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GOLOMB’S SELF-DESCRIBED SEQUENCE AND
FUNCTIONAL DIFFERENTIAL EQUATIONS

Y.-F.S. PTERMANN AND JEAN-LUC RMY

A sequence (word) W of positive integers is self-described or self-generating if
r(W) W, where r(W) is the sequence consisting of the numbers of consecutive
equal entries of W. A famous self-generating bounded sequence is Kolakoski’s

1, 2, 2, 1, 1, 2, 1, 2, 2,-.. (see [Ch]). In this paper we consider Golomb’s

I, 2, 2, I, 1, 2,

sequence F, which is the only nondecreasing self-generating sequence taking all
positive integral values, 1, 2, 2, 3, 3, 4, 4, 4 5, 5, 5, 6, 6, 6, 6, Let 4 denote the

I, 2, 2, 3, 3, 4,

golden number. We prove that

F(n) 2-4n4- + l-gnh log 4
+ 0 log log n

log2 n

where the real function h is continuous and satisfies h(x) -h(x 4- 1) (x >_ 0). The
method of proof is intimately connected with the more general problem of character-
ising the solution E of an approximate functional integral equation of the type

E (t) --ql-4t4-2 f2
42-*t-’ t*- )E (u) du + 0

log2

which we discuss in the second part of the paper.

1. Introduction

In the problem section of the American Mathematical Monthly in 1966,
S.W. Golomb [Go] considered the unique nondecreasing sequence {F(n)}n>_
1,2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7...} "self-described" by the two conditions
F(1) and F (n) I{rn F(m) n }1 (n > 1). At the time he only requested an
asymptotic expression for F(n) as n -- cxz. We have

F(n) cn- + E(n), (1.1)
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where c t2-b, t (v/ --1-- 1)/2 is the golden number, and E(n) o(n4-).
The first published complete proof of (1.1) is due to N.J. Fine [Fi]; D. Marcus [Ma]
proposed a clever heuristical argument: see [P62] for a proof based on Marcus’ idea.

More recently, I. Vardi [Va] asked for a more precise estimate for the error term
E (n) of (1.1). On the one hand he could establish

E(n) O
logn]

(1.2)

on the other hand he conjectured that estimate (1.2) is optimal.

CONJECTURE 1. We have

E(n) S2+
\logn

(1.3)

Vardi’s Conjecture is based on a heuristic argument, which led him to be more
precise.

CONJECTURE 2. For n > 2 we have

where h(x) satisfies

and

\ log b
--I-- O (1.4)E (n)

log n log2

h(x + 1)=-h(x) for x >0,

Ih(x)l > 0 forx (0, 1). (1.6)

However, as Vardi himself pointed out, he was "not even able to show that
lim supn_ IE(n)l cxz". This was proved by Y.-ES. P6termann [P61], who showed
that E(n) 2+(n4’--) for every > 0. Recently J.-L. R6my [R6] succeeded in
verifying the truth of Conjecture 1.

In this paper we are concerned with Conjecture 2. We prove:

THEOREM 1. We have

n4,-1 h og no- log log n
+ O (1.7)E (n)

log n log2 n

where h(x) satisfies

and

h(x + 1)=-h(x) forx >0,

h is continuous (1.8)
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Remark 1. Conjecture 1, which we know is true from R6my’s result [R6], implies
that the function h in Theorem is not identically zero. It should also be noted that
assertion (1.6) in Conjecture 2 is false: we can indeed prove that h(0) 0 (see
Remark 2 in Section 3), and this shows with (1.5) and (1.8) that there is a number u
with0<ot < andh(ot)=0.

Hence we propose to modify assertion (1.6).

