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I. Introduction

Let H be the space of bounded analytic functions in the unit disk D.
Identifying with boundary functions, we consider H as an (essentially)
uniformly closed subalgebra of L, the space of bounded measurable func-
tions on the unit circle OD with respect to the normalized Lebesgue measure
m. Every uniformly closed subalgebra between H and L is called a
Douglas algebra. In this paper, B always denotes a Douglas algebra. It is well
known that H + C is the smallest Douglas algebra containing H properly,
where C is the space of continuous functions on OD. The reader is referred to
[5] and [12] for the theory of Douglas algebras, and [4] for uniform algebras.

In this paper, we will study the following problem.

PROBLEM. For which Douglas algebra B, does ball(L/B) have extreme
points?
We denote by ball(Y) the closed unit ball of a Banach space Y. A point x in

ball(Y) is called extreme if x (x + x2)/2 for Xl, x2 in ball(Y) implies
x xl x2. An equivalent condition for a point x in ball(Y) to be extreme is
that the condition [Ix + Y ll -< 1, y Y, implies y O.
Up to now, we know the following theorems about extreme points of

ball(L/B).

KoosIs’ THEOREM [9]. ball(L/H) has an extreme point. A pointf + H
in ball(L/H) is an extreme point if and only if there is a function h in

f + H such that Ih[ 1 a.e. dm and lib + g[[ > 1 for every g H with
g =/= O.

AXLER, BERG, JEWELL AND SHIELDS’ THEOREM [2].
does not have extreme points.

ball(L/H + C)

For a subset F of OD, we denote by L the space of functions in L which
can be redefined on a set of measure zero so as to become continuous at every
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point of F. Then H + L is a Douglas algebra [3]. M(B) denotes the
maximal ideal space of a Douglas algebra B. Throughout this paper, we let
X M(L). For a weak peak subset E of X for B, we let

Be= (fL;fle

then Be is also a Douglas algebra.

LUECKING AND YOUNIS’ THEOREM [10]. If B is one of the following Douglas
algebras,

(1) B H + L, where F is a proper closed or open subset of OD,
(2) B H, where E is a properpeak subset ofXfor H, then ball(L/B)

does not have extreme points.

In [17], Younis showed the corresponding result is also true for B (H +
C) e, where E is a peak subset of X for H + C. For a closed subset E of X,
E is called a support set if E coincides with the support of a representing
measure/ for some point x in M(H + C) \ X. We note that a support set
is a weak peak subset for H.

IZUCHI AND YOUNIS’ THEOREM [8].
has extreme points.

IfE is a support set, then ball(L/H)

Every Douglas algebra B which appears in the denominator of quotient
spaces in the above theorems has the best approximation property [2], [15],
[16]. That is, for each function f in L\ B, there is a function h in B such
that Ilf / B I[ Ilf- h ll. To prove each theorem above, its authors used this
property effectively.

In this paper, we will show the following theorems. We do not assume that
B has the best approximation property. We denote by r the essential set for B,
that is, F is the smallest dosed subset of X such that every function f in L
which vanishes on F belongs to B.

MAIN THEOREM. Suppose that for each Blaschke product b with b q B, there
exists an open-closed subset W ofX with W q F q: and a sequence ( h n } n% in
B such that

(a) lib- hll 1 (n o) and
(b) inf(lh(x)[; x W, n 1,2,... } > 0.

Then ball(L/B) does not have extreme points.

As applications of our main theorem, we will show the following theorem
which includes all theorems concerning non-existence of extreme points of
ball(L/B).
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THEOREM. Let B be one of the following Douglas algebras. Then ball(L/B)
does not haoe extreme points.

(1) B #= H and h(F) > O, where h is the lifting measure of m onto X.
(2) B =/= H and F contains a closed Ga subset of X.
(3) B H + L for a subset For OD.
(4) There is a sequence (xn }nl in X\ F such that {xnj } N F, for

every subsequence {x } of { x, }, where the bar indicates the closure in X.

