STRUCTURE OF FOLIATIONS ON 2-MANIFOLDS

HABIB MARZOUGUI

Introduction

In this paper, we intend to study qualitative properties of foliations with finitely many singularities on closed 2-manifolds. Considering such a foliation as a regular foliation on the punctured 2-manifold obtained from a closed 2-manifold by removing the singular points, we will give an analogy of a structure's theorem (in Salhi [10], Theorem 1) on codimension one regular foliations on closed manifolds. Singular foliations on 2-manifolds have been investigated by many authors from a geometric point of view (for example, see [2], [5], [6]). We are interested more precisely in the following questions:

- 1. Describe the foliation near a leaf.
- 2. Establish a structure's theorem.

We mention that the results given here are known for foliations with singularities saddles and/or thorns.

In Section 1, we give some preliminaries (definitions and notations of the general theory of singular foliations on 2-manifolds, and some topological results which will be needed later.). In Section 2, we give a description of foliations near a leaf, especially near an exceptional leaf, by establishing analogues of Sacksteder's Theorem [9] for singular foliations on 2-manifold (Theorems 2.1 and 2.2). Some consequences as in [10], [11] are given.

1. Preliminary

(A) Basic definitions.

This section is devoted to the basic facts of the general theory of singular foliations on 2-manifolds. Let \Im be a C° singular foliation with a finite number of singularities on a compact orientable 2-manifold S of genus g. We let sing \Im be the set of singularities of \Im , \Im/U the restriction of \Im to an invariant open set U of S, \Im^* the restriction of \Im to $S^* = S - \operatorname{sing} \Im$, and let U_1 be the complement in S^* of the union of closed leaves of \Im^* . By [3], Theorem p. 386, U_1 is an open invariant set of S.

Received April 7, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57R30; Secondary 58F18.

^{© 1998} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

A leaf L of \Im is said to be proper if $\overline{L} - L$ is closed in S, locally dense if \overline{L} has non-empty interior, and exceptional if L is non proper and nowhere dense. L is said to be totally proper if \overline{L} consists of singularities and proper leaves. A subset M of S is called invariant (or \Im -saturated) if it is an union of leaves and singularities. M is called a minimal set of \Im if it is a closed non-empty and invariant set which is minimal (in the sense of inclusion) for these properties. We call the class (resp. higher structure) of a leaf L of \Im the union cl(L) (resp. SS(L)) of leaves G of \Im such that $\overline{G} = \overline{L}$ (resp. $L \subset \overline{G}$ with $\overline{G} \neq \overline{L}$) (cf. [11]). If L is proper, cl(L) = L. A quasiminimal set Kof \Im is the closure of a non-proper leaf. It is showed in [7] that if \Im is orientable, the closure of any non-proper leaf is a quasiminimal set of \Im and every totally proper leaf of \Im is closed in S^* or closed in U_1 .

Let *L* be a non-closed leaf of \mathfrak{I} . A point $x \in L$ divides *L* into two half-leaves $L^{(-)}$ and $L^{(+)}$. Denote the limit set of the half-leaf $L^{(.)}$ (resp. of the leaf *L*) by lim $L^{(.)}$ (resp. lim *L*). The set lim $L^{(.)}$ is closed, invariant and non-empty. For a non-closed leaf, lim $L = \overline{L} - L$. We have lim $L = \overline{L} - L$ if *L* is proper and non-closed, and lim $L = \overline{L}$ otherwise.

In the case where \mathfrak{I} is orientable, \mathfrak{I} can be defined by a flow $\phi: \mathbb{R} \times S \to S$. For every leaf *L* of \mathfrak{I} and $x \in L$, the half-leaf $L^{(+)}$ (resp. $L^{(-)}$) is denoted by $L_x^+ = \{\phi(t, x)/t \in \mathbb{R}_+\}$ (resp. $L_x^- = \{\phi(t, x)/t \in \mathbb{R}_-\}$ and called the positive (resp. negative) half-leaf of origin *x*. The set $\lim L_x^+$ (resp. $\lim L_x^-$) is denoted by $\Omega_L = \{y \in S : \exists (t_n)_{n \in \mathbb{N}} \to +\infty, y = \lim \phi(t_n, x)\}$ (resp. $A_L = \{y \in S : \exists (t_n)_{n \in \mathbb{N}} \to -\infty, y = \lim \phi(t_n, x)\}$ and called the ω -limit (resp. α -limit) set of *L*. The limit set lim *L* of *L* is $\Omega_L \cup A_L$.

