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I. Introduction

Definability has provided the most fruitful approach to understanding the
model-theoretic structure of , the Turing degrees ordered by Turing reduci-
bility.
The origin.of this approach is Spector’s result [9] that every countable ideal

in is uniformly definable from parameters in . Spector’s theorem also
shows that the first order theory of includes an interpretation of quantifica-
tion over such ideals.
Simpson [8] used this result, the embedding theorems for upper semi-lattices

as initial segments of , and a coding of models of arithmetic as initial
segments of , to show that there is a faithful interpretation of second order
arithmetic in the first order theory of . In this interpretation, second order
quantification over the coded model of arithmetic is interpreted by quantifica-
tion over ideals in .
Nerode and Shore [4], [5] gave a simplified way to code models by initial

segments. With their method of coding, the degree of the code of a set of
integers is close to the degree of the set itself. They applied their method of
coding to show that every automorphism of with a predicate for the
arithmetic degrees is the identity on a cone of degrees. Subsequently, see [2,
Harrington-Shore] and [3, Jockusch-Shore], the arithmetic degrees were shown
to be definable in . The best result currently known is that every automor-
phism is the identity on the cone above 0’ and maps every degree to one
arithmetic in it. In further work, Shore [7] showed that the relation "’ is a code
for an element of x" is first order definable in for those x above 0. This
last result explains why every automorphism is the identity above 0 ’. Namely,
both ’ and its isomorphic image must code the same set of integers, so the
degree of the set coded by ’ must be fixed by any isomorphism. Shore’s result
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can also be used to conclude that a predicate on the degrees above 0 is
definable in if and only if it is definable in second order arithmetic.

Perhaps the most outstanding application of definability to the study of is
Shore’s Non-Homogeneity Theorem [6], which states that there is a degree x
such that is not isomorphic to (> x), the degrees above x. The difference
between and (> x) is that there may be a set of integers that is not
arithmetically definable but is coded by a degree that is arithmetic in x while
every set that is coded by an arithmetic degree is arithmetic. The conclusion
follows once arithmetically definable codings for representatives of Turing
degrees, and corresponding decodings, are found.

In this paper, we extend Spector’s theorem to all countable relations: Any
countable relation on Turing degrees is uniformly definable from parameters in. The parameters used to define a given relation 9 are constructed by forcing
over 9 with essentially finite conditions. This provides some advantage when
9 is replaced by the more restrictive model ( < 0’) in later sections.

In Sections 3 and 4, we give some applications of this result. In Section 3, we
show that any elementary function from to must be an automorphism.
We also show that the definability in of the relation "" is a code for an
element of x" for all degrees x is equivalent to a notion of local rigidity for .
In Section 4, by an effective analysis of the forcing construction, we show that
recursive enumerability is a definable property in the structure (< 0’).

1.1. NOTATION. Use upper case letters X and Y to denote real numbers.
Given X and Y, let x and y be their Turing degrees. X Y denotes the
recursive disjoint union of X and Y and x v y denotes its degree. Let (X)
denote the set of reals that are recursive in X; let (x) be the induced ideal in. Also, use A and v to denote the operations of meet and join both between
sets (X) and_.(Y) and between ideals (x) and (y). A finite sequence of sets is
denoted by X and a finite sequence of degrees by ’. The e th Turing functional
applied to the real Y is ( e } r; write ( e } r(n) $ if ( e ) Y(n) has a value and
( e }r(n) q’, otherwise. If p is a finite initial segment of a real, then ( e } ’(n) m
means that the e th Turing functional relative to any real extending p con-
verges at argument n with value m, with a computation length less than the
length of p.
The symbol marks the end of a proof.

2. The coding apparatus

This section includes a proof of the main theorem: the uniform definability
of countable relations in 9. The proof involves several intermediate steps, each
of which is a proof that a certain special type of relation can be defined.

2.1. DEFINITION. A set o of Turing degrees is an antichain if, whenever a0

and a are distinct dements of o, they are incomparable.
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The first step is to show that any countable antichain can be uniformly
defined from parameters in 9. The proof of this result uses a notion of forcing

in which the conditions are essentially finite. The fact that the conditions are
so simple will be important when it is necessary to find generic reals below ’.