CONJECTURE 3. Ifh is as in Theorem there is a number ot with 0 < ot < and

[h(x)[ > 0 for x 6 (or, + or). (1.6’)

The rest of Section 3 is devoted to four other remarks.
The proof of Theorem contains in fact an almost complete treatment of the

approximate functional integral equation

E(t) -c-4’t4’-2 E(u)du + 0 (1.9)
,/2 , log2

and its summatory counterpart (2.1) in Section 2 just below: this is discussed in
Remarks 3 and 4.

But the error term bound of Theorem is not as good as the bound conjectured in
Conjecture 2: we extensively discuss in Remark 5 the exact and non trivial functional
equation

d(t) -t4’- .] d(u) du + 1, 1.1 O)

which is of a type similar to (1.9), and for the solution of which the better error term
bound holds. (By "non trivial" we mean that the function h associated to the solution
is not identically zero).

In Theorem 2 of Remark 3 we show that the solution of an equation of type (1.9)
satisfies (1.7), with (1.5) and (1.8): a sort of restricted converse to this is obtained in
Theorem 4 ofRemark 6, showing that a function E (t) - h (log log / log )/ log
satisfies (1.9) for many choices of the function h.

Notation. In the sequel we shall frequently appeal without comment to classical
properties ofthe golden number 4. Although all these properties can easily be inferred
from the definition of 4, we state below a few of them for convenience.

q2= q + 1, q(q- 1)= 1, (q- 1)2= 2- q, (4- 1)3= 2q- 3.

Acknowledgements. This work was made possible by a temporary position as an
invited professor granted to the first author by the Universit6 Henri Poincar6-Nancy I.
Both authors are very grateful to this institution for this opportunity to work together.
They also wish to thank Ilan Vardi for his thorough reading of the manuscript and his
useful comments and suggestions.
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2. Proof of Theorem 1

Our starting point is the heuristic formula that led Vardi to his Conjecture 2.

LEMMA 1. We have

E(n) -c-ePn-2 E(m) + 0 (2 1)
m<cn4- log2

Proof Every n > can be written uniquely as n G(m) r, where 0 < r <
F(m), and where G(m) denotes the position of the last occurence of the integer rn in
the sequence F. We have

F(n) F(G(m) r) m. (2.2)

Now if we put R(m) Zk<m E(k), then, from Vardi’s result (1.2), we clearly have

R(m) 0 (lor4’m) (2.3)

Moreover,

E(n) E(G(m) r)
R(m) (,+o(IR(m)l))cme- m4’ + 0(1). (2.4)

(Equation (2.4) can easily be derived from Vardi’s paper [Va]" see (10) of that paper;
or see Lemma 3 in [P61].) Thus, with (2.3), (2.2) and (1.2), we may write

E(n)

This proves Lemma 1. Now we replace the sum in the approximate functional equation
ofLemma by an integral, which is smoother (differentiable) and thus easier to handle.
For this we use a result of Segal’s [Se]. 12]

LEMMA A. Let f (n) be afunction ofa positive integral variable, and suppose

Z f(n) z(x) + E(x),
n<x
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where z(x) is twice continuously derentiable, and z"(x) is of constant sign for
x > 1. Then

Z E(n) z(x) + (1 [x})E(x) + E(t)dt / O(Iz’(x)l) / O(1).

LEMMA 2. /fthe definitions ofthefunctions F and E of 1.1 are extended to the
real arguments > by putting F(t) F([t]) ct4’- + E(t), then we have

E(t) -c-4tok-2 E(u) du + 0
a2 log2

(2.5)

Proof If we put f(m) whenm orm G(k)+l for somek, and

f(m) 0 otherwise in Lemma A, then F(x) ,,,<. f (m) z(x) + E(x) where
z(x) cx- The hypotheses of Lemma A are satisfied and Lemma 2 is proved.
Now if we let

ct4-
Do(t) -c-4t4- I E(u) du, (2.6)

we have of course

t- )E(t) Do(t) + 0
\log2t

so that from (2.6) and (2.7) we have

Do(t) -c-ete-2 Do(u)du + 0
a 2 log2

Similarly if we put

ct-D(t) --c-t-2 f DO(U) du,
d2

we may write

and

D(t) Do(t) + O
\log2

(2.7)