(B) Some results.

The following theorem is a consequence of the theorem obtained in [7] classifying the limit sets.

THEOREM 0.1. Let \Im be an orientable singular foliation with finite singularities on a compact orientable 2-manifold S. For every leaf L of \Im , each of its limit sets Ω_L (resp. A_L) is one of the following type:

(i) a singular point

(ii) a compact leaf

(iii) a union of singularities and non-compact leaves which are closed in S^*

(iv) a quasiminimal set.

Below, we give some topological results which we need in the sequel.

PROPOSITION 0.2 [8]. Let M be a non-compact connected orientable 2-manifold of finite genus k. Then its end point compactification \hat{M} is a compact connected orientable 2-manifold of finite genus k where the space $Bt(M) = \hat{M} - M$ of ends of M is a totally disconnected compact set.

HABIB MARZOUGUI

PROPOSITION 0.3 [12, Lemma 4.3, p. 259]. Let S be a compact connected orientable 2-manifold of genus g, and let X be a compact subset of S having finitely many connected components. If W is a connected component of S - X then W is a connected 2-manifold with genus $\leq g$ and finitely many ends.

2. Foliation near a leaf

In all the proofs below, the foliation \Im is assumed to be orientable. If \Im is non orientable, these proofs are then straightforward by passing to a double branched covering of \Im .

THEOREM 2.1. Let G be a proper non-closed leaf of \mathfrak{I} and let O be a leaf such that $O \subset \lim G^{(.)}$. Then there exists an open connected invariant set W in S, containing G such that for every leaf γ of \mathfrak{I}/W , γ is proper and $O \subset \lim \gamma$.

The following result is analogous to Sacksteder's Theorem [9].

THEOREM 2.2. Let \Im be a singular foliation with a finite number of singularities on a compact orientable 2-manifold S. Let L be an exceptional leaf of \Im . Then:

(i) The union $V = SS(L) \cup cl(L)$ is open and connected in S.

(ii) For every leaf G of \mathfrak{I}/V , $\lim G \subset \overline{L} \cup \operatorname{Fr}(V)$ with $\lim G^{(+)} = \overline{L}$ or $\lim G^{(-)} = \overline{L}$ (Fr(V) denotes the frontier of V.)

(A) Proofs of Theorem 2.1 and 2.2.

Let K_1, K_2, \ldots, K_p be the quasiminimal sets of \mathfrak{I} (we know [7] that $p \leq g$, where g is the genus of S) and let L be an exceptional leaf of \mathfrak{I} . We let $K_p = \overline{L}$ and let U be the connected component of $U_1 - (K_1 \cup K_2 \ldots \cup K_{p-1})$ containing L.

LEMMA 2.1. Let $(G_n)_{n \in \mathbb{N}}$ be an infinite sequence of leaves of \mathfrak{I}/U . Then the sequence $(\Omega_{G_n})_{n \in \mathbb{N}}$ (resp. $(A_{G_n})_{n \in \mathbb{N}}$) has one of the following properties:

(i) $(\Omega_{G_n})_{n \in \mathbb{N}}$ (resp. $(A_{G_n})_{n \in \mathbb{N}}$) is a union of singularities and closed leaves of \mathfrak{I}^* , and there exists a singular point $s_o \in \Omega_{G_n}$ (resp. A_{G_n}) for infinitely many integers n.

(ii) There exists a compact leaf γ such that $\Omega_{G_n} = \gamma$ (resp. $A_{G_n} = \gamma$) for infinitely many integers n.

(iii) There exists a quasiminimal set K_r ($r \in [1, p]$) such that $\Omega_{G_n} = K_r$ (resp. $A_{G_n} = K_r$) for infinitely many integers n.