In Section 2, we will prove the main theorem; also we will prove (4) in the
above theorem. In Section 3, using Wolff’s theorem [14] we will prove (1), (2)
and (3) in the above theorem. In Section 4, we will give a condition on B for
which ball(L/B) has extreme points. Only in Section 4 will we deal with
Douglas algebras having the best approximation property.

2. Proof of the main theorem

To prove our theorem, we need the following lemma, a generalization of
Axler’s factorization theorem [1].

LEMMA 1 (SUNDBERG [13]). Let (f} be a sequence in L. Then there
exists a Blaschke product b such that bf H + C for every n 1, 2,

Proof of the main theorem. Let g be a function in L such that Ilg +
1. Then there is a sequence { g }n

_
in B such that

(1) IIg+gll 1 (n).

We let Gn g + g. By Lemma 1, there is a Blaschke product b such that

(2) bG, H + C for everyn=l,2,

Then we get b B, for if b B, then G, b(H + C) c B. This means
g B, a contradiction.

Let W be an open-closed subset of X with W N F and let ( h,)n_x be a
sequence in B satisfying the conditions (a) and (b). By (a), it is clear that
II1 bh,ll - 1 (n - ). By (b) and considering a subsequence of (h,}, we
may assume that the ranges (bh,)(W) are contained in (z C; [z 21 < 2}.
Let

f= h,/2 B (n=l,2,...);

then

(3) II1 broil 1
n ot
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and supll 1 broil < 1, where II II is the value of the maximum modulus
on W.

Let

(4) o 1 suplll bfllw > O.
n

Since W F #: , we have X wL B, where X w is the characteristic func-
tion of W. Thus there is a function f such that f B, Ilfll o and f--- 0 on
W
To show our theorem, it is sufficient to show

(5) IIg + f + nil 1.

To show (5), we let F f,bG,. Then F, B by (2), and we have

IIg + f + nil II G + f + nil
-< IIa +/- f- Fll
_< max{llG FII w, IIG FII + Ilfll )

max{ll(1 bf,)Gllw, II(1 b.f)Gllw + o}
< max{ll I bLII II all, (1 )11 all / o } by (4).

By (1) and (3), we have IIg +/- f + BII 1. This completes the proof.

COROLLARY 1. Suppose that.for each Blaschke product b with b q B, there is
a function h in B such that

(a) [Ib-hll land
(b) hl #: 0 on F.

Then ball(L/B) does not have extreme points.

Proof We put h, h for n 1, 2, By (b), we can take an open-closed
subset 14/of X such that

inf(Ih(x)l;x W} >0 and WF,.

Then we can get immediately the conclusion using our main theorem.

DEFINITION. A closed subset E of X is called quasi-G if there is a
sequence (x}.. in X\ E such that (xn} .. E = for every subse-
quence ( x, ) of (x }.

By the definition, it is clear that an open-closed subset is not quasi-G, and if
a closed G subset is not open then it is quasi-G.
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THEOREM 1.
points.

If F is quasi-G, then ball(L/B) does not haoe extreme

Proof Let (x. },1 be a sequence in X\ F such that (xj) N_F 4: for
every subsequence { x. } of { x. }. Let b be a Blaschke product with b B. We
show that there exists an open-closed subset W of X and a sequence { h ).
in B satisfying the conditions of the main theorem.

Let a be a cluster value of {b(x); n 1,2,... }, then lal 1. We may
assume that b(x.) a (n --) o) by our assumption of {x}. For each n, we
can take an open-closed subset U. of X such that

x. U., U. X\ F and lib b(x.)ll u. < 1/n.

Let W U.U.; then W is an open-closed subset of X [4, p. 18] and W 3 F 4: .
Then we have

(1) b a on w\Uu,,
n

by our construction.
Let k. be a conformal map from D onto { z C; 1 z < 1 + 1/n } such

that

q,,(-a) -1/n, ,,(0)= 0 and 4,,,(a) 2 + 1/n.