(2.8)

(2.9)

(2.10)

fete-’ (t.O)D(t) -c-4t4-z D(u)du + 0 (2.11)
d2 I, log2

We shall work with the approximate functional-differential equation (2.11), rather
than with (2.5) or (2.8), which are "functional" but not "differential". By (2.7) and
(2.10) it is indeed sufficient to prove the theorem for D instead of E. If we write

t4,-
D(t) K(t), (2.12)

log
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this defines a function K(t) O(1) which is differentiable for every >_ 2. If
similarly we write

Do(t) K0(t), (2.13)
log

then by (2.10) we have

Ko(t) K(t) + O(l/logt). (2.14)

LEMMA 3. We have

tK’(t) + K(t) 4- K(ct‘-) O(l/logt). (2.15)

Proof First we differentiate expression (2.12).

t- t-2 t-2
K’(t) 4- (qb- l)K(t) K(t). (2.16)D’ (t)
log log2

Then we differentiate (2.9).

ct4,-I

D’(t) -c-(4 2)t0-3 .] Do(u) du

c-4 4-2 (ct4,-1 )-I Ko(ct-)c(q5 l)t-2
log(ct-)

(q 2)D(,_) t0-2
Ko(ct4’-’) + 0 ( ,4,-2 )logt \log2 (2.17)

Equating (2.16) and (2.17) (with a use of definition (2.12)) yields

log /t)
t*- ogtt*- ( t- )tl’t) + + ---loto-) o

log2

and a division by 4-2/IOg with an appeal to (2.14) finishes the proof.

A key step in the proof of Theorem is to ensure now that K (t) is sufficiently near
K (ct4’-). This will be done by an induction argument on m for in intervals of the
form [Nm, Nm+], where No, N, N2 is a sequence of positive real numbers with

b--! C
Nm cN,+, that is Nm+ -2Nm, (2.18)

for rn > 0. We need a lower bound on Nm.
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LEMMA 4. If No is chosen large enough we have

Nm > 3’’’ (2.19)

Proof. If Q := 4-2 1/c we have

c
N N] --q-ONo (4-2N0) (QNo),

and in general, if Q0 Qo2 (= 1/4), we have

Nm (QNm_)4 (Q(QNm_2)4)4, Q4+42++4’"No
Q4N Qo.... No > (QoNo)4

....
> 34

4....

provided No is chosen larger than 32 ! Qo 43. And we have

b2((m |)= m(2(|- c-m)) m
if m > 1. This concludes the proof if we note that since No > 3, (2.19) also holds
for m 0. [21

We are now in position to prove:

LEMMA 5. For > 3 we have

Proof. Let No, N, N2 be a sequence of positive real numbers satisfying
(2.18) for m > 0, and with No large enough to ensure the validity of (2.19). We show
that there is an absolute positive constant C and a sequence of real positive numbers
M0, M, M with

( C ) (m>0) (2.21)Mm+l (C + mm) +
log Nm

and

IK(t) + K(ct4)-)l < Mm
(2.22)

log
for 2 < < Nm. The proof is by induction on m. Estimate (2.22) holds for rn 0
if we choose Mo large enough. Assume it is satisfied for some m > 0, and let
Nm <_ S < Nm+l. Then we have s c4- 0 and cs4- for some with < Nm.
And by (2.11) and (2.12) we may write

u- s0-
B(s), (2.23)D(s) -c-4’s4’-2 K (u) logu du + .log s
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where B(s)l < B for an absolute constant B. First we show that there is an absolute
constant C such that

t u4- s (CI+Mm)(I++ O (s)4)c- s C
du c- K (t)

log s
K (u)

log u log2 s
(2.24)

for some function 0, with 10 (s)l < 1. Integrating by parts in (2.23) and replacing
log by 4-1 log s + O(1) we obtain

