log \log n}{\log \phi}\right)=\Omega\left(\frac{1}{\sqrt{\log n}}\right) .
$$

Note that it is even possible to ensure that h be indefinitely differentiable (with the restriction $h^{(k)}(0)=\infty$ for $\left.k=1,2, \ldots\right)$.

Remark 5. The error term estimate $O\left(t^{\phi-1} \log \log t / \log t\right)$ we obtain in our Theorem 1 is not as good as the error term asserted bound $O\left(t^{\phi-1} / \log t\right)$ of Conjecture 2. Here we give an example of a (non trivial) functional equation of type (3.1) for which the better error term bound holds. In this case we can exhibit an explicit expression for the function h (here: g), which in addition permits a rather easy (compared to the argument in [Ré]) derivation of an Ω-estimate as strong as that of Conjecture 1.

THEOREM 3. There is a unique solution for the exact functional-differential equation

$$
\begin{equation*}
d(t)=-t^{\phi-2} \int_{0}^{t^{\phi-1}} d(u) d u+1 \tag{3.5}
\end{equation*}
$$

This solution satisfies an equation of type (3.1). Moreover, for $u \geq e$, we have

$$
\begin{equation*}
d(u)=\frac{u^{\phi-1}}{\log u} g\left(\frac{\log \log u}{\log \phi}\right)+O\left(\frac{u^{\phi-1}}{\log ^{2} u}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
g(x)=-g(x+1) \quad(x \geq 0) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g \text { is continuous, } \tag{3.8}
\end{equation*}
$$

and where in addition

$$
\begin{equation*}
g \text { is not identically zero. } \tag{3.9}
\end{equation*}
$$

Proof. We first establish the existence of a solution. The argument is similar to that in [Yo, Chapitre 4, p. 151-153]. We are looking for a solution of (3.5) of the form

$$
\begin{equation*}
d(t)=\sum_{n \geq 0} e_{n}(t), \tag{3.10}
\end{equation*}
$$

where for the time being we assume that the sum converges absolutely and uniformly in each bounded interval $[0, t]$. Then by using (3.10) in (3.5) we obtain

$$
\sum_{n \geq 0} e_{n}(t)=1-\sum_{n \geq 0} t^{\phi-2} \int_{0}^{t^{\phi-1}} e_{n}(u) d u
$$

We seek a solution satisfying

$$
e_{0}(t)=1
$$

and

$$
\begin{equation*}
e_{n}(t)=-t^{\phi-2} \int_{0}^{t^{\phi-1}} e_{n-1}(u) d u \quad(n \geq 1) \tag{3.11}
\end{equation*}
$$

with $e_{n}(t)=\alpha_{n} t^{\beta_{n}}$, and where α_{n} and β_{n} are real numbers. An elementary computation yields

$$
\begin{aligned}
& \alpha_{0}=1, \quad \beta_{0}=0 \\
& \beta_{n}=\left(\beta_{n-1}+1\right)(\phi-1)+(\phi-2)=(\phi-1) \beta_{n-1}+(\phi-1)^{3}, \\
& \alpha_{n}=-\frac{\alpha_{n-1}}{\beta_{n-1}+1} .
\end{aligned}
$$

The sequence $\beta_{0}, \beta_{1}, \ldots$ satisfies a first degree recurrence relation whose solution is

$$
\begin{equation*}
\beta_{k}=-(\phi-1)^{k+1}+(\phi-1)=(\phi-1)\left(1-\frac{1}{\phi^{k}}\right) \tag{3.12}
\end{equation*}
$$

whence

$$
\begin{equation*}
\alpha_{n}=\frac{(-1)^{n}}{\phi^{n}} \prod_{k=1}^{n} \frac{1}{\left(1-\frac{1}{\phi^{k+1}}\right)} \tag{3.13}
\end{equation*}
$$

Note that as $n \rightarrow \infty$ the product in (3.13) remains bounded. Also note that $0 \leq$ $\beta_{n} \leq \phi-1$. Now there remains to ensure that with these values of α_{n} and β_{n} the sum in (3.10) does indeed converges absolutely and uniformly in each bounded interval $[0, t]$. This follows from

$$
\begin{equation*}
\alpha_{n} t^{\beta_{n}}=O\left(\frac{1+t^{\phi-1}}{\phi^{n}}\right) . \tag{3.14}
\end{equation*}
$$