2.2. NOTATION. A real can be identified in a recursive way either with a
countable sequence of reals or with a set of finite sets of integers. In the first
case, let X(n) denote the nth real in the sequence associated with X.

2.3. LEMMA. [1, Dekker-Myhill]. Suppose that X is a real number. There is a
real Y with the same Turing degrees as X which is recursive in any of its infinite
subsets.

Proof. Given X, let Y be the set of initial segments of X. Y is recursive in
X, as X knows its own initial segments; X is recursive in any infinite subset of
Y, as any atomic question about X can be answered by every sufficiently long
initial segment of X.

The previous lemma shows that any set of degrees can be represented by a
set of reals, each of which is recursive in any of its infinite subsets.

2.4. DEFINITION. Let o be a set of reals whose degrees form an antichain.
Suppose that for every real X in I and for any real Y, if Y is an infinite subset
of X then X is recursive in Y. Define the forcing partial order associated
with I as follows.

(1)

(2)

A condition p is a triple (P0, Px, F(p)). Here P0 and Pl are binary
sequences of the same length and F(p) is a finite sequence from I. The
set of conditions is denoted by P.
Suppose that p and q are dements of P. Then p is stronger than q or
below q if P0 extends qo, P extends qt, and F(p) extends F(q). In
addition, for every integer n less than the length of F(q), if k is less than
the length of pt0n) but not less than the length of q and k belongs to
the nth element F(q), then p(o")(k) pl")(k).

Let G be -generic. G is easily seen to be equivalent to the pair of reals Go
and G formed by taking the unions of G’s first coordinates. For each X in I,

generically introduces a real into (GO X) A (Gx X) that is not in (X).
Genericity will imply that whenever Y is a real with the property that
(GO ,. Y)/x (G Y) is not equal to (Y), there is an X in I such that X is
recursive in Y.

2.5. PROPOSITION. Suppose that is a countable antichain. There are
degrees go, gl and d such that the elements of are the degrees below d that are
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minimal solutions for x in the following equation:

(go v ^ v

Proof. The proof is presented in more detail than is traditional; the fine
points will be necessary in the effective analysis of the construction appearing
in Section 4.

Let I be a set of representatives of such that each dement of I is
recursive in any of its infinite subsets. Let be the notion of forcing
associated with I. Let D be a real such that the elements of I are uniformly
recursive in D; let d be its Turing degree. There is a partial ordering of the
integers that is isomorphic to and recursive in D; one example is the partial
ordering of D’s codes for the elements of . In what follows, identify with
its isomorphic copy. Suppose that G is -generic with respect to all of the
dense sets that are arithmetic in D; let go and gl be the degrees of the reals GO
and Gx associated with G. Let I denote the forcing relation for . Since the
statement of equation 2.6 is arithmetic in D, for fixed x < 7-d, 2.6 will hold if
the empty condition in forces it. The important dense sets, those used to
show that forcing 2.6 is the same as its truth for the generic sets, are all
arithmetic in D.

Suppose that X is an element of I. First, verify that the following equation
holds, namely that the empty condition forces equation 2.6:

(2.7.) II-- (go V x) A (g, V x) 4: (x).
The fact of the matter is that a real that is Cohen generic with respect to all of
the dense sets arithmetically definable in D is coded into both GO X and
G1 X. The proof of equation 2.7 uses only a small part of this genericity.

2.8. DEFINITION. Suppose that p is a condition. Say that n is a coding
location for p if n is equal to (i, x) where is less than the length of F(p) and
x is an dement of the th member of F(p) and is greater than the common
length of the first two coordinates of p.

The set of coding locations for p of the form (i, m) is recursive in the th
element of F(p). This set is called the set of coding locations in the th
column.

2.9. NOTATION. Let D(X) be the set of conditions p such that X appears
in the finite sequence F(p).

Clearly, D(X) is dense in P. Suppose that p is an element of D(X) and
that X is the th dement of F(p). Then define a real Z(X) as follows.

z(x) { m The mth coding location for p of the form
(i, n) is an element of G0.
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Since every extension of p is required to make its first two coordinates agree at
all coding locations for p, Z(X) is recursive in both GO X and G X. It
remains to show that Z(X) is not recursive in X. Let e be an index for a
Turing reduction.