b/b-
K (u)

log u sis tdu ckc-1 +0K(t)logs log2 s

lftu -’( K(u))uK’(u) du,
4 log u log u

and thus in order to obtain (2.24) it is clearly sufficient to show that

( 1 tu0-1 IK(u)I
du < 2C-1

S
(Co -+- Mm) +I "= logu luK’(u)l q- log--u-- log2 s

(2.25)
for some absolute constant Co. Now there are absolute constants A and A, with
IK(u)l < A (u > 2)and, by Lemma 3, with

luK’(u)l AI
log u

+ IK(u) + K(cu4’-*)l (u > 2).

Thus on appealing to the induction hypothesis we have

u4-!
I < (A+A-k-Mm)

logZu
du < (AI+A+Mm) (2c-1s t s tt0

log2 s log S
whence (2.25) and (2.24) follow. Now we use (2.12) and (2.24) in (2.23) and obtain

se- s- s4’-

log s
K(s) -K(t)logs

+ 0(s)
log2 s

(C2 + Mm) )1+ (2.26)

where C2 is an absolute constant and some real function with IO(s)l 1. Thus

IK(s) -+- K(cs4’-)l <
C2

logs
((C2 -- Mm) -- log N,,, mm+

logs logs

provided C has been chosen with C >_ C2, whence the proof of the lemma will be
complete if we ensure that a sequence of numbers satisfying (2.21 also satisfies

Mm O(m) (m > 1). (2.27)
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Indeed, by Lemma4 we have > 30 ifNm_ < < Nm (m > 1), so that
rn < log log t/log 4 + O(1), and thus with (2.27) we will have

’K(t)+K(ct4’-’)]<- logMm--t O (lg lg )"log

In fact we prove that

mm <(m+l)C3 H (1+C4-i) (m>0), (2.28)
O<i <m

where C3 denotes max(C, M0). This is sufficient to ensure that (2.27) holds" the
product in (2.28) is bounded by an infinite product that converges, since 4 > 1. We
prove (2.28) by induction on m. It holds for rn 0. Assume it is satisfied for some
m > 0. Then by Lemma 4 we have

< (C + Mm) +mm+l (C + mm) -+
1o

+m+l)C3 H (1 +C4)-i)(1 +Cdp-m).
O<i<m

The proof of Lemma 5 is now complete. [21

Now we define the function k by

k(lg lg)logq K (t)

and we prove:

LEMMA 6. For x > we have

k(x) + (x ) O(x4-). (2.29)

Proof. First note that

log log(cto-I

log b _--lglgt-log4) l+O(l-gt)
Then note that by Lemmas 3 and 5 we have

K,(t)=O(lglgt)log

which with

K’(t)
k’ (log.loglogb )
log log q



GOLOMB’S SELF-DESCRIBED SEQUENCE 429

implies that

k’(lg lg)log4
O(log log t), (2.30)

whence, in particular,

k( lglgt-log4 l+O())--k(lglgt-logb l)+o(lglgt)"logt

Thus

+_,_ (,o,o),o + (’’-,I + o(’’’t,o,o
An appeal to Lemma 5, and the change of variable x log log t/log q, conclude the
proof.

Let now x0 > 0 be fixed, and consider the sequences

xi := x0 + 2i and Yi := k(xi) (i > 0). (2.31)

With the help ofLemma 6, by adding and subtracting terms ofthe form (- )J+ k(xo+
j) (j > 1), it is not difficult to see that {yi is a Cauchy sequence and thus converges
to some real number, which we call h(xo). Similarly, for x0 >_ 1, Yi converges to
h(xo 1), where y k(xi 1) (i >_ 0). And again by Lemma 6 we see that

h(xo) + h(xo 1) lim (k(xi) -I- k(xi 1)) 0. (2.32)

We need a precise bound for the quantity Ih(x) k(x)l.