Now we show that the solution of (3.5) is unique. Let d_{1} and d_{2} be two solutions of (3.5) and consider their difference $\varepsilon:=d_{1}-d_{2}$. Let $t_{0} \geq 0$ and M be the sup $|\varepsilon(u)|$ for $u \in\left[0, t_{0}\right]$. Then if $t \leq t_{0}$ we have

$$
|\varepsilon(t)| \leq t^{\phi-2} \int_{0}^{t^{\phi-1}}|\varepsilon(u)| d u \leq M t^{\phi-2} \int_{0}^{t^{\phi-1}} d u=M t^{2 \phi-3}=M t^{(\phi-1)^{3}}
$$

Now let

$$
\begin{equation*}
\phi_{k}=\beta_{k+1} \quad \text { and } \quad M_{k}=M\left|\alpha_{k+1}\right| \quad(k \geq 0) \tag{3.15}
\end{equation*}
$$

Then it is easy to see by induction on k, with (3.14) and (3.15), that if $t \leq t_{0}$ then

$$
|\varepsilon(t)| \leq M_{k} t^{\phi_{k}}=M\left|\alpha_{k+1}\right| t^{\beta_{k+1}} \leq \frac{C}{\phi^{k+1}}
$$

for every positive integer k, where C is a positive constant depending only on t_{0}. Hence $\varepsilon(t)=0$ if $t \leq t_{0}$ and $d_{1} \equiv d_{2} \equiv d$.

Now we write

$$
\begin{equation*}
d(t)=\frac{t^{\phi-1}}{\log t} J(t)=\frac{t^{\phi-1}}{\log t} j\left(\frac{\log \log t}{\log \phi}\right) \tag{3.16}
\end{equation*}
$$

and we show that

$$
\begin{equation*}
J(t)+J\left(t^{\phi-1}\right)=O\left(\frac{1}{\log t}\right) \tag{3.17}
\end{equation*}
$$

Using (3.14) in (3.16) we may write

$$
\begin{equation*}
J(t)=\sum_{n \geq-1} \alpha_{n} t^{-\phi^{-n-1}} \log t \tag{3.18}
\end{equation*}
$$

where, by convention, $\alpha_{-1}=0$. Hence we have

$$
\begin{equation*}
J(t)+J\left(t^{\phi-1}\right)=\sum_{n \geq 0}\left(\alpha_{n}+\frac{\alpha_{n-1}}{\phi}\right) t^{\phi^{n-1}} \log t=\log t \sum_{n \geq 0}(-1)^{n} \gamma_{n} \tag{3.19}
\end{equation*}
$$

where on appealing to (3.15) we see that

$$
\gamma_{0}=t^{-\phi^{-1}}
$$

and for $n \geq 1$,

$$
\begin{align*}
\gamma_{n} & =\frac{1}{\phi^{n}} \prod_{k=1}^{n}\left(1-\frac{1}{\phi^{k+1}}\right)^{-1}\left(1-\left(1-\frac{1}{\phi^{n+1}}\right)\right) t^{-\phi^{-n-1}} \\
& =\frac{1}{\phi^{2 n+1}} \prod_{k=1}^{n}\left(1-\frac{1}{\phi^{k+1}}\right)^{-1} t^{-\phi^{-n-1}} \tag{3.20}
\end{align*}
$$

When $t>\left(\phi^{2}\right)^{\phi^{3}}$, the sequence $\left\{\gamma_{n}\right\}$ in (3.17) is unimodal; i.e., there is an integer n_{0} such that $\gamma_{n+1}>\gamma_{n}$ for $n<n_{0}$ and $\gamma_{n+1} \leq \gamma_{n}$ for $n \geq n_{0}$. Indeed $\gamma_{0}<\gamma_{1}$, and for $n \geq 1$,

$$
\frac{\gamma_{n+1}}{\gamma_{n}}=\frac{1}{\phi^{2}} \frac{x^{u}}{1-u}=: v(u)
$$