Let f (k. b)/b; then f. H,
(2) f.= (2+l/n)5 on (xX;b(x)=a}

and

(3) II b f. II II 1 bf. II II 1 k. b II 1 + 1/n.

The idea for this construction of f. can be found in [10].
Let

h (x) (f.(x)(2 + 1/n)(x)

Since W ( F c W\ U.U., we have h. f. on F by (1) and (2). Then we get
h. B, because f. H c B and F is the essential set for B. Since Ih.I 2
+ 1/n on W, (h. } satisfies condition (b) in the main theorem. Moreover by
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(3), we get

I1 hnll max(ll hnll, I1 h,II c)
< max(1 + l/n, I1- f, ll)
<1 +l/n.

We aiready know that I II / BII -< II hll. Hence this means that (h)
satisfies condition (a) in the main theorem. Now we can apply our main
theorem.

Remark 1. We see the following facts in the proof of Theorem 1.
(1) For each Blaschke product b with b B, if there exists an open-closed

subset 14/" of X and a OD such that

{x r; .} w r, ,
then ball(L/B) does not have extreme points.

(2) If F is quasi-G, then the assumptions in (1) above are satisfied.

COROLLARY 2. A support set & not quasi-G.

Proof Let E be a support set of a representing measure #, for a point x
in M(H + C)\ X. By Izuchi and Younis’ theorem, ball(L/H) has an
extreme point. Since E is the essential set for H, E is not quasi-G by
Theorem 1.

3. An application of Wolff’s theorem

As usual, we put QC= (H + C) q (H + C) andQA H N QC. A
characterization of QC was given by Sarason [11].

LEMMA 2. QC ( f L; f is constant on each support set }.

In [14], Wolff showed the following theorem.

WOLFF’S THEOREM.
qf QC.

Forf L, there is an outer function q QA such that

By Wolff’s theorem, we can get the following.

THEOREM 2. If B D H + C and rh(I’) > 0, then ball(L/B) does not
have extreme points.
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Proof. Let b be a Blaschke product with b B. We show that there is a
function h in B satisfying (a) and (b) in Corollary 1. By Wolff’s theorem, there
is an outer function q QA such that qb QC. We may assume Ilqll 1.
Since qb QC, b is constant on each support set on which q does not vanish
by Lemma 2. Let h blql; then h is constant on each support set. Again by
Lemma 2, we have h QC c H + C B. Since q QA H, q does not
vanish on F by our assumption rh(F) > 0. Thus h does not vanish on F. Now
we have

1 lib + nil lib- hll II1- bblqlll II1- Iqlll < 1.

Hence h satisfies (a) and (b) in Corollary 1.
For a subset J of L, we denote by [J] the smallest uniformly closed

subalgebra containing J. By Lemma 1, we know that for a sequence { f } in
L, there is a Blaschke production b such that

bfi’xfi’2.., fi H + C for k-- 1,2,

Thus we have b[H, f/; 1, 2,... c H + C. Since X is the essential set
for H + C, so is X for [H, f; 1, 2,... ].

COROLLARY 3. Let B [H, f; 1, 2,... ].
ball(L/B) does not have extreme points.

If B 3 H + C, then

By Theorem 1 and 2, we have the following.

THEOREM 3. If B H+ C and F contains a closed Gn subset, then
ball(L/B) does not have extreme points.

Proof. Let E be a dosed G subset with EcF. If E is open, then
0 < rh(E) < rh(F), we can apply Theorem 2. Suppose that E is not open.
There is a positive function f in L such that Ilfll 1 and E { x X;
f(x) 1}. Let

En {x . X; f(x) > 1 l/n};

then E En and E is an open subset. If En I" for some n, then 0 < rh(E)
< rh(F) and we can apply Theorem 2. So we may assume E F for
n 1, 2, We take a sequence { x} in X such that xn E\ F. Then
f(x,) ---> 1 (n oo). This shows that E N { xj } 4: for every subsequence
{ xnj } of { x }. Thus F is quasi-G. Then we can apply Theorem 1.