LEMMA 7. We have

’’t,o--o-- (,o,o),o + o (,o,o),o
Proof.

(2.33)

Put x x0 log log / log 4. Then with the notation (2.31 we have

Ih(x) k(x)l lim lYi Yol.

Now with Lemma 6 we have

lYi Y0l < lY Y0l-I-lY2 yl-I-’"-I-lYi Yi-l

O(i>_o(XW2i)e-(X+2i)’g)
O(xe-xlog4),

and the lemma is proved. [21
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In order to conclude the proof of Theorem it thus remains to prove:

LEMMA 8. Thefunction h is continuous.

Proof. Suppose on the contrary that h is not continuous at some x. Then there
is a sequence 6i --> 0 with

[h(x)- h(x + i)l > C > 0,

where C is some positive constant. By (2.31), for every positive integer j we have

Ih(x + 2j) h(x + 2j + )1 >_ c.

Now if we write x + 2j log log tj/log q, then by Lemma 7 we have

h(x + 2j) h(x + 2j + i) k(x + 2j) k(x + 2j + i) + A(tj,i)
log log tj

log tj

where IA(tj, i)l _< A for some absolute constant A. But we can choose j j0 such
that for tj,, we have

whence

log log C
logt 2

C
Ik(x + 2j0) k(x + 2j0 + ei)l > -for every i, which contradicts the continuity of k.

The proof of Theorem is now complete.

3. Remarks

Remark 2. As we mentioned it in the introduction (Remark 1), Vardi’s assertion
in his Conjecture 2 that Ih (x)l > 0 for x 6 (0, 1) is not correct, and this follows from
h (0) - 0. We very briefly indicate how this latter fact can be proved. If we write

4’-I (loglogt)E(t)
log

k
log p

then R6my proved in [R6] that

Ikl (u)l >_ a (u [m + or, m +/]; m >_ m0),

where a, ot and/3 are explicit real constants with ot </3 and a > 0. By refining the
computations needed to achieve that, it is possible to choose the constants a, u and
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/3 in such a way that the additional condition c < 0 < / be satisfied. (We obtain
c -0.0018 and/3 0.2948, witha 0.0007486.) Thus Ik(m)l > a form > m0,

whence

Ih(0)l- Ih(m)l- lim Ih(m)l- lim Ikl(m)l >_ a > 0.
m--+x nl--+

Remark 3. It should be noted that in Section 2 we prove more thanjust Theorem 1.
In fact we gave an almost complete proof of the following result.

THEOREM 2.
solution ofsome approximatefunctional equation of the type

E (t) -c-4t4-2 E (u) du + 0
,/2 log2

Then the conclusions of Theorem holdfor E instead of E.

Let E be an integrable realfunction defined on [2, ) which is a

(3.1)

Proof. We have to ensure that the proof of Theorem is valid from equation
(2.6) on, if we replace E by El. From this point on the only property of E we use
(other than equation (2.5)) is Vardi’s result (1.2) (which is used in the derivations of
equations (2.17) and (2.24)). So we only need to show the following.

LEMMA 9. IfE is a solution ofan equation of type (3.1), then

El(t) 0
\logt

(3.2)

Proofofthe lemma. Let No, N be a sequence of real numbers as in (2.18),
with No large enough to ensure the validity of Lemma 4. We prove by induction on
m that if e E [2, Nm ], then

IE(e)I _< Am (3.3)
log e

for some increasing sequence of positive real numbers exceeding 1, A0, A with

Am+l Am(l + C-m)

for an absolute constant C. This will imply that there is an absolute constant A with

