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ELEMENTARY GROUP EQUIVALENCE WITH THE
INTEGRAL LENGTH FUNCTION

BY

A.G. MYASNIKOV AND V.N. REMESLENNIKOV

In Memoriam W.W. Boone

The paper determines criteria of elementary equivalence for some classes of
free groups with operators and free products with the length function. The case
of a group with operators admitting rational coordinatizati0n with a finite
basis is completely analyzed. They are polycyclic, solvable groups of finite rank
without torsion, and Chernikov groups. The concept of t0-isomorphism of
groups intermediate between elementary equivalence and isomorphism is im-
portant for the aspects of elementary equivalence of groups with operators and
free product. It is proved that to-isomorphism of arbitrary groups of operators
is followed by the elementary equivalence of the respective free operator
groups (free products) with length function.

1. Groups with the length function

This section presents some information on free groups, free groups with
operators and free products which will be needed later.

1.1. Free groups and free products. The facts given below may be found,
for example, in [1]. Let G be a group, N (0,1,2,... ) be a set of positive
integers. The function l" G N will be called a length function on the
group G if it satisfies the following conditions (for the sake of brevity, we let
d(x, y)= 1/2(Ixl / lYl- Ixy-ll))

(A1) Ixl 0 x 1,
(A2) Ix-Xl--Ixl,
(A3) d(x, y) > O,
(A4) d(x, y) >_ d(x, z) =0 d(y, z) d(x, z),
(m5) d(x, y) + d(x-, y-) >_ Ixl lYl x y.
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Let F(X) be a free group with the basis X. If y xl... xn is an irreducible
expression for the element y F(X) in the basis X, xi+/-l X, then the
number n lYl is called the length of y, and d(x, y) is the length of the
largest coinciding end of the words x and y. Apparently y lyl is a length
function on the group F(X) since it satisfies axioms (A1)-(A5) and, in
addition, satisfies:

(A6) x : 1 Ixl < Ix21.
Similarly, the free product A Ax Am of arbitrary groups At,..., Am

is a group with a length function, if one considers the length lYl of the element
y A to be the number of syllables n in the canonical expression y at... an
where each 1 ai is in one of the groups .41,..., Am, with neighbouring
elements in different groups. The following theorems show that free groups and
free products are completely characterized by the presence of an integral length
function.

THEOREM 1 [1]. Let G be an arbitrary group with the length function
satisfying axiom (A6). Then G is a free group; here G could be imbedded in the
free group F(X) with the basis X so that the length function on G is the restriction

of the length function on F( X) with respect to the basis X.

THEOREM 2 [1]. Let G be an arbitrary group with the length function. Then G
can be imbedded in the free product A A A such that the length
function on G is the restriction of the length function on A with respect to the given
decomposition.

1.2. Free operator groups. For an arbitrary group A and a set of letters X
we will construct a free A-operator group F(X, A) with the basis X. Let XA

be a set of symbols { xalx X, a A }; then F(XA) is a free group with the
basis X. We determine the action A on F(Xa) in the following way: for each
a A the map x b x ba, b, a A is extended to automorphism t)a of the
group F(Xa); for the element u F(X) we set u a uo. The group F(X)
along with the action of A on F(X’) becomes a free A-operator group with
the basis X. The group will be denoted by F(X, A).

For u F(X") the inverse to the element ua will be written in the form
u-’; u +-’4= (u+alaA). If U is a subset of F(X), U+/-4=UuvU+/-A"
gp(U) is the subgroup of F(X") generated by U (non-operator).

DEFINITION. Elements u, v F(Xa) will be called collinear if u v +/- a for
some a A, i.e., u v +/-a.

The length function defined on F(X’) with respect to the basis X will
be called a length function on F(X, A).
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2. Model theory information

2.1. Multi-base models. Later we will constantly make use of the language
of multisorted predicate calculus of the first order (for example, see [2]). As
mentioned in Section 1, the presence of the length function is characteristic for
free groups and free products. Therefore in studying these objects by model
theory methods it seems natural to extend the language of group signature
introducing length function there. In exactly the same way, in considering
operator groups it is natural to take into account the structure of a group of
operators. Thus, with a free product of groups G A A we associate
a two-base model II(G) (G, N; I) where G is a group, N is a set of
positive integers with selected element 1, operation of addition and predicate
of order, and is a predicate selecting length function G N.
With a group of F(X, A) we associate a three-base model

II( X, A) ( F( XA), A, N; i+,

where F(XA), A are groups, N and are the same as in II(G) and 8A is a
predicate selecting the action A on F(XA).
To each multi-base model 932 there corresponds an ordinary model * of

the first-order predicate calculus obtained from by unifications of variables.
Speaking of model theory properties of one can mean corresponding
properties of 92". And elementary equivalence of models and 92 means
elementary equivalence of their unifications * and 92".