2.10. NOTATION. Let C(e, X) be the set of conditions p such that for some
n less than the length of Po, either (e)X(n), or (e } X(n)$ and its value is
unequal to the value of Po at the n th coding location for Po in the ith column.

Suppose that p and X are given, and X equals the ith element of F(p). If
there is an n greater than the length of P0 such that (e } X(n)$, it is possible to
compute ( e } X(n) and then define q extending p to diagonalize; thus, C(e, X)
is dense.

It remains to show that if y is a degree below d then

I- (:ix I)[(y >_ x) or ((go V y) A (gl V y) y)].

Let y be a degree below d and let Y be an element of y. Suppose that eo
and e are indices for Turing reductions.

2.11. NOTATION.
conditions.

Let M(Y, e0, e) be defined by the following set of

Mo(Y, eo, e) (pl(]n)((eo)P*Y(n) ko& (el)P*Y(n) k&ko # kl)
MI(Y, eo, el) ( plThere is no extension of p in Mo(Y, eo,

M(Y, eo, el) Mo(r, eo, el) m MI(Y eo, el).

M(Y, e0, el) is a dense subset of #. If p is an element of Mo(Y, eo, el) then
p forces that the pair (e0, el) does not provide a set in both (Go * Y) and
(G Y). Suppose that p is a condition in MI(Y, eo, ex) and show that either
p forces the possible common values of {e0}*r and (el}Gx*Y to be
non-total or recursive in Y or else there is an element of F(p) that is recursive
in Y.

There are two cases to consider.

2.12. Case 1. For every n, there is a y such that the following equation holds:

p II-- (Vx)(( eo } CoO X(n ) x = x y).
If p is a condition as in Case 1, p forces that if (eo }GY is total then it is

recursive in Y. Below p, Y can compute (eo}oo*x at n by finding any
extension ro of Po such that ( eo } ro* r(n) $ with use no greater than the length
of ro. For any such sequence ro, there is a condition r extending p and having
ro as its first coordinate. The value of (eo)*r at n must be the same as
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(eo)’O*r(n) since any two extensions of p assigning a value must assign the
same one.

2.13. Case 2. For any q extendingp in , there are r and r’ extending q and
an integer n such that r and r’ force different values for (eo}Go*Y(n).

By sequentially changing r0 at points beyond those mentioned in p to agree
with rd, it is possible to find two conditions forcing different values for
{ eo}O*r(n) such that their first coordinates disagree at exactly one point k.
Assume that r and r’ have this property. Moreover, it is safe to assume that
the computations involved have use no greater than the length of the first
coordinate of their associated conditions as this property is dense. Regarding a
real as a countable cartesian product, let k equal (x, rn).

Suppose x does not belong to the mth element of F(p). If q is a stronger
condition than p then qo(k) does not have to agree with ql(k). Then, it is
possible to find a condition extending p and forcing {eo)GoY(n)
(el}1r(n ) as follows. First, find an extension of r deciding the value of
{ e )GleE(n) and forcing the use of the computation to be less than the length
of its second coordinate. Either forces the inequality or the condition
resulting from P by changing its value at k forces the inequality. Either case
contradicts the original assumption that p forces the two functions to be equal.

Thus, any two conditions extending p, forcing different values for
at some argument and having first coordinates which disagree at exactly one
point must have the disagreement at a coding location. Namely, if they
disagree at (x, m), then x must be an element of the mth element of F(p). By
the condition of Case 2, no single condition above p can decide all the values
of { e0 }0r so Y can compute an infinite set of points (x, m) each being the
point of difference in a pair of conditions forcing different values at some
argument. As F(p) is finite, infinitely many of these points must involve the
same m. The elements of I were chosen to have the property of being recursive
in any infinite subset; thus, Y can compute some element of F(p).
The two cases exhaust all of the possibilities.