Am < A for every m, whence the lemma. For A0 large enough, (3.3) holds for m 0
and m 1. Suppose (3.3) holds for some m > 1, and let L [Nm, Nm+]. Then
L c4- and cL- for some 6 INto-I, Nm]. Note that from Lemma 4 we
can infer log > 4m-. For some absolute constants B, B, B2 and B3 we have

f2 L-IEI(L)I < IE(u)lduWBceO-I log2 L



432 Y.-F.s. PITERMANN AND JEAN-LUC RIMY

Am ( B ) L-<
log2 L

A,,,LO-’( B2) Z,nLc-’
< + < (1 + B3-") < Am+log L log L

provided C has been chosen with C > B3.

log L’

Remark 4. If a function E of the positive integers satisfies a functional equation
of the type

n4-I )E (n) -c-en4-2 Z E (k) + O (3.4)
k_<cn- log2 n

then it is not difficult to show, by an argument similar to that of Lemma 9, that

E (n) O , log n

It then easily follows that the extended function El (t) E (It]) satisfies a functional
equation of type (2.5), and thus that Theorem 2 applies to E.

It should be noted at this point that if one replaces the error term of (3.4) by
O(ne-/log+’ n) where 0 < e < 1, then Theorem 2 can still be proved for E, the
only difference in its conclusions being that the error term in the expression of E in
terms of h is now O(n-I log log n / log I+’ n).

In the remark on page 3 of [Va] a relation less precise than (3.4) (without er-
ror term and with the symbol instead of =) is displayed, followed by an as-
sertion, the most natural interpretation of which appears to be that the function
nO-h (log log n / log)/ log n =: Ez (n) is a solution to (3.4) (possibly with a larger er-
ror term) when h (x+ -h (x). But wejust saw that for E2, with h (x+ -h (x),
to be an asymptotic solution of (3.4), it is at least necessary that h be continuous.

And in fact there are continuous functions h with h(x + -h(x) such that E2 is
not a solution of (3.4). In order to verify the latter, first note that a necessary condition
for a function E2(n) O(n- / log n) to be a solution of (3.4) is E2(n + E2(n)
O(n-/log2 n). Thus, if

n4,-!
h (lg log n ]Ez(n)

log n \ log q ]

a necessary condition is

h ( lg lg(n + ) h ( lg lg n ) o ( )q logb logn

We can find a sequence of positive integers ni ---+ O (i --+ Cx) such that the integral
parts [log log ni/log q] are all of the same parity, and such that the fractional parts
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6i := {loglogni/log} decrease to 0 as -- cxz. By making the sequence sparse
enough we may also assume that i+ < 3i < i, where i := {log log(n/+ 1)/log 4}.
Thus if we put h(6i) l/ni and h(i) l/ni + l//logni, we can complete the
construction of a continuous function h with h (x + 1) -h (x) and such that

log log

Note that it is even possible to ensure that h be indefinitely differentiable (with the
restriction hk)(0) cxz for k 1,2 ).

Remark 5. Theerrortermestimate O(t4’- loglogt/logt) weobtaininourThe-
orem is not as good as the error term asserted bound O(t4- / log t) of Conjecture 2.
Here we give an example of a (non trivial) functional equation of type (3.1) for which
the better error term bound holds. In this case we can exhibit an explicit expression
for the function h (here: g), which in addition permits a rather easy (compared to the
argument in [R6]) derivation of an f2-estimate as strong as that of Conjecture 1.

THEOREM 3. There is a unique solutionfor the exactfunctional-differential equa-
tion

d(t) -te- f d(u) du + 1. (3.5)
ao

This solution satisfies an equation of type (3.1). Moreover, for u > e, we have

g + O (3.6)d(u)
log u log q log2 u

where

and

g(x)---g(x + 1) (x > 0) (3.7)

and where in addition

g is continuous, (3.8)

g is not identically zero. (3.9)

Proof We first establish the existence of a solution. The argument is similar to
that in [Yo, Chapitre 4, p. 151-153]. We are looking for a solution of (3.5) of the
form

d(t) Z e,,(t), (3.10)
n>0
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where for the time being we assume that the sum converges absolutely and uniformly
in each bounded interval [0, t]. Then by using (3.10) in (3.5) we obtain

Z e,,(t) Z t*-2 fo>0 >0

en (u du.