2.2. Partial isomorphisms and elementary equivalence. Let 9A be an alge-
braic system of signature f. A set of all the closed formulas of signature true
in 9 is called the theory of the system 9A and is denoted by Th(gA). Systems 9A
and 3 are elementarily equivalent (briefly 9A --- ) if Th(9A) Th(3).

Let A and B be basic sets of systems 9 and respectively. The injective
map V" X B, X

_
A is called a partial isomorphism from 9A to 3 if for any

al,..., a, X the following conditions are fulfilled:

(1) If f is a symbol of operation from f then

f(al,..., an_l) a f(ep(al),..., q0(an_l)) +(an).

(2) If P is a predicate symbol from f then

P(a,..., an) P(q0(al),..., P(an)).

The domain of definition X of the map will be denoted by dom q0 and the
domain of values tp(X) by Imtp. If the set dom is finite, the partial
isomorphism q is called finite; if is a restriction of the partial isomorphism
k, will be called a covering of .
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The following criterion of elementary equivalence is valid (for example, see
[3]).

THEOREM 3. Let and be systems of a finite signature. Then 92 =- 3 iff
for any positive integer m there exist non-empty sets tkl(m) c_ c_ dm(m) of
partial isomorphisms from 9 to with the following property:

( ) If q: tki (m), 1 <_ < m, then for any a A, b B there exist cover-
ings 1, g 2 " i+l(m) for with the property a dom 1, b Im 2.

Note 1. Theorem 3 remains valid if the condition (,) is fulfilled only for
some infinite subset of positive integers.

Note 2. Let 1(m)_
_
m(m) be a succession of sets of partial

isomorphisms satisfying (,). Then for any 1(m) there exists a succession
of non-empty sets of partial isomorphisms (m, )

_ _
m(m, p) satis-

fying the condition (,), where each isomorphism from i(m, tp) is a coveting
of

In fact, one may take the set i(m, ) ( (rn)lg/ covers q).

Note 3. For any positive integer m, let the systems 9 and satisfy the
condition (,), and let A0 be an arbitrary finite subset of A. Then for any m
there exists a succession (m, A0)

_ _
,(m, A0) of non-empty sets of

finite partial isomorphisms from to satisfying (,), where, for any
k i(m, Ao) we have Ao

_
dom k, 1 _< m.

In fact, let m o IA0l; then for any m there exists tp mo(m + too) such
that A0

_
dom tp. Now, it is sufficient to make use of Note 2 for the succession

O’s(m) g O,(m) where g,(m) O=o+,(rno + m), 1 < < m.

Note 4. Theorem 3 remains valid if 9 and 3 are multi-base models of
many-sorted logics of the first order predicates. For the proof, it is sufficient to
proceed to unified models 92" and * and make use of Theorem 3.

2.3. t-isomorphism. The following conception is central for the formu-
lation of basic results of the paper.

DEFINITION. Systems 9 and will be called 0-isomorphic if for any
positive integer m there exist non-empty sets O(m)

_ _
qm(m) of finite

partial isomorphisms of 9 in 3 with the following property:

(, ,) For any (m), 1 < < m, and for any finite subsets X __c A,
Y
_
B there exist coverings k, k2 +x(m) for q such that X

_
dom

Y_ Im k9_.
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It is clear that the notes following Theorem 3 hold if one replaces (.) by

It is evident that u-isomorphic systems are elementarily equivalent. To study
the properties of u-isomorphic systems we need the concept of a restricted
type. Let m be a positive integer. The set of all formulas (xt,..., xn) whose
prenex normal form contains not more than m-blocks of quantifiers of the
same type (the so-called ,-, 1-I,- formulas) and which are true in 9 on is
called the m-restricted type of a procession of elements
from A.

PROPOSITION 1. Let systems 9 and be o>isomorphic. Then"
(1) The same restricted types are implemented in 9 and
(2) If 9 and are finitely generated, then and are isomorphic.

Proof. Let the systems 9 and 3 be 0-isomorphic, a formula given in the
prenex normal form, r() the number of blocks of quantifiers of the same type
as in . We prove by induction on r() that for any tp i(m), < m r(),
and any processi_on (at,..., an) from_ A, ak dom tp, the formula () is
true in 9 iff (b) is true in where b (tp (at),..., tp (an)), 1 < k < n.