The next step is to reduce defining an arbitrary countable set of Turing
degrees to defining an antichain. The following lemma is standard. A proof is
indicated in Section 4, where the effectiveness of the construction is important.

2.14. LEMMA. Suppose that D is a real of Turing degree d. Let G be a set of
reals that are pairwise mutually Cohen generic with regard to meeting all the
dense sets in the Cohen partial order that are arithmetic in D. For any A and B
that are recursive in D and any sequence Go, G1,..., G, belonging to G, A GO

is recursive in B G G2 Gn if and only ifA is recursive in B andfor
some i, GO is equal to Gi.
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2.15. PROPOSITION. Suppose that c is a countable set of Turing degrees and
d is an upper bound on the elements of c. Let D be an element of d and suppose
that G is a countable set of reals that are mutually Cohen generic with regard to
meeting every dense set that is arithmetic in D. If tk is a bijection between c and
the set of degrees of elements of G, then is definable with parameters in .
Proof Let ff be the set of degrees with representatives in G; let " be the

set of degrees of the form x v k(x) where x is a degree in ft. Lemma 2.14
implies that both f and J are antichains and that the operation v is injective
on ( < d) x ft. Proposition 2.5 states that each of these sets can be defined
in uniformly using finitely many parameters.

This implies the definability of ff and k by the following equations:

x , (x < d& (:lg ff)(:iz o)(x v g z)),
(x) g (x < d& g ff&(xVg) ) Q

It remains to prove the main technical theorem.

2.16. THEOREM. Suppose that is a countable relation on . Then is

definable from parameters in . Furthermore, for each k there is a formula
q(xl,..., Xk, Yl,..., Ym) such that for each countable k-place relation R on
there is a sequence of parameters a1,..., am such that R is defined by
q(xl,..., xk, ax,..., a,) in .

Proof. Suppose that is a countable subset of .@n. For each rn smaller
than n, let R(rn) be defined by

R(m) (al(:tv )(v(m) a)).

Let d be a uniform upper bound on all of the R(m); let D be an element of d.
Let G be a countable set of reals that are mutually Cohen generic with regard
to meeting all of the dense sets in the Cohen partial order arithmetically
definable in D. Write G as a disjoint union of sets G(m), each of which has the
same cardinality as R(m). Fix bijections km between R(m)and G(m).
By the preceding propositions 2.5 and 2.15, each k,, R(m), G(m) is defina-

ble from parameters in . Define ff by

c_.. (go V gl Vgn-ll/l(go),-l(gl),’",--11(gn-1))
By Lemma 2.14, ff is an antichain; it is definable from parameters in by
proposition 2.5. Now can be defined by

= {<a0, a,,..., a._,>l(Vm _< n)(am R(m))&/o(ao) v #,(a,)
V V,_l(a,_)e c__$,}.
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3. Global properties of

The most fruitful approach to understanding the global nature of has
been the use of definability. For example, in a delightful piece of work,
Simpson [8] showed that there is a faithful interpretation of the second order
theory of arithmetic in the first order theory of . He showed that it is possible
to code models of arithmetic as initial segments of , and then to use Spector’s
theorem that every countable ideal in is uniformly definable as the intersec-
tion of two principal ideals to code second order quantifications over the
model.
Nerode and Shore [4] simplified the proof of Simpson’s theorem by showing

that it is possible to uniformly represent every countable, symmetric, irreflexive
binary relation as a definable relation on an initial segment of . Then models
of arithmetic and second order quantification over these models can be
obtained from Spector’s theorem. They also used their simplified definability
methods to show that every automorphism is the identity on a cone of degree
in . In later solo work, Shore [7] showed that there is a coding of arithmetic
such that the relation "’ is a code for an element of x" is a definable relation
between degrees on the cone above 0 in . This last result gives a good
explanation for the fact that any automorphism on is the identity on a cone;
the automorphism cannot change the set of integers coded by ’ so it cannot
move x. Notice that the same reasoning shows that any elementary function
from to is also the identity on a cone. Since this result is used later, it is
isolated below.

3.1. THEOREM [7, Shore] Suppose that is an elementary function from to
There is a degree a such that for all degrees x, if x is greater than a then

(x) x.