We seek a solution satisfying

and

eo(t)--

teP-
en(t) --t4- /o e_(u)du (n > 1), (3.11)

with e(t) ,,t’’, and where or, and/, are real numbers. An elementary computa-
tion yields

0 1, fl0=0,

n (n-I-- l)(- l)--(1- 2)= (4- 1)/,_ + (4- 1)
O/n-I

o.
/- +

The sequence/30,/ satisfies a first degree recurrence relation whose solution is

k --( 1)k+l + (1 1) (1 1) (3.12)

whence

(-])" izior,,=
4"

(3.13)

Note that as n --+ the product in (3.13) remains bounded. Also note that 0 <

/n < 4 1. Now there remains to ensure that with these values of c, and/, the sum
in (3.10) does indeed converges absolutely and uniformly in each bounded interval
[0, t]. This follows from

c,,tt,, =o(l+t0-).q,, (3.14)

Now we show that the solution of (3.5) is unique. Let d and d2 be two solutions
of (3.5) and consider their difference e "= d -d2. Let to > 0 and M be the sup [e(u)[
for u 6 [0, to]. Then if < to we have

t-I t4-I
le(t)l < t0-2 f0 le(u)l du <_ Mtok-2 f du Mt24-3 Mt

dO
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Now let

(k /k+l and Mk MI/I (k >_ 0) (3.15)

Then it is easy to see by induction on k, with (3.14) and (3.15), that if < to then

C
le(t)l < Mkt4k --MIck+lt/’+’ <

k+
for every positive integer k, where C is a positive constant depending only on to.
Hence e(t) 0 if < to and d d2 d.
Now we write

4’-’ 4’-’ (log log t)d 1-g J l--g J logq
(3.16)

and we show that

J(t) + J(t4’-) 0 (1o-)
Using (3.14) in (3.16) we may write

(3.17)

J (t) otnt logt, (3.18)
tl>--

where, by convention, or_ 0. Hence we have

J(t) + J(t4-) 06, + logt --logt y(-l)"y,,
>_0

(3.19)

where on appealing to (3.15) we see that

and for n > 1,

l)t

When > (2)43, the sequence {y,,} in (3.17) is unimodal’, i.e., there is an integer no
such that y,,+ > y,, for n < no and ?’,,+ _< y,, for n >_ no. Indeed Yo < Y, and for
n>_l,

Yn+l x
v(u)

y,, )2 .1 U
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where u -,,-2 andx t-; and for x fixed the function o(u) is strictly increasing
from-2 to+oforu [0, 1). It follows that there is a unique u0 > 0witho(u0)- 1.
And thus n0 is the smallest positive integer satisfying -""-e u0. Now with the
unimodality of {,} and (3.19) we see that

IJ(t) + J(t-)l V,,, logt. (3.21)

The quantities n0 and u0 depend on t. As increases to +, n0 also increases to
+, and u0 decreases to 0. Thus from the definition of u0, i.e. v(uo) 1, we see
that t"" remains bounded as , whence, since u0 > 0, u0 O (1 / log t). With
(3.20) it follows that

V,,,, << -2""t--""- << u << log2t
and this with (3.21) implies (3.17).
Now we show that d satisfies an approximate functional-differential equation of

type (3.1). As in Lemma 3 we obtain

tJ’(t)+J(t)+J(t-l)= O(), (3.22)

and with (3.17) this implies

J’(t)- 0 )lgi thatis, (u) 0(1). (3.23)

With (3.5) we have

-’ d(cOt)c-Or- d(u) du + O(t-2) (3.24)
d2 C

and, with (3.23) and (3.16),

d(ct) -’ (loglogt ()) (t-’ )c logt j log
+O +O

lg2

d(t) + 0 (3.25)
log

Thus Theorem 2 applies to e. But we must ensure that the better estimate (3.6)
holds, with (3.7) and (3.8). To that puwose we replace Lemma 5 by