Let r() 0, < m. Then is an atomic formula (i.e., does not contain
quantifiers). Consider the set F-- (fy()} of all the terms contained in ().
It is sufficient to prove that

(1)

for any fj., fk F. From the condition we find the covering k i/t(m) for p
such that F

__
dom. Due to the partial isomorphism of equivalence (1) is

valid, consequently (b) is true in . Now assume that

() :lt(, ), r(t) < r(), < rn r()

and () is true in 9. Then (?, ) is tree in 9 for some procession ?. Since
r() >_ 1, < rn 1, there exists a coveting p ,+t(m) for 99 such that k is
defined on elements from ?. From the inequality r(t)< r() we have
+ 1 < m r(,t); hence by induction we get the formula ,t(p(?), b), and

the formula :lffx(, b) is also true in . The case

is analyzed in the same way. Thus for any i(m) and any procession
(ax,... an) ak domp, processions and b where b

(tp(al),..., p(an)) satisfy the same formulas with the condition r() < rn i.
Consequently for any number and procession from A one can find the map
k 2(t + 3) such that the elements from belong to dom k and processions
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, tk(6) produce the same t-restricted type in 9X and . Statement (1) is
proved.

Let us prove statement (2). Let Ao (al,..., ak}, B0 (dl,..., d,} be
finite sets of generators of the systems 9 and 3 respectively. By the 0-isomor-
phism of 9 and 3 there exists a partial isomorphism q q2(4) such that
A0 domq0, and a coveting tk t3(4) for q such that B0

_
Im tk. Let

tk(ai) hi, 1 < < k. The map k can be extended to the map tk" 9 --,

according to the rule tk: f(ff)-o f(b) where f is an arbitrary term of the
signature , b (bx,..., bk). By (1) we have

f(ff) g(ff) f() g()

for the arbitrary terms f and g. Consequently, the map tk is correctly defined
and is a _monomo_rphism from_9 to 3. Moreover, according to construction,
B0

___
Im tk so Im tk 3, i.e., + is an isomorphism. The proposition is proved.

From Proposition 1 it is evident that the property of 0-isomorphism is
stronger than elementary equivalence and weaker than isomorphism. Let us
consider some examples. In the class of finitely generated abelian groups all the
three conceptions coincide [4]. But it is quite different for non-finitely gener-
ated abelian groups. For example, groups Z and Z Q, the additive groups of
the integers and rationals, are elementary-equivalent [4], however they are not
o-isomorphic, since in Z, the 1-restricted type of any nonzero element from Q
is not implemented. In the class of nilpotent groups there are examples of
finitely generated groups which are elementarily equivalent but not isomorphic,
and hence not 0-isomorphic [5], [6].

2.4. Regular definability. In studying elementary theories of algebraic sys-
tems the concept introduced in [7] of regular definability of one algebraic
system in another appears useful. This is due to the fact that though regular
definability is definability with constants, it possesses properties similar to
definability without constants.

First of all, let us recall the concept of relative definability (i.e., with
constants) of one algebraic system in another. Let 9 be an algebraic system of
signature , a system of signature A. Proceeding to predicates representing
signature operations in 9, the signature may be considered to contain only
predicate symbols.

DEFINITION
formulas

The system 9 is relatively defined in by means of a set of

(A(., y), Og(, yl, y2), o(., 1,..., yto)lO (. }
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of the sig_nature A where (xl,..., xn), fii= (y,..., y), and a set of
constants b (bl,..., bn) from (symbolically, 9 k(3, b)) if the follow-
ing conditions are fulfilled"

(1) The set A { Ilml3 A(b, )) is non-empty;
(2) The formula o(, fit, .2) gives an equivalence relation on A (the

equivalence class of the element a A is denoted by [a])
(3) If o is a sy_mbol of an s-ary predicate from X, then o s and the

formula ko(b, ,..., .) gives the predicate Po on the factor-set A/
according to the rule

Po([al], [a]) k (fi ) where ’ A 1 < <s

(4) The system k_(, b) (A/o; Polo 2) is isomorphic to 9.
The system (, b) is called an interpretation of 9 in and the isomor-

phism of the interpretation is the isomorphism/" 9 k(3, b).

DEFINITION. If 9 = k(3, b) and the set of constants b is empty, then we
say 9 is absolutely definable in 2) or definable without constants.
For the formula q of the signature A we set

(such sets are called formula definable).

DEFINITION. The system 9 is regularly definable in by a set of formulas
k and formulas q of the signature A (symbolically 9 k(3, )) if 9 is
relatively definable in with the help of k and any set b (3).