where $u=\phi^{-n-2}$ and $x=t^{\phi-1}$; and for x fixed the function $v(u)$ is strictly increasing from ϕ^{-2} to $+\infty$ for $u \in[0,1)$. It follows that there is a unique $u_{0}>0$ with $v\left(u_{0}\right)=1$. And thus n_{0} is the smallest positive integer satisfying $\phi^{-n_{0}-2} \leq u_{0}$. Now with the unimodality of $\left\{\gamma_{n}\right\}$ and (3.19) we see that

$$
\begin{equation*}
\left|J(t)+J\left(t^{\phi-1}\right)\right| \leq \gamma_{n_{0}} \log t . \tag{3.21}
\end{equation*}
$$

The quantities n_{0} and u_{0} depend on t. As t increases to $+\infty, n_{0}$ also increases to $+\infty$, and u_{0} decreases to 0 . Thus from the definition of u_{0}, i.e. $v\left(u_{0}\right)=1$, we see that $t^{u_{0}}$ remains bounded as $t \rightarrow \infty$, whence, since $u_{0}>0, u_{0}=O(1 / \log t)$. With (3.20) it follows that

$$
\gamma_{n_{0}} \ll \phi^{-2 n_{0}} t^{-\phi^{-n_{0}-1}} \ll u_{0}^{2} \ll \frac{1}{\log ^{2} t}
$$

and this with (3.21) implies (3.17).
Now we show that d satisfies an approximate functional-differential equation of type (3.1). As in Lemma 3 we obtain

$$
\begin{equation*}
t J^{\prime}(t)+J(t)+J\left(t^{\phi-1}\right)=O\left(\frac{1}{\log t}\right) \tag{3.22}
\end{equation*}
$$

and with (3.17) this implies

$$
\begin{equation*}
J^{\prime}(t)=O\left(\frac{1}{t \log t}\right), \quad \text { that is, } \quad j^{\prime}(u)=O(1) \tag{3.23}
\end{equation*}
$$

With (3.5) we have

$$
\begin{equation*}
-c^{-\phi} t^{\phi-2} \int_{2}^{c t^{\phi-1}} d(u) d u=\frac{d\left(c^{\phi} t\right)}{c}-1+O\left(t^{\phi-2}\right) \tag{3.24}
\end{equation*}
$$

and, with (3.23) and (3.16),

$$
\begin{align*}
\frac{d\left(c^{\phi} t\right)}{c} & =\frac{t^{\phi-1}}{\log t} j\left(\frac{\log \log t}{\log \phi}+O\left(\frac{1}{\log t}\right)\right)+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right) \\
& =d(t)+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right) \tag{3.25}
\end{align*}
$$

Thus Theorem 2 applies to e. But we must ensure that the better estimate (3.6) holds, with (3.7) and (3.8). To that purpose we replace Lemma 5 by

$$
\begin{equation*}
J(t)+J\left(c t^{\phi-1}\right)=O\left(\frac{1}{\log t}\right) \tag{3.26}
\end{equation*}
$$

which follows from (3.17) and (3.23). Then with (3.23) instead of (2.30) we replace Lemma 6 by

$$
\begin{equation*}
j(x)+j(x-1)=O\left(e^{-x \log \phi}\right) \tag{3.27}
\end{equation*}
$$

and (with g instead of h) Lemma 7 by

$$
\begin{equation*}
j\left(\frac{\log \log t}{\log \phi}\right)=g\left(\frac{\log \log t}{\log \phi}\right)+O\left(\frac{1}{\log t}\right) \tag{3.28}
\end{equation*}
$$

The continuity of g is obtained exactly as in Lemma 8.
There remains to prove (3.9). In fact we prove that

$$
\begin{equation*}
g\left(2+\frac{\log \log \phi}{\log \phi}\right)=g(0.47998 \cdots) \neq 0 \tag{3.29}
\end{equation*}
$$

We derive a closed formula for $g(2+\log \log \phi / \log \phi)$. As in the proof of (3.17), we show that the series (3.18) for $J(t)$ is an alternating series whose terms in modulus constitute a unimodal sequence. The maximal value of the moduli $\left|\alpha_{n} t^{-\phi^{-n-1}} \log t\right|$ of the terms in (3.18) is reached when n_{0} is the smallest integer such that

$$
t_{n_{0}} \geq t, \quad \text { where } \quad t_{n}=\left(\phi\left(1-\frac{1}{\phi^{n+2}}\right)\right)^{\phi^{n+3}}
$$