These results can now be given somewhat unified proofs using theorem 2.16.
For example, to prove Simpson’s theorem, notice that the usual second order
characterization of a standard model of arithmetic involves specifying a
countable set N, a distinguished dement "0", and a unary function s, such
that V’.= (N, 0, S) satisfies second order induction. All of the objects can be
represented by countable relations on the Turing degrees; the second order
variables over N are interpreted by first order variables over the degrees using
the translation provided by theorem 2.16. Of course, the new contribution
provided by the definability theorem is a unified way to code the relations on

by elements of ; the rest of the work must be done as before.

Elementary functions from to D. The next result couples the ability to
code and recognize standard models of arithmetic together with the extended
power to make definitions provided by Theorem 2.16.
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3.2. THEOREM. Suppose that g is an elementary mappingfrom to . Then
is an automorphism.

Proof Since q is an elementary function, it is an injective homomorphism.
To show that q is an automorphism, it remains to verifythat it is surjective.

Let x be a degree. By Shore’s theorem, there is a degree a such that k is
equal to the identity on the cone above a. By Theorem 2.16, let ’ be a finite
sequence of degrees which codes a standard model of arithmetic .#’= N, 0, s)j
let f be a function from N onto the degrees below x v a which is coded by d.
The statement that " codes a standard model and that d codes a counting of
the degrees below x v a is a first order statement in about x v a, ’ and d.
Now consider this statement after the application of q. Since q is an

elementary function, the same statement must hold of k (x v a), q (c-’) and
k(d). Thus, the finite sequence k(c-*) codes a standard model of arithmetic
k(.A/’) and q(d) codes a function k(f) from the universe of that model onto
the degrees below q(x v a). By the choice of a, q(x v a) is equal to x v a;
so there is an integer n such that x is the value of k(f) at the n th element of
q (V’). But this must mean that x is equal to q applied to f of the n th dement
of N as all of the relevant definitions are preserved by q. Thus, x is in the
range of k as was desired.

The key ingredients in the proof of Theorem 3.2 were the facts that the range
of k formed a elementa substructure of and that it was cofinal in . The
same argument can then be used to show the following result.

3.3. THEOREM. Suppose that * is an elementary substructure of and that

* is cofinal in . Then, * is equal to .
The reader may wish to check that Theorem 3.2 holds when is replaced

by the Turing degrees of the arithmetic sets and the hypothesis k is elementary
is replaced with k is elementary and maps 0" to 0". The proof is the same
using Shore’s result that every such k is the identity on a cone of degrees of
arithmetic sets and the fact that if an arithmetic sequence ’ codes a nonstan-
dard model of arithmetic then there is a code for its standard part in the
arithmetic degrees.

3.4. Question. Let z be the partially ordered structure with universe the
Turing degrees of the arithmetic sets ’of integers. Is every elementary function
from z to z an automorphism? Is every elementary substructure of z equal
to

Local rigidity. It follows from the definability of the relation "x is arith-
metic in y" and the existence of codes, obtained arithmetically from x, for
elements of x, that if k is an automorphism of , then for any degree x, k(x)
is arithmetic in x.
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3.5. DEFINITION. Suppose that is an ideal in . Then is a jump ideal
if is also closed under application of the Tudng jump.

Note that whenever x belongs to a jump ideal and y is arithmetic in x, y
also belongs to the jump ideal. By the preceding remarks, if k is an automor-
phism of and ag is a jump ideal in , then k induces an automorphism of
a by restriction.

3.6. DEFINITION Suppose that is an upper semi-lattice with an external
increasing order preserving operation called the -jump.

(1) is rigid if it has no automorphisms other than the identity.
(2) is absolutely rigid if is rigid in every model of ZFC that in-

cludes .
(3) is locally rigid if each element of belongs to a countable, rigid

-jump ideal.

The next theorem establishes the connections between these notions for .
3.7. THEOREM. The following conditions are equivalent.
(1) is locally rigid.
(2) The relation "’ is a code for an element of x" is definable in .
Moreover, the defining formula in (2) can be taken to be equivalent to a 2

formula in analysis.