It is evident that absolute definability implies regular definability and it, in
turn, implies relative definability.

Let 9 k(3, ). The interpretation (blb), b (3), will be denoted by
9 (b) (for the sake of brevity).

DEFINITION. The arbitrary isomorphism 9(b) 9 (?), b, ? (3), will
be called the connecting isomorphism. Connecting isomorphisms of the inter-
pretation of 9 are formula definable in if there exists a formula
Is(., y, _z, 2) of the signature A such that for any b, ? qb_(3) the formula
k(, fi, b, ) defines in some connecting isomorphism (b) --. 9 (?).

Let us note a simple but convenient characteristic of absolute definability 9
in 3 [7].
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PROPOSITION 2. Let 92 be regularly definable in 3 and let connecting
isomorphisms of the interpretation of 9 be formula definable in . Then 9 is
absolutely definable in

If 92 tk(, ), define a complete formula enrichment of the system 9A
in _(according to Morley’s conception) by adding all the predicates on

k(, b) which are formula definable in in the signature of 9A.

3. Formula predicates of the model I’(X, A)

Let A be a group, X a set, I’(X, A) (F(Xa), A, N) a three-base model
(see Section 2) corresponding to the free A-operator group F(X") with the
length function I" F(XA) ---, N. In this section we will determine formula
definability in I’(X, A) of some predicates on F(X’), A, N which are not
formula definable in their own signature in these systems.
The language of the model I’(X, A) contains three types of variables; later

we will denote variables belonging to the group F(Xa) by lower case letters
near the end of the Latin alphabet such as u, v, w,..., variables for A by
a, b, c,... and variables for N by k, 1, m, We feel free to use the same
symbols to denote elements in F(Xa), N, A respectively and write ua instead
of B.4(u, a).

3.1. Formula predicates on F(Xa). Let us set

S.(u. o) 3u(u oux & Iol & lul luxl / ).

sc(u, o) g u(u uxv& Ivl 1 & lul lull + 1),
df

Sc(u. . 2) =u. u2(u uoxv2u2 Ioxl 1 & Io21 1

&lul- lull + lull + 2).

The predicates Sn, Sr, Sc define in I’(X, A) the first letter, the last letter, two
neighbouring letters, respectively, in the irreducible writing of the element
u F(XA). Let us also set

df
(u, a) Vo1, o2(Sc(u, ,, o2) 02 o)

The validity of (u, a) in I’(X, A) means that

U 1.20l)) alul-v0 for some
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LEMMA 1. The predicate

df
K( u1,..., u, ) elements are pairwise noncollinear

is formula definable in F( X, A).

The proof follows from the equivalence

K(ul,..., Un) k/a( &
<i<j<n

U :: Uj & U Uj

LEMMA 2. For any positive integer m there exists a closed formula qm of the
signature of the model I’(X, A) such that tk, is true on I’(X, A) iff the
cardinality IX is m.

Proof With the help of the formula K(ul,..., u,) from Lemma I it is easy
to write down by a formula that the model I’(X, A) possesses just m pairwise
noncollinear elements of length 1, a condition equivalent to Sl m.
The lemma is proved.

3.2. Formula definable predicates on A

LEMMA 3. The predicates

df
C(a,b,m)b=am,

df- a (a In’N},CN(a b) b u ,

df
a =gp(a)Cz(a b) b z

are formula definable in F( X, A).

The proof follows from the equivalences

C(a, b, m) 3u, vo, Vl(lU[ m + 1 &S(u, Vo) &Sic(u, Vl) 8

&-O(u, a) &vbo Vl),
CN(a, b) , :imC(a, b, m),
Cz(a, b) Cu(a, b) V Cu(a, b-l).
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LEMMA 4. The predicates

df

P ( a ) the order a is infinite,

df
P(a, m) the order a is equal to m

are formula definable in F( X, A).
The proof follows from the equivalences

P(a) **Vm4OC(a,l,m),
P(a, m) C(a,1, m) & Vn(C(a,1, n) ---> m < n).

Elements ax,..., a A are called linearly independent if

mn 1 = m ma x...a

for any positive integers ml,..., mn.

LEMMA 5. The predicate

df
I(a1, an) al, a are linearly independent in A

is formula definable in I’(X, A).

Proof. The formula sought is of the form

The lemma is proved.

Let /a be the { x A Ix u gp(a) for some n N }-isolater subgroup gp (a)
in A. It is evident that v/-d is a set of all the elements from A dependent on a.