J(t)+J(ct-’)= O(), (3.26)

which follows from (3.17) and (3.23). Then with (3.23) instead of (2.30) we replace
Lemma 6 by

j(x) + j(x 1) O(e-go) (3.27)
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and (with g instead of h) Lemma 7 by

J logq
g

log4
+ O (3.28)

The continuity of g is obtained exactly as in Lemma 8.
There remains to prove (3.9). In fact we prove that

log log 4) )g 2 +
logq

g(0.47998...) 0. (3.29)

We derive a closed formula for g(2 + log log 4)/log 4)). As in the proof of (3.17), we
show that the series (3.18) for J (t) is an alternating series whose terms in modulus
constitute a unimodal sequence. The maximal value of the moduli Io,,t log tl
of the terms in (3.18) is reached when no is the smallest integer such that

t,,,, > t, where t,,

Now if we write u,, log log t,,/log 4 we clearly have

log log 4)
u,, n + 3 + + o(1), (3.30)

log 4)

and we may write

j (u,,) J (t,,) (et,, log t,,
=0

Z Ol +n _cb---,,

e=-,, or,,
t,, or,, log t,, =:

e=-
(- ),,+eae.,, (3.31)

(where ae.,, 0 if g < -n). It is not difficult to see that

and

1)" 4)ot,,logt,,=Fl log 4)v,1, where FI’--H(I--*-’)-’
and where ke.,,, Ie.,, and v,, converge, uniformly in g, to as n --+ o. It follows that
the terms ae.,, of (3.31) converge uniformly in g to FIq3-e-2-’ log 4), whence

,}im(-l)"j(u,,) 1-14 Iog4 (-l)e4-e-o--’ 0.001289257.-..
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Now by (3.28) we have j(u,,) g(u,,) + O(l/Iogt,,), and thus, with (3.30),

0.001289257 ,,lim(-l)"j(u,,) ,,lim (-l)"g(u,,) -g (2 +
and (3.29) is proved.

Remark 6. It is easy to see that if X is any real number the exact functional-
differential equation

dz(t) -t4)-2 Jo dz(u) du + (3.32)

has exactly one solution, which is given by

dz(t) d (t), (3.33)

where d d is the solution of (3.5). Returning to the error term E of (1.1), it
is tempting to hope that E behaves similarly as dz for some ,k, and in particular
that the functions h and g have the same zeros. But experimental data, although
supporting the conjecture that there is some/4 with 0 </4 < such that Ig(x)l > 0
for x 6 (/4, +/), also strongly indicates that probably 1 is distinct from the ot of
Conjecture 3. In the accompanying figure the dotted curve represents the function k
of Remark 2 (approximating the function h of Theorem 1), and the continuous line
represents the function d),, (t) of (3.33), where .0 1.054559132..- is chosen in such
a way that the amplitudes of both functions are equal. Note that it appears unlikely
that the limit function h will be a translation of dz,,. In fact the following result shows
that many very different functions E can satisfy an approximate functional equation
of type (3.1).

THEOREM 4. If f is a real or complex-valuedfunction defined on the real num-
bers, satis., ing

.t(x + ) -f(x) (x >_ o),

and [ f has a Fourier series representation

f(x) ak errikx
k odd

with the property that y-k oda k lakl < cx, then thefunction

-’ (log log)log
satisfies an approximate functional equation of . pe (3. l).
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Figure

Proof. Let E be as in the theorem. Then

ct-I

Z f2
ct-I

I -c-t-2 E (u) du -c-te-2 at
d 2 k odd

U- (log U) "*- du.

Now the last integral is

(log u) "-7; -2 du

Thus

t- er k ,,e-,,

Z ak + 0
\logZtlog o
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t- ,,,,,, (t- )+ O
logt odd log2t

and the theorem is proved. I-I
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