Remark 2. The proof of Theorem 3 shows that if E is a closed subset of X
such that rh(E) 0 and E contains a dosed G subset, then E is quasi-G.
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By Remark 2 and Corollary 2, we have the following corollaries.

COROLLARY 4.
support set.

If E is a closed Gs subset of X, then E is not included in any

COROLLARY 5.
subset for B.

Any support set contained in F does not include any peak

The following two corollaries are generalizations of (2) in Luecking and
Younis’ theorem.

COROLLARY 6. If B H and F is a peak subset for B, then ball(L/B)
does not haoe extreme points.

COROLLARY 7. IrE is apeak subsetfor B such that E c F, then ball(L/Be)
does not haoe extreme points.

Proof. By [7, Proposition 4.1], E is the essential set for Be.

For OD, we put Xx { x X; (x) , }. The following corollary is a
generalization of (1) in Luecking and Younis’ theorem.

COROLLARY 8. If B H + L for a subset F of OD, then ball(L/B)
does not haoe extreme points.

Proof. Let h F. Since B x
Xx is a closed G subset of X.

Hlx, we have Xx c r. It is trivial that

4. A condition for which ball(L/B) has extreme points

We give a generalization of Izuchi and Younis’ theorem. We need the
following theorem which was proved in [8, Theorem 1].

THEOREM. Suppose that B has the best approximation property. Let f L
with IIf / B ll 1. Then the following are equivalent.

(a) f + B is an extreme point of ball(L/B).
(b) fir has a unique best approximation h in Bit, and IfIt + h 1.

THEOREM 4. Suppose that B has the following two properties.
(a) B has the best approximation property.
(b) There exists a Blaschke product bo such that bo q B and

U(supp/x; Ib0(x)l 4= I andx M(b)}
is dense in F. Then ball(L/B) has an extreme point.
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Proof. Let bo be a Blaschke product satisfying (b). By Lemma 1, there
exists a Blaschke product b such that

(1) bb H / C for n=1,2,

If B H, we get our assertion by Koosis’ theorem. So we assume that
B D H + C. By (1), we have b B and lib + BII 1. We show that b + B
is an extreme point. We put h, bb, then h,I 1 on X. We fix x M(B)
with Ibo(x)l : 1. Then we have

(2) [b(x)[ [b(x)h.(x)[ < [bo(x)["---)0 (n--) ).

We note that sup_p/x c F by condition (b).
To show that b + B is an extreme point, we use the above theorem. Since

b B, we have Ilblr + Blrll < lib + BII 1. Then by (2), we have

1 f(1 + bB)dtx <-II1 + bBlrll IIblr- Blr]] < 1.

Thus we have Ilblr + Blrll 1. By [8,_Corollary 1], BIt has the best
approximation property. Let h B with lib hilt 1, that is,

(3) 11-bh[ _<1 onr.

Then we have

1 f(1 bh) dlzx by (2)

<- f 1 bhl d/x < 1 by (3).

This implies that 1 bh 1 a.e. d/, so h 0 on supp #x. By (_b), we have_
h 0 on F. Thus 0 BIt is the unique best approximation for bit, and b lr
satisfies the condition (b) in the above theorem.

COROLLARY 9.
an extreme point.

If F is a finite union of support sets, then ball(L/H) has

Proof Let F Ll.=lsupp/zx., where x. . M(M + C) \ X. Since

supp/Zx, is a weak peak subset for H0, so is F. Then H has the best
approximation property by [15], and F is the essential set for H. There is a
Blaschke product b. such that b.(x.)= 0 by [6, p. 179]. Let bo I-I.=xb.;
then bo satisfies condition (b) in Theorem 4.
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