LEMMA 6. The predicate

df
CQ(a,b ) -b v/a

is formula definable in I’(X, A).
The proof follows from the equivalence

Co(a, b) c I(a, b)
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Let p be a prime number. The p-height hp(a) of an element a A is o if
the equation xpm a is solvable in the group A for any positive integer m.

LEMMA 7.
predicate

Let the group A have an element of infinite order. Then the

Hoo(a, p) hp(a) o

is formula definable in I’(X, A).

Proof. In the forthcoming Proposition 3, it is proved that each recursively
enumerable predicate is definable in the model I’(X, A), in particular the
predicate deg(p, m) signifying that p is a prime number with degree m.
Consequently,

H(a, p) Vm deg(p, m) --> :lxC(x, a, m),

which proves the lemma.

3.3. Formula predicates on N

LEMMA 8.
predicate

Let the group A have an element of infinite order. Then the

df
prod(k, 1, m) rn equals the product ofk by

is formula definable in F( X, A).

Proof Let k, 1 > 2 be arbitrary positive integers, x X +/- A, a an element
ak+l ak+i-1of infinite order in A. Let us set v x x and consider an element

in the group F(X) of the form

xakv(1) w xaox a2

Then the condition rn k! is equal to the condition wl m. In fact,
I1 l- 1, Iwl k(l- 1) + k kl. The existence of the element w, Iwl
m, of form (1) in the group F(XA) is equivalent to the validity in F(X, A) of
some formula (k, l, m) which will be constructed in the proof of the lemma.

Let us first determine the formula definability of some auxiliary predicates.
The formula

l(x, y, a, k) - :lb(y xb& C(a, b, k)),
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where C(a, b, k) is the predicate from Lemma 3, is valid in the model F(X, A)
alfr y x Validity in F(X, A) of the formula

k2(w, 01, v2, x, a, i, j) - Sc(WlV1, 02) &l(XlVl, a, i) &l(X, 02, a, j),

where Sc(W, WI, W2) is a formula from 3.1, means that v and 02 are
a aneighbouring letters in the irreducible expression w and 01 x v2 x

Validity in F(X, A) of the formula

df
,h3(w, a, x, k, 1) Vo1, 02, i, j(qb2(w, o1, 02, x, a, i, j)

--+ (i<k--+j=k+l)&(k<i<k+l-1--+j=i+ 1))
&:IWI(W x’aw1 & Iwl IWll + 1),

where SH(W, Xa) is the predicate from 3.1, guarantees that the irreducible
a ak+lexpression begins with x a, that each entry x < k, is followed by x and

a X ai+tthat each entry x is followed by if k + 1 < < k + !- 1. Validity in
F(X, A) of the formula

O,(v, a, x, k, ) g (Ivl 1 &(v, a) &=lvo(Sg(vo, v)

&Ol(x, vo, a, k + 1))),

where (u, o) is a formula from 3.1, implies that v x
in F(X, A) of the formula

ak+l lk+l-1x vauutv

df
ffs(w, v1, v2, x, a, k, 1) :]Wl, w2, v(Ivl 1 & Ivl 1 &

w wxvxvvw=&lwl Iwxl + Iw:l + 2 + Ivl &,3(v, a,x, k,l))

states that v and v2 are length 1 and the irreducible expression w contains a
subword of the form VxVV2. Similarly the formula (w, v, Wx, x, a, k, 1) is
constructed which states that vlvw is a subword of irreducible expression w,
and the length w is arbitrary. Finally, the formula

df
O7(w, x, a, k, 1) Vv1, v2, i(q5(w, Vl, v2, X, a, k, 1) &

ckl(x, vl, a,i)&i < k --+ dpl(X, v2, a,i + 1) &Vvl, w
(q6(w, v1, w1, x, a, k, 1)& ql(x, vx, a, k) --+ Iwll 0))

implies that the irreducible expression w contains either the entries xaivxai+l.,
< k, or xkv and this entry is the end of the word w.
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Now it is evident that the desired formula is of the form

(k 1 m)
df

Bw, x, a(Iwl m Ixl 1 &poo(a) &

The lemma is proved.

PROPOSITION 3. Let the group A have an element of infinite order. Then each
recursively enumerable predicate on N is formula definable in I’(X, A).

Proof According to Lemma 8 the system 1/’= (N; 0,1, +,., < ), where
is multiplication in N, is formula definable in I’(X, A). In its turn, the system
.= (Z; 0, 1, +,. ) is formula definable in V’. It is known that each recursive
predicate on N is Diophantine (see [8]), i.e., formula definable in the system
and, consequently, in the model 4r.
The proposition is proved.