Proof. First show that (1) implies (2). Assume that is locally rigid.
As has already been established, the set of finite sequences ’ that are codes

for standard models of arithmetic is 5-definable. Similarly, the set of codes for
countable sets of reals whose degrees form a jump ideal I is 5-definable. As
the rigidity of I can be expressed in terms of quantifiers over countable
functions, the set of codes for sets of reals whose degrees form a countable
rigid jump ideal is -definable. By Jockusch-Shore [3], it is possible to express

"’ codes a set of degrees closed under application of the Turing jump" by a
first order formula in . Thus, "’ codes a rigid jump ideal" is a first order
property of " in .

3.8. CLAIM. Assume is locally rigid. Let x be a Turing degree and suppose
that - is a code for a set of integers X. Then, X has degree x if and only if there is
a set of reals I including X whose degrees form a rigid countable jump ideal, a
rigid jump ideal and an isomorphism mapping the degrees of I to such
that / maps the degree of X to x.

The claim is immediate once it is shown that any two isomorphic jump
ideals are identical. This follows from the fact that a jump ideal consists of
exactly the set of degrees of reals which are coded by sequences in the ideal.
This in turn follows from the fact that the code for a set of integers X is
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produced by a finitary forcing relative to X, by meeting those dense sets which
are recursive in a few jumps of X.
The claim is enough to prove that (1) implies (2), as it provides a definition

of "’ codes an element of x" expressible in the language of . Moreover, the
definition is Y; it demands the existence of a rigid jump ideal including the
degree of x.

Next, show that (2) implies (1). Suppose that the relation "" codes an
element of x" is defined in by the formula k. A standard Skolem hull
construction shows that for each degree y, there is a countable jump ideal or
including y that is an elementary substructure of . It must be the case that or
is rigid as any isomorphism must map standard models to standard models,
thereby map codes for a real X to codes for X, and thereby map the degree of
X to the degree of X.

Finally, notice that no assumption was made as to the form of the definition
in the proof of (2) implies (1). If there is any definition then there is one of the
correct form.

3.9. COROLLARY. Suppose that is locally rigid.
(1) is absolutely rigid.
(2) The Turing degrees are locally rigid in L.

Proof. (1) follows immediately from the preceding theorem. To check (2),
note that the definition of "’ is a code for an element of x" is simple enough
for the Shoenfield absoluteness theorem to apply. Thus, if "’ is a code for an
dement of x" is definable in V, then it is also definable in L.

3.10. Question. Is locally rigid?

4. Definability in the A% degrees

This section is for the dedicated recursion theorists. Let ’ denote the
canonical representative for 0’. Let D( < 0’) be the set of degrees below 0’ and
let ( < 0’) be the structure (D( < 0’), _< r ). The main result of the section is
to show that the predicate of recursive enumerability is definable from parame-
ters in (< 0’). The proof is divided into two parts. First, prove an effective
version of theorem 2.16, where the generic codes are constructed recursively in
’. Second, apply a result of Welch [10] which states that the recursively
enumerable degrees are generated by sets which can be defined using the
effective coding theorem.

4.1. DEFINITION. (1) Say that a degree is low if its Turing jump is 0’.
(2) Say that a set of degrees contained in D(_< 0’) is uniformly

recursive in 0’ if there is a sequence of representatives for the degrees in
which is uniformly recursive in ’.
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(3) With the same notation as in (2), say that is uniformly low if it is
uniformly recursive in ’ by means of the sequence (X(n)ln w) and
there is a ’-recursive function f such that { f(n)}’ is the Turing jump
of (X(m)lm < n).

The technical result needed to establish the definability of the recursively
enumerable degrees is the following effective analog of theorem 2.16. Suppose
that is a subset of D(< 0’) which is uniformly low and bounded by a low
dement of D( < 0’). Then is definable from parameters in (< 0’). The
proof follows the same general outline as the one in Section 2. The new feature
is that the definition of the set is slightly more complicated in order to make
the construction of a genetic object simpler.

