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I. Introduction

In the history of word problems in group theory the fundamental role was
played by pioneering works of P.S. Novikov [1] and W. Boone [2]. The
construction by Novikov in [1] of the centrally-symmetric group 9 dt,Z
has never been given any further analysis different from [1]. The construction
of Boone’s group G(T, q) [2] was analysed by many authors who introduced a
number of groups which may be called the modifications of Boone’s construc-
tion (for example, see [3], [4], [5]). One of these modifications is the construc-
tion due to V.V. Borisov [6]. We call the group F(II, P) from Borisov’s work
the Boone-Borisov group.
Our aim in this note is to make a survey of the author’s recent results on the

groups 9 and r(II, P). The group 9 has the "big" subgroup 9dt, tp.

THEOREM 1. Novikov’s group 9 d, tp has a standard basis.

This theorem was announced by the author in [7]. Theorem 1 provides a
comparatively short proof for the criterion of equality of words in d, tp which
is the main theorem of chapters I-IV of [1] (the remaining two chapters V, VI
of [1] treat some nongroup combinatorial calculus).

TrI.OREM 2. The Boone-Borisov group F(II, P) has a standard basis.

From Theorem 2 it is comparatively easy to deduce that the word problem
in F(II, P) is Turing (or even truth-table) equivalent to the problem of the
equality to the word P in the initial semigroup II. Since for any Turing
(truth-table) degree of unsolvability a there exists a f.p. semigroup in which for
example the problem of the equality to the empty word has just the given
degree of unsolvability, it follows that the Boone-Borisov group may have
arbitrary Turing (truth-table) degree of unsolvability. The existence of f.p.
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groups with arbitrary Turing degrees of unsolvability was independently
established by many authors (A.A. Friedman, W. Boone, G.S. Ceitin, Clapham;
for example, see [8] and its list of references; recently another proof based on
the Aanderaa construction was given in [9]). For truth-table degrees the similar
fact was established in the works of M.K. Valiev [10] and D. Collins [11]. Also
note the following:

COROLLARY. For any Turing degree of unsoloability a there exists a group
with 14 defining relations in which the word problem has degree t.

This corollary follows from Theorem 2 and the following theorem due to D.
Collins [5] (which was proved with the use of certain constructions due to G.S.
Ceitin and Yu.V. Matijasevic; cf. [5]): for any Turing degree a there exists a
semigroup H with 2 generators and 3 defining relations and a word P in H
such that the problem of equality to P in H has the degree of unsolvability a.
For such a semigroup the group I’(II, P) has just 14 defining relations.
The concept of a group with a standard basis was introduced by the author

in [4]. For its definition, also see [7], [8], [9]. Many well known group
constructions such as Novikov’s groups 9,xp [12], Boone’s groups G(T, q) [2],
Aanderaa’s groups G(M) [13] turned out to have standard bases.
We shall give the definition of Novikov’s and Boone-Borisov’s groups and

restrict ourselves to brief sketches of the proofs of Theorems 1, 2 and their
corollaries. The detailed proofs are to appear in the Siberian Mathematical
Journal.

2. The construction of P.S. Novikov

Let us fix a finite alphabet Y { a,..., a, } and a finite collection of pairs
(A i, B), 1 < < m, of positive (nonempty) words in this alphabet.

Consider the tower of groups (each time we write only the additional
generators and relations; the distinguished letters which are involved in the
definition of group with a standard basis are underlined):

Go ( Pi, i, 1 < < m),

Gx: Y, pa app, ia a, a , 1 < < m,

G: { lai, a E,1 < < m},b_lai= laib_,b Z,

G3: {/k, k, k 1,2,1 < < rn }, al al
al_ai a, a , 1 < < m,

where is or (within each inequality the symbol has the same meaning).
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Also

where

Qi=Ai 1Bi,1 < < m,a ,.
Using the standard argument (cf. [4], [8], [9]) we can verify that 9 dllo is a

group with a standard basis.
Now let G2- be the antiisomorphic copy of G4 with respect to the antiiso-

morphism x -, x / (where x is a letter from the alphabet of G4). To get the
group G5 we enrich the free product G4 G2- with one additional letter p
and relations EpE+ p, where E is one of the following words"

-illai 2i, ildT llaidi
ildT l,d,2,, xld lilld,lidilJ,2i,

Again, is or Consider an arbitrary word 9p from the subgroup
generated by the words in (1) and rewrite it as a word consisting of the
expressions

C(2) ilV(lai)L2i, C- Q,

-ilVl(lai)d;1W(pi, i, lai, C-1QiC, A-1NA, A-1QiMiA)d,VE(la,)#2i,

where are or A and C are reduced X-words, C is a stable word (that
is talC coki for some k),

We call a word semicanonical if it is a word consisting of expressions in (2),
it is reduced and doesn’t contain any forbidden subwords with respect to the
letters d (nor any subwords dd7,*).

MAIN LEMMA. Any word
cal form.

p may be (effectively) reduced to a semicanoni-

COROLLARY [1, Chapter IV, Theorem]. Let X be a Y-word and X
Then X is a word consisting of the expressions C-1QiC, where C is a stable
X-word.
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3. The Boone-Borisov construction

Let H (Sa, 1 _< B -< n, F El, 1 <_ <_ m) be an arbitrary f.p. semigroup
with nonempty words F, Ei. Consider an arbitrary (possibly empty) word P
from II and define the group F(H, P) as follows:

Fo (d, e),

F" (S}, d_...dS= Sd_,e_S= Se...e_,l,< fl < n

(letters d, e occur m 4- 1 times).

1’2" {c ), _S/c c_S/, diFieic cdiEie i, 1 < <_ m

The first and the last letters in F, Ei respectively are distinguished. Also,

Fa: (t}, ct tc_, _dr t_d,

F4 F(1-I, P): (k}, ck kc, ek ke_, p-ltPk kP-t_P.

The last expression may be written in the more general form

p-ltPV(c, e)k kp-lt_PV(c, e).

Again by the standard argument (cf. [4], [8], [9]) we show that the group
F(II, P) has a standard basis. From this it follows that the word problem in F
is algorithmically solvable (for comparison with the Boone group G(T, q), see
[4]).

For the group r4 the same argument as in [4] reduces the word problem in
F4 to the following one: for a given positive word Q of the alphabet { S/ }
determine whether or not there exist words l/(c, d), W(c, e) such that
V(c, d)QW(c, e)= P in F3. Lemma 4 from [6] which is similar to Boone’s
lemma from [2] (cf. Lemma 5 [4]) implies that the above assertion is valid for Q
if and only if Q-- P in the semigroup II. Thus the word problem in F4 is
Turing reducible to the problem of the equality to the word P in the
semigroup II. The reverse reduction follows from Borisov’s lemma [6] which is
also similar to a lemma due to Boone [2]:

Q P(II) , Q-tQk kQ-ltQ(F4).

The above reduction of the word problem in F4 to the problem Q P(II)
may be done with a truth-table by the Cohen-Aanderaa "trick" (see [13]).
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