Proof. Let $(G_n)_{n \in \mathbb{N}}$ be an infinite sequence of leaves of \mathfrak{I}/U . If we have neither (i) nor (iii), then for every $s \in \operatorname{sing} \mathfrak{I}$ (resp. every quasiminimal set $K_i, i = 1, 2, ..., p$), there is a finite number of integers n such that $s \in \Omega_{G_n}$ (resp. $\Omega_{G_n} = K_i$). The set sing \mathfrak{I} is finite so for n large enough, Ω_{G_n} is reduced to a compact leaf γ_n (Theorem 0.1). Now let us show that for infinitely many integers n, all γ_n coincide with the same leaf: To the contrary, if the γ_n are pairwise distinct for infinitely many integers

n, then [4, Appendix] there exist three integers *p*, *q* and *r* such that every pair of leaves γ_p , γ_q and γ_r bound an annulus. One supposes for example that γ_q is in the interior of the annulus (γ_p , γ_r). It follows that the leaves G_p , G_q and G_r are not contained in the same connected component *U*, a contradiction.

LEMMA 2.2. Let $(G_n)_{n \in \mathbb{N}}$ be an infinite sequence of leaves of \mathfrak{I}/U . Then there exists an infinite subsequence $(G_{n_k})_{k \in \mathbb{N}^*}$ of $(G_n)_{n \in \mathbb{N}}$ such that $(\bigcup_{k \in \mathbb{N}^*} \Omega_{G_{n_k}})$ (resp. $(\bigcup_{k \in \mathbb{N}^*} A_{G_{n_k}})$) is connected.

Proof. Each of properties (i), (ii) and (iii) of Lemma 2.1 implies the existence of an infinite subsequence $(G_{n_k})_{k \in \mathbb{N}^*}$ of $(G_n)_{n \in \mathbb{N}}$ such that $(\bigcap_{k \in \mathbb{N}^*} \Omega_{G_{n_k}})$ (resp. $(\bigcap_{k \in \mathbb{N}^*} A_{G_{n_k}})$) is non-empty. Since for every $k \in \mathbb{N}^*$, $\Omega_{G_{n_k}}$ (resp. $A_{G_{n_k}}$) is connected, it follows that $(\bigcup_{k \in \mathbb{N}^*} \Omega_{G_{n_k}})$ (resp. $(\bigcup_{k \in \mathbb{N}^*} A_{G_{n_k}})$) is connected. \Box

PROPOSITION 2.1. If *L* is an exceptional leaf of \mathfrak{I} and $(G_n)_{n \in \mathbb{N}}$ is a sequence of leaves which converges to a leaf *L*, then for *n* large enough, we have $L \subset \overline{G_n}$.

Proof. Let U be the connected component of $U_1 - (K_1 \cup K_2 \dots K_{p-1})$ containing L and let $(G_n)_{n \in \mathbb{N}}$ be an infinite sequence of leaves of \mathfrak{I} which converge to L. For n large enough, we have $G_n \subset U$. If the proposition is not true then for infinitely many indices n, G_n is a closed leaf in U. We may assume, passing to a subsequence if necessary, that for each $n \in \mathbb{N}$, G_n is a closed leaf of \mathfrak{I}/U and (Ω_{G_n}) (resp. $(A_{G_n})_{n \in \mathbb{N}})$ has one of the properties (i), (ii), (iii) of Lemma 2.1. In the case (iii), since G_n is closed in U, Ω_{G_n} (resp. $A_{G_n} \neq K_p$. Therefore we have

$$L \subset S - \overline{\bigcup_{n \in \mathbb{N}} (\Omega_{G_n} \cup A_{G_n})},$$

because otherwise we would have $L \subset U \cap \overline{\bigcup}_{n \in \mathbb{N}} (\Omega_{G_n} \cup A_{G_n}) \subset K_1 \cup K_2 \ldots \cup K_{p-1}$, which is impossible. Now by Lemma 2.2, $\bigcup_{n \in \mathbb{N}} \Omega_{G_n}$ (resp. $\bigcup_{n \in \mathbb{N}} A_{G_n}$) is connected. Then the set $\overline{\bigcup}_{n \in \mathbb{N}} (\Omega_{G_n} \cup A_{G_n})$ is a compact subset of *S* having at most two connected components. Denote by *W* the connected component of $S - \overline{\bigcup}_{n \in \mathbb{N}} (\Omega_{G_n} \cup A_{G_n})$ containing *L*. Then *W* is a connected orientable 2-manifold with finite genus and its space of ends Bt(*W*) is finite (Proposition 0.3). Since for *n* large enough, *G_n* is closed in *W*, the leaf *L* will be closed in *W* [3, Theorem p. 386], which is impossible because *L* is non-proper. \Box