Now if we write $u_{n}:=\log \log t_{n} / \log \phi$ we clearly have

$$
\begin{equation*}
u_{n}=n+3+\frac{\log \log \phi}{\log \phi}+o(1) \tag{3.30}
\end{equation*}
$$

and we may write

$$
\begin{align*}
j\left(u_{n}\right)=J\left(t_{n}\right) & =\sum_{\ell=0}^{\infty} \alpha_{\ell} t_{n}^{-\phi^{-t-1}} \log t_{n} \\
& =\sum_{\ell=-n}^{\infty} \frac{\alpha_{\ell+n}}{\alpha_{n}} t_{n}^{-\phi^{-t-n-1}} \alpha_{n} \log t_{n}=: \sum_{\ell=-\infty}^{\infty}(-1)^{n+\ell} a_{\ell, n} \tag{3.31}
\end{align*}
$$

(where $a_{\ell . n}=0$ if $\ell<-n$). It is not difficult to see that

$$
(-1)^{\ell} \frac{\alpha_{\ell+n}}{\alpha_{n}}=\frac{1}{\phi^{\ell}} \lambda_{\ell, n}, \quad t_{n}^{-\phi^{-t-n-1}}=\phi^{-\phi^{2-1}} \mu_{\ell, n},
$$

and

$$
(-1)^{n} \alpha_{n} \log t_{n}=\Pi \phi^{3} \log \phi v_{n}, \quad \text { where } \quad \Pi:=\prod\left(1-\phi^{-k-1}\right)^{-1}
$$

and where $\lambda_{\ell, n}, \mu_{\ell, n}$ and v_{n} converge, uniformly in ℓ, to 1 as $n \rightarrow \infty$. It follows that the terms $a_{\ell, n}$ of (3.31) converge uniformly in ℓ to $\Pi \phi^{3-\ell-\phi^{2-t}} \log \phi$, whence

$$
\lim _{n \rightarrow \infty}(-1)^{n} j\left(u_{n}\right)=\Pi \phi^{3} \log \phi \sum_{\ell=-\infty}^{\infty}(-1)^{\ell} \phi^{-\ell-\phi^{2-\ell}}=0.001289257 \cdots
$$

Now by (3.28) we have $j\left(u_{n}\right)=g\left(u_{n}\right)+O\left(1 / \log t_{n}\right)$, and thus, with (3.30),

$$
0.001289257 \cdots=\lim _{n \rightarrow \infty}(-1)^{n} j\left(u_{n}\right)=\lim _{n \rightarrow \infty}(-1)^{n} g\left(u_{n}\right)=-g\left(2+\frac{\log \log \phi}{\log \phi}\right)
$$

and (3.29) is proved.
Remark 6. It is easy to see that if λ is any real number the exact functionaldifferential equation

$$
\begin{equation*}
d_{\lambda}(t)=-t^{\phi-2} \int_{0}^{t^{\phi-1}} d_{\lambda}(u) d u+\lambda \tag{3.32}
\end{equation*}
$$

has exactly one solution, which is given by

$$
\begin{equation*}
d_{\lambda}(t)=\lambda d_{1}(t) \tag{3.33}
\end{equation*}
$$

where $d_{1}=d$ is the solution of (3.5). Returning to the error term E of (1.1), it is tempting to hope that E behaves similarly as d_{λ} for some λ, and in particular that the functions h and g have the same zeros. But experimental data, although supporting the conjecture that there is some β with $0<\beta<1$ such that $|g(x)|>0$ for $x \in(\beta, 1+\beta)$, also strongly indicates that probably β is distinct from the α of Conjecture 3. In the accompanying figure the dotted curve represents the function k_{1} of Remark 2 (approximating the function h of Theorem 1), and the continuous line represents the function $d_{\lambda_{0}}(t)$ of (3.33), where $\lambda_{0}=1.054559132 \cdots$ is chosen in such a way that the amplitudes of both functions are equal. Note that it appears unlikely that the limit function h will be a translation of $d_{\lambda_{0}}$. In fact the following result shows that many very different functions E_{1} can satisfy an approximate functional equation of type (3.1).