4. Groups of operators admiring rational coordinatization

4.1. Determination of rational coordinatization. Let A be a group, a A,
r m/n Q. Let am/n denote an arbitrary solution of the equation x a m

in the group A.

DEFINITION. A procession of elements ? (cx,..., c,), c A, is called a
pseudo-base of group A, if each element a A admits a (not necessarily
unique) decomposition of the form

tn(a) ti(a ) Q(1) a c(a) c

Elements t(a) are called the coordinates of a with respect to the pseudo-
base C-. In the general case, the procession of the coordinates t(a)=
(q(a),..., t,(a)) for the element a is not uniquely defined; moreover, by
virtue of the non-uniqueness of the solution of the equation x" am in the
group A, there may hypothetically occur a case where a 4: b A with t(a)
t(b).

Let T(A, C)
__
Q be a set of all the processions of coordinates of all the

elements A by the base , or a subset of this set satisfying some conditions of
the form’ t(a) belongs to some fixed finite subset Q. On the set T(A, ?) we
introduce the following relation

(2)
df

4(s, r) :la A(s t(a) &r t(a))
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The relation d is reflexive, symmetric but a priori non-transitive. Let us
denote by [t(a)] the set of all elements from T(A, ) in the relation c with
t(a).

DEFINITION. The group A admits rational coordinatization if there exists a
pseudo-base of the group A such that 6c is a relation of equivalence and the
map b [t(b)], b A, is a bijection.

LEMMA 9. A class of groups admitting rational coordinatization is closed with
respect to extensions, finite direct products and homomorphic images.
The proof is evident.

PROPOSITION.
tion

(1)
()
(a)
(4)
(5)
(6)

The following classes of groups admit rational coordinatiza-

finite,
quasi-cyclic,
abelian torsion-free,
polycyclic,

torsion-free solvable groups offinite rank,
Cernikov groups, i.e., finite extensions of a direct product of quasi-cyclic
groups.

Proof In cases (1)-(4) the coordinatization is evident. In case (5) (see [9]),
the group A has a subnormal series of subgroups A > A > > A, 1
such that A/AI is finite and the factors A/A+ are abelian torsion-free
groups of rank 1. Then, by Lemma 9, (5) follows from (1) and (3). In case (6)
the proof also follows by Lemma 9 from (2) and (1).
The proposition is proved.

COROLLARY. Solvable Min- and Max-groups admit rational coordinatization.
In fact, solvable Max-groups are polycyclic and Min-groups are (ernikov

groups.

4.2. Definability A in N. Let Nt be a complete formula enrichment of
the model A/’= (N; +,0,1) in F(X, A). To each rational number r
(-1)m/n, (0, 1}, m, n N, n 0, we associate the ordered triple of
numbers (r) (i, m, n), and conversely, to each (8, m, n) from the set

Q(N) ((i, m, n)18 (0,1}, m, n N, n * 0}

there corresponds the rational number r() (-1)m/n.
The set Q(N) is obviously definable in the model Nt.
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LEMMA 10. Let a A, An, , g Q(N) n. Then the predicates

df
pseudo-base A,B(?) ? isa

df
Cf(a, ?., ) is a procession of the coordi-

nates of a with respect
to c,

r(, a)
df

df
T(A,. 3) and oa(?, g)

df
BR( 3) is a pseudo-base of A giving

the rational coordinatization

are formula definable in F( X, A).

Proof Let C(c, b, m) be a formula from Lemma 3 defining the equality
b c". Then the formula

df
1//1( b, r) lb1, ClC(C 1, m)& C(b, bl, n) & (i 0 ---) 1 bx)

&(/t 1 c b-l),
where r (, m, n) Q(N) indicates that b c r. Consequently, the formula

cf(a, , ) .----dr" :lbl,..., bn(a b bn&
i=1’ l(Ci’ bi’ ri))

defines the predicate Cf(a, ?, ?) in F(X, A).
Therefore, the predicates B(?), T(r, ?), f(?, g, ?) are defined respectively by

the formulas

Consequently, with the help of formulas r(?, ?) and q#(?, g, ?), the fact that
o: is an equivalence relation on T(A, ?) is obviously expressible by a formula
r(?, ?) in the language of the model F(X, A). In the same way, bijection of
the map tpa:a --. [t(a)] from A in T(A, ?)/oa may be written by a formula
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k,(?)- Thus, the formula

dPBR() t2() t3() t4()

defines the predicate BR(?.) in r(x, A).
The lemma is proved.

PROPOSITION 5. Let the group A admit rational coordinatization. Then A is

formula definable in Nm.