Completing the Proof of Theorem 2.1. We will prove precisely:

THEOREM 2.1'. Let G be a proper non-compact leaf of \Im and let O be a leaf such that $O \subset \Omega_G$ (resp. A_G). Then there exists an open connected invariant set W in S containing G such that for every leaf γ of \Im/W , γ is proper and $O \subset \Omega_{\gamma}$ (resp. $O \subset A_{\gamma}$).

It suffices to show the theorem for Ω_G , the proof being similar for A_G . Under the hypotheses of the theorem, let U be the connected component of $U_1 - (K_1 \cup K_2 \ldots \cup K_p)$ containing G. Suppose the theorem is false; then there exists an infinite sequence of proper leaves $(G_n)_{n \in \mathbb{N}}$ of \mathfrak{I}/U which converges to G and, for every $n \in \mathbb{N}$, $O \not\subset \Omega_{G_n}$. One can assume, passing to a subsequence if necessary, that for every $n \in \mathbb{N}$, $(\Omega_{G_n})_{n \in \mathbb{N}}$ (resp. $(A_{G_n})_{n \in \mathbb{N}}$) has one of the properties (i), (ii), (iii) of Lemma 2.1. Since

$$G \subset S - \overline{(\cup_{n \in \mathbb{N}} \Omega_{G_n})}$$

(because otherwise we would have $G \subset U \cap \overline{(\bigcup_{n \in \mathbb{N}} \Omega_{G_n})} \subset K_1 \cup K_2 \ldots \cup K_P$, which is impossible), let W be the connected component of $S - \overline{(\bigcup_{n \in \mathbb{N}} \Omega_{G_n})}$ containing G. Since $\overline{(\bigcup_{n \in \mathbb{N}} \Omega_{G_n})}$ is connected (Lemma 2.2), $\overline{(\bigcup_{n \in \mathbb{N}} \Omega_{G_n})}$ is a compact connected subset of S. Therefore W is an open connected orientable 2- manifold with finite genus and finitely many ends (Proposition 0.3). The endpoint compactification \hat{W} of W is a compact connected 2-manifold and the foliation $\hat{\Im}$ of \hat{W} extends the foliation \Im/W where each point of Bt(W) is a singular point of $\hat{\Im}$. Since G is proper, let $x \in G$ and let T be an open transverse arc such that $T \subset U$ and $T \cap G = \{x\}$. For each $n \in \mathbb{N}$, choose a point $x_n \in G_n \cap T$ with $(x_n)_{n \in \mathbb{N}}$ converging to x. If we denote by $\hat{\Omega}_{G_n}$ the ω -limit set of G_n in \hat{W} , then $\hat{\Omega}_{G_n} = \{s_n\}$ where $s_n \in \operatorname{sing} \hat{\Im}$. Since $\operatorname{sing} \hat{\Im}$ is finite, one can suppose, passing to a subsequence if necessary, that for every $n \in \mathbb{N}$, $\hat{\Omega}_{G_n} = \{p\}$ where $p \in \operatorname{sing} \hat{\Im}$. Denote by $[x_1, x_n]$ the transverse segment contained in T and let

$$\theta_n = G_{x_1}^+ \cup G_{x_1}^+ \cup \{p\} \cup [x_1, x_n] \text{ for } n \ge 2$$

where $G_{x_n}^+ = \{\phi(t, x_n)/t \in \mathbb{R}_+\}$. Now we will use now an argument which is originally due to Thurston: Each θ_n induces a class $[\theta_n]$ in $H_1(\hat{W}; Z)$. Since the subgroup H of $H_1(\hat{W}; Z)$ generated by the $([\theta_n])_{n\geq 2}$ is of finite type, let k the integer such that $[\theta_2], [\theta_3], \ldots, [\theta_k]$ generate H. Since $O \not\subset \Omega_{G_n}$ for every $n \in \mathbb{N}, G_x^+$ will be cut by a closed transversal curve which is disjoint from $\theta_2, \theta_3, \ldots, \theta_k$ (for example, see [1], page 18). Hence, the closed transversal curve τ has a zero intersection number with each generator H; this contradicts the fact that G_x^+ is adherent to the union of $\theta_n, n \in \mathbb{N}^*$. \Box

Completing the proof of Theorem 2.2.