THEOREM 4. If f is a real or complex-valued function defined on the real numbers, satisfying

$$
f(x+1)=-f(x) \quad(x \geq 0)
$$

and if f has a Fourier series representation

$$
f(x)=\sum_{k \text { odd }} a_{k} e^{\pi i k x}
$$

with the property that $\sum_{k \text { odd }} k\left|a_{k}\right|<\infty$, then the function

$$
E_{1}(t)=\frac{t^{\phi-1}}{\log t} f\left(\frac{\log \log t}{\log \phi}\right)
$$

satisfies an approximate functional equation of type (3.1).

Figure 1

Proof. Let E_{1} be as in the theorem. Then

Now the last integral is

$$
\begin{aligned}
& \left.\frac{u^{\phi}}{\phi}(\log u)^{\frac{\pi i k}{\log \phi}-1}\right|_{2} ^{c t^{\phi-1}}-\frac{1}{\phi} \int_{2}^{c c^{\phi-1}} u^{\phi-1}\left(\frac{\pi i k}{\log \phi}-1\right)(\log u)^{\frac{\pi i k}{\pi \log \phi}-2} d u \\
& \quad=\frac{c^{\phi} t}{\phi}\left(\log \left(c t^{\phi-1}\right)\right)^{\frac{\pi i k}{\operatorname{lig} \phi}-1}+O\left(\frac{t k}{\log ^{2} t}\right) \\
& \quad=c^{\phi} \frac{t}{\log t}\left(\frac{\log t}{\phi}\right)^{\frac{\pi k}{\log \phi}}+O\left(\frac{t k}{\log ^{2} t}\right) \\
& \quad=c^{\phi} \frac{t}{\log t} e^{\pi i k\left(\frac{\log \log t}{\log t}-1\right)}+O\left(\frac{t k}{\log ^{2} t}\right)
\end{aligned}
$$

Thus

$$
I=-\frac{t^{\phi-1}}{\log t} \sum_{k \text { odd }} a_{k} e^{\pi i k\left(\frac{\log \log t}{\log _{2} \phi}-1\right)}+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right)
$$

$$
=\frac{t^{\phi-1}}{\log t} \sum_{k \text { odd }} a_{k} e^{\pi i k\left(\frac{\log \log t}{\log \phi}\right)}+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right)
$$

and the theorem is proved.

REFERENCES

[Ch] Vǎsek Chvátal, Notes on the Kolakoski sequence, DIMACS Technical Report 93-84, 1994.
[Fi] N. J. Fine, Solution to problem 5407, Amer. Math. Monthly 74 (1967), 740-743.
[Go] S. W. Golomb, Problem 5407, Amer. Math. Monthly 73 (1966), 674.
[Ma] Daniel Marcus, Solution to problem 5407, Amer. Math. Monthly 74 (1967), 740.
[Pél] Y.-F.S. Pétermann, On Golomb's self describing sequence, J. Number Theory 53 (1995), 13-24.
[Pé2] \qquad On Golomb's self describing sequence II, Arch. Math. 67 (1996), 473-477.
[Ré Jean-Luc Rémy, Sur la suite autoconstruite de Golomb, J. Number Theory 66 (1997), 1-28.
[Se] S. L. Segal, A note on the average order of number theoretic error terms, Duke Math. J. 32 (1965), 279-284; erratum same issue, 765 . Erratum 33 (1966), 821.
|Va| Ilan Vardi, The error term in Golomb's sequence, J. Number Theory 40 (1992), 1-11.
|Yol Kôsaku Yosida, Equation différentielles et intégrales, Dunod, Paris 1971.
Y.-F. S. Pétermann, Université de Genève, Section de Mathématique 2-4, rue du Lièvre, C.P. 240, 1211 Genève 24, Suisse peterman@ibm.unige.ch

Jean-Luc Rémy, Centre de Recherche en Informatique de Nancy (CNRS) et INRIA Lorraine, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France