Proof. Let us use the notation from Lemma 10. Let ? be an arbitrary
pseudo-base, setting rational coordinatization in A. In the factor-set
T(A, ?)/ T we define a multiplication by

df 3
& dpc/(a, ) & (ala 2 a3)[?t] [?z] [731 :lal, a2, a3i=

It is evident that (T; o) is a group, and the map %:a [t(a)] is an
isomorphism A --* q, of groups defined by the formula kcf(a, , ). Since the
set B of all pseudo-bases setting rational coordinatization in A is formula
definable in I’(X, A), the group A is regularly definable in Nm. Moreover,
since the connecting isomorphisms

are also formula definable in r(x, A), then by Proposition 2 from 2.4 the
group A is formula definable in Nu without constants.
The proposition is proved.

5. Elementary equivalence of groups with the length function

5.1. Sufficient conditions.

THEOREM 4. Let X, Y be sets, and let A, B be groups. If the cardinalities of
X and Y are either equal or infinite and the groups A and B are 6o-isomorphic,
then r(x, .4) =- r(Y, B).

Proof Let the cardinalities Sl and YI be either equal or infinite, and let
groups A and B be 0-isomorphic. In other words, for any positive integer M
there exists a succession of non-empty sets

(4) Al(m) _Am(m)

of finite partial isomorphisms A and B satisfying the condition ( ) from 2.3.
Let us prove that r(x, A)= r(Y, B). To this end, by Theorem 3, it is
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sufficient to construct for any positive integer rn a succession of non-empty
sets

qx(m) c_ c_ ,,,(m)

of finite partial isomorphisms from F(X, A) to F(Y, B) satisfying the condi-
tion ( ). As mentioned above, each partial isomorphism : F(X, A) - F(Y, B)
represents the triple of partial isomorphisms (1, 2, 3) where

)1" F(X") F(YS), tp2" A B, tpa" N N

adjusted with respect to predicates of length and the action of operator groups.
Let

.2 (xx,..., x), (Yx,-.., Y), xj 4: xk, yj 4 yk for k 4: j

be arbitrary processions (of the same length) of elements from X, Y respec-
tively; let 8 A i(m ). Assume

The map

X, {x]la domS, 1 <j < s}

is extended to the monomorphism

X,y," gp(X,) F(Y’).

Let us denote by q the set of restrictions of monomorphisms of the form
, y, on arbitrary finite subsets, and let

l/(m) U b.
,A(m)

It is evident that q,xx(m) __.... c_. qx,,(m) is a succession of non-empty sets
of finite partial isomorphisms from F(X") to F(YB). Let q’3i be the set of
restrictions of the identity map N ---> N on finite subsets of cardinality < i.
Finally we set

cbi(m) {(qn, 8, P,)In qn, 8 Ai(m), b3i }

By construction, qx(m) __.... __. q,,,(m) is a succession of non-empty sets of
partial isomorphisms I’(X, A) in I’(Y, B). Let us prove that it satisfies the
condition ( ). Let

p= (p6,6,1) dpi(m ), < m,
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be arbitrary. If n N there obviously exists an extension of q to a covering
k ;/(m) with n dom k since the isomorphism % preserves length
therefore it is sufficient to take the coveting ff3i+l for such that
udomg and assume k=(%,8,_). If aA there exists a covering
i A

i/ l(m) for 8 such that a dom i; in this case

(cp, , ) cki+(m )

is a covering for q and a dom k-Now let_ u x x F(XA). By
property (..) one can select a covering i A/(m) for 8 such that
ax,..., a dom i. By construction, % is a restriction of some monomor-
phism X, y, on the finite subset U c_ gp(X,). Let us extend the procession
by adding (arbitrarily) to the fight-hand side new different letters from the set

(xa,..., xjs ) not occurring in . The procession obtained will be denoted by
u- Since the cardinalities of X and Y are either equal or infinite, in a similar
way, the procession y can be extended on the right-hand side by different
letters from Y to some procession Z. Let q8 be the restriction of the
monomorphism h, , on the finite subset U (u). Then the partial isomor-
phism

(q, , ) cki+(m )

is a covering for q, where u dom k. Thus, for any m the succession
qbx(m)

___ ___
qb,(m) satisfies condition (.), so I’(X, A) I’(Y, B). The

theorem is proved.

To conclude, let us give an example of groups A and B such that A B
but, for any set X, I’(X, A) I’(X, B).