Assertion (i). Let L be an exceptional leaf of \mathfrak{I} . It follows from Theorem 2.1 that SS(L) is open in S. Now, if V is not open there exists an infinite sequence of leaves $(G_n)_{n \in \mathbb{N}}$ not contained in V which converge to L. This is impossible by Proposition 2.1. The connectedness of the open V is clear.

Assertion (ii). Let G be a leaf of \mathfrak{I}/V . If G is non-proper, then $\lim G = \Omega_G \cup A_G = \overline{G}$ and $\Omega_G = \overline{G}$ or $A_G = \overline{G}$. Since \overline{G} is a quasiminimal set and $L \subset \overline{G}$, we obtain $\overline{G} = \overline{L}$. The assertion is then verified. If G is proper then $L \subset \lim G =$

 $\overline{G} - G = \Omega_G \cup A_G$, and $\Omega_G = \overline{L}$ or $A_G = \overline{L}$ (Theorem 0.1). One supposes for example that $\Omega_G = \overline{L}$. We have $\lim G = \overline{L} \cup A_G$. It follows that if A_G meets V then $A_G = \overline{L}$ and $\lim G = \overline{L}$. Otherwise, $\lim G \subset \overline{L} \cup \operatorname{Fr}(V)$.

Remark 2.1. If L is a locally dense leaf, the set $V = SS(L) \cup cl(L) = cl(L)$ is the connected component of U_1 containing L. Every leaf of \Im/V is dense in V.

Remark 2.2. If *L* is an exceptional leaf of \Im and *G* is a proper leaf such that $\lim G^{(.)} = \overline{L}$, then there exists an open connected invariant set *W* in *S*, containing *G*, such that for every leaf γ of \Im/W , γ is proper and $\lim \gamma^{(+)} = \overline{L}$ or $\lim \gamma^{(-)} = \overline{L}$. In the case where \Im is orientable, we have precisely, by Theorem 0.1: If $\overline{L} = \Omega_G$ (resp. A_G) for every leaf γ of \Im/W , γ is proper and $\overline{L} = \Omega_{\gamma}$ (resp. A_{γ}).

(B) Corollaries.

COROLLARY 2.1. The higher structure SS(L) of every leaf L of \Im is open in S.

Proof. We remark first that if *L* is locally dense, SS(L) is empty. We suppose then *L* is either exceptional or proper. Let *G* be a leaf contained in SS(L). Then *G* is non-compact. If *L* is exceptional, *G* is proper (Theorem 0.1), and we have $\overline{L} = \Omega_G$ or $\overline{L} = A_G$. The corollary is deduced from Remark 2.2. If *L* is proper, the corollary is deduced from Theorem 2.2 if *G* is exceptional, from Remark 2.2 if *G* is proper, and from Remark 2.1 if *G* is locally dense. \Box

COROLLARY 2.2. If W is an open invariant non empty set contained in U_1 , then the union of closed leaves of \Im/W is closed in W.

Proof. Suppose the proposition is not true. Then there exists an infinite sequence of closed leaves $(L_n)_{n \in \mathbb{N}}$ of \mathfrak{I}/W which converges to a non-closed leaf L of \mathfrak{I}/W . By [7, Corollary 3.2], there exists a minimal set E of \mathfrak{I}/W contained in \overline{L} . The set E is either a closed leaf of \mathfrak{I}/W or equal to $\overline{G} \cap W$ where G is a non-proper leaf of \mathfrak{I}/W . Consider the first case. Since $W \subset U_1$, E is a proper and non-closed leaf in S^* contained in \overline{L} ; this is impossible by Theorem 0.1. In the second case, if G is locally dense, the leaf L and the leaves L_n are also locally dense for n large enough; this contradicts the fact that L_n is closed in W. If G exceptional, for n large enough we have $G \subset \overline{L_n}$ (Proposition 2.1); this is impossible because $G \subset W$ and L_n is closed in W. \Box

It follows from Corollary 2.2 and Theorem 0.1 that if we take $W = U_1$, then *the* union TP(\Im) of totally proper leaves of \Im is a closed set in S^{*}.