Let A Z, B Z Q where Z, Q are the additive groups of the ring of
integers and the rational numbers. According to Szmielev’s theorem [4],
A ----B. Note that for any prime number p in the group A there are no
elements of infinite p-height, but there are these elements in the group B.
According to Lemma 7, the predicate h,(a)= is formula definable in
I’(X, A) and I’(X, B). Consequently, I’(X, A) I’(X, B).

5.2. Elementary equivalence in groups of operators admiring rational
coordinatization.

THEOREM 5. Let X and Y be sets, A and B groups, A admitting rational
coordinatization. Then (X, A) =-- (Y, B) iff the cardinalities of X and Y are
either equal or infinite and groups A and B are isomorphic.

Proof. Let I’(X, A) I’(Y, B). By Lemma 2, the cardinalities Sl and YI
are either equal or infinite. Let us prove that A = B. Let N and N be
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formula enrichments of N in I’(X, A) and I’(Y, B) respectively. By hypothe-
sis, the group A allows rational coordinatization; consequently, by Proposition
5, A is absolutely definable in NA. Let A k(NA) (see 2.4) where

#(;, y), 0(;, y,

is the set of formulas defining A in N,. Isomorphism of the interpretation/:
A -, /(NA) is defined in I’(X, A) by the formula

df
Is(5, ?) :ISBR ( ? ) & Cf( a, ,

where Cf, BR are given in Lemma 10. Then the very fact that any formula
defines in N, a group k(N,) and the formula Is(a, ?) defines isomorphism/ is
expressed in the language I’(X, A) by means of a certain closed formula which
will be denoted by qb. Thus the validity of qb in I’(Y, B) follows from
I’(X, A) I’(Y, B), and from the construction of we see that any formula
k defines in F(Y, B) on No some groop (NB) isomorphic to B. Let us prove
that formulas A(), 6(, .) and qb(, ., 3) define the same predicates in NA
and in NB, i.e., k(Ns) = k(Na). In fact, let 9(x) be an arbitrary formula of
the model I’(X, A) defining in N, some set of processions R. Each procession

N" is formula definable in (N; +, 0,1); therefore, in the model F(X, A),
hence in I’(Y, B), the system of closed formulas

{(),(k)lV e R Vk e R)

is true, guaranteeing that the formula (x) defines the same predicate both in
I’(X, A) and I’(Y, B) on N. Thus, the groups k(N) and k(N), and hence
the groups A and B, are isomorphic.
The theorem is proved.

6. Elementary equivalence of free products with the length function

By a simple modification in the proofs, the results of Sections 3, 4, 5 for free
operator groups may be extended to free products of groups with a length
function.

Let G A A2, H B BE be free products of groups, II(G) and II(H)
respective two-base models from 2.1.

THEOREM 6. If the groups At, B and .42, B2 are pairwise to-isomorphic,
then II(G) H(H).

THEOREM 7. Let the groups A and A2 allow rational coordinatization. Then
YI(G) II(H) iff, after a suitable enumeration of the factors, A = Bt, Ag_
B2
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Let us also note that the conditions A -= B1 and A2 -= B2 are not sufficient
for II(G) II(H). In fact Z Z Q (see 5.1.) but II(Z, Z), II(Z,(Z
Q)).

REFERENCES

1. R.C. LYNDON AND P.E. SCHUPP, Combinatorial group theory, Springer-Verlag, New York,
1977.

2. J. BARWISE (ed.), Handbook of Mathematical Logic, Theory of Models, North-Holland,
Amsterdam, 1977.

3. Yu.A. ERSHOV AND E.A. PALYUTIN, Mathematical Logic, M. Nauka, 1979.
4. W. SZMIELEV, Elementary properties of Abelian groups, Fund. Math., vol. 41 (1955), pp.

203-271.
5. B.I. ZILBER, An example of two elementarily equivalent, but not isomorphic, finitely generated

metabelian groups, Algebra Logika, vol. 10 (1971), pp. 309-315.
6. R. HIRSHON, Some cancellation theorems with application to nilpotent groups, J. Austral. Math.

Soc. Series A, vol. 236 (1977), p. 147-165.
7. A.G. MYASNIKOV, Definable invariants and abstract isomorphisms of bilinear maps, Preprint

No. 518, Novosibirsk, 1984, 29 pages.
8. Yu.V. MATIYASEVITCH, Diophantineness of enumerable sets, DAN SSSR, vol. 191 (1970), pp.

279-282.
9. D.I. ZAITSEV, On solvable groups offinite rank, DAN SSSR, vol. 181 (1968), pp. 13-14.

COMPUTING CENTER, NOVOSIBIRSK
SIBERIAN DIVISION OF THE USSR ACADEMY OF SCIENCES, USSR.