COROLLARY 2.3. (STRUCTURE'S THEOREM). Let \Im be a singular foliation with a finite number h of singularities on a compact orientable 2-manifold S of genus g.

Then:

(1) \Im has a finite number n of quasiminimal sets $\overline{L_1} = K_1, \overline{L_2} = K_2, \ldots, \overline{L_n} = K_n$ of \Im , where $n \leq g$ if \Im is orientable, and $n \leq [2g - 1 + \frac{h}{2}]$ if \Im is non orientable, and L_1, L_2, \ldots, L_n are non-proper leaves of \Im .

(2) The subsets $V_i = SS(L_i) \cup cl(L_i)$ $(1 \le i \le n)$ are open and connected in S and their union R has at most n connected components, each of which is a union of some V_i .

(3) The complementary $\text{TP}(\mathfrak{I})$ in S of the union R is a compact invariant subset consisting of the union of singularities, closed leaves of \mathfrak{I}^* , and closed leaves of \mathfrak{I}^*/U_1 .

Proof. Assertion 1 is known [7]. Let us prove assertion 2. If C is a connected component of R, then C will contains at least a non-proper class cl(L), where L is a non-proper leaf. Since there exist n such classes $(n \le g)$ [7, Theorem 4.1], then C has at most n connected components. Denote by $cl(L_1), cl(L_2), \ldots, cl(L_p)$ the non-proper classes contained in C. We have $C = V_1 \cup V_2 \cup \cdots \cup V_p$. Assertion 3 follows from Theorem 0.1 because a totally proper leaf L of \mathfrak{I} is closed in S^* or closed in U_1 . \Box

Remark 2.3. The structure's theorem above is close to the structure's theorem for C° -regular foliations of codimension one on compact manifold given in [10], Theorem 1.

Remark 2.4. We can apply the results above to transverse invariant measures for orientable foliations. By the same methods as in [6] we obtain (for arbitrary singularities) the results given there for foliations with saddles.

Acknowledgement. The author is deeply grateful to the referee for his comments on this paper.

REFERENCES

- [1] C. Godbillon, Dynamical system on surfaces, Springer-Verlag, 1983.
- [2] C. Gutiérrez, Foliations on surfaces having exceptional leaves, Lect. Notes in Math., no. 1331, Springer-Verlag, 1988, pp. 73–85.
- [3] A. Haefliger, Variétés feuilletées, Ann. Sci. Norm. Sup. Pisa 16 (1962), 367–397.
- [4] C. L. Hagopian, Homogeneous continua in 2-manifolds, Topology Appl. 19 (1985), 157-163.
- [5] G. Levitt, La décomposition dynamique et la différentiabilité des feuilletages des surfaces, Ann. Inst. Fourier 37 (1987), 85–116.
- [6] _____, Feuilletages des surfaces, Ann. Inst. Fourier. Grenoble 32 (1982), 179–217.
- [7] H. Marzougui, Structure des feuilles sur les surfaces ouvertes, C. R. Acad. Sci. Paris (Sér.1) 323 (1996), 185–188.
- [8] I. Richard, On the classification of non-compact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259–269.
- [9] R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79–102.

405

- [10] E. Salhi, Sur un théorème de structure des feuilletages de codimension 1, C. R. Acad. Sci. Paris (Sér.1) **300** (1984), 635–638.
- [11] _____, Niveau des feuilles, C. R. Acad. Sci. Paris (Sér. I) 301 (1985), 219–222.
- [12] A. J. Schwartz and E. S. Thomas, *The depth of the center of 2-manifolds, Proc. Symp. Pure Math.*, no. 14, Amer. Math. Soc. Providence, R.I, 1970, pp. 253–264.

Département de Mathématiques, Faculté des Sciences de Bizerte, 7021, Zarzouna. Tunisie