4.2. PROPOSITION. Suppose that is an antichain which is uniformly low and
bounded by a low element a of D( < 0’). There are degrees go and g, which are
recursive in 0’, such that I is defined in ( < 0’) as the set of minimal solutions
below a for x in the following equation:

(4.3) ((go) v ^ v

Proof. The proof of this result parallels to that of proposition 2.5.
Let X be equal to (X(n)ln o) and be a sequence recursive in ’,

representing and uniformly low. By Lemma 2.3 and the uniformity of its
proof, it is safe to assume that each element of X is recursive in any of its
infinite subsets.

Let be the notion of forcing introduced in definition 2.3 associated with
X. Recall that a condition p is a triple (P0, Pl, F(p)) where P0 and p are
finite conditions and F(p) is a finite sequence from I. The condition q extends
p, if q extends p pointwise and the first two coordinates agree on the coding
locations specified by the dements of F(p). It was shown in Proposition 2.5
that if G is sufficiently -generic, then the degrees of Go and Gt, the two reals
associated with the first and second coordinates of G, satisfy the statement of
the theorem. The only problem is to build a set that is sufficiently generic and
whose associated reals GO and G are recursive in ’. The dense sets used in
the proof of 2.5 were of three forms: D(X(n )), C( e, X(n)),M(Y, eo, e),
where X(n) lies in X, and Y is recursive in any set of degree a. It is easy to
check from the definitions of these dense sets that for any condition p, either p
belongs to the set or a E(p) property holds and there is a condition q below p
in which is uniformly recursive in p, and which is in the dense set.
With the above remarks in mind, let G be a subset of such that for every

Ex(A) subset S of eithel’ G extends an element of S or G contains a
condition which has no extension in S. It is easy to find such a set recursively
in ’, because a is low. G is sufficiently genetic for the proof of Section 2 to
apply. Therefore the degrees of G’s associated reals GO and G: satisfy the
proposition.
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The next step, as in Section 2, is to use the coding of antichains to code
further sets. For this application, an effective version of Lemma 2.14 must be
formulated.

4.4. LEMMA. Suppose that a is a low element of D(< 0’) and A is a
representative of a. Suppose that R is a uniformly low sequence of reals of degree
below a. There is a sequence of reals G such that if B and C are recursive in A,
and Go, G1,..., Gn is a sequence of reals from G, then B GO is recursive in
C G G2 G if and only if B is recursive in C and, for some i, GO
is equal to Gi. In addition A G is low and the sequence R + G, defined to be
R(i) G(i)[i to), is uniformly low.

Proof. Construct a set of reals which are mutually Cohen generic with
regard to certain dense sets. Namely, build G to be an ultrafilter on c, the
Cohen partial order for adding countably many reals by sequentially meeting
the El(A) subsets of c as possible. The question of whether there is an
extension of the current condition in the next El(A) set can be answered
recursively in ’ by the assumption that A’ is recursive in ’. The desired
lowness is insured as every and rl statement is forced along the way.

Suppose that B and C are recursive in A. Let e be an index for a recursive
functional and let i0z..., be a sequence of in_tegers. Let G(i) denote
Gio,... ,Gin, and let q(i) denote the condition on G(i) imposed by a condition
q on G. Suppose that p is a Cohen condition which appears during the
construction of G. If 0 is not equal to any i. (ij > 1), it is eas to come up
with a Y.(A) set of conditions q extending p making {e}sG(i) unequal to
Gio. Let k be any number greater than the length of p. Let S be the set of
product Cohen_ conditions q of the form q0, qx,..., qn) extending p for
which (e}Bq(i)k), but has value different than qio(k). If there is any
extension of p(i) which makes the computation converge, the set S is not
empty. _Similarly, if there is no extension q of p and no k such that
{e}B*q(i)(k) is unequal to C(k) then either there is a k such that
(e}B*q(i)(k) for every qi extending Pi, or C is recursive in B as C can be
computed from B and the finite Cohen condition p. Either G meets_ the Y.I(A)
set establishing an inequality, there is a k such that { e }s*G(i)(k)1’, or C is
recursive in B. This is exactly what is desired in Lemma 4.4. Q

4.5. THEOREM. Suppose that t is a uniformly low subset of D(< 0’)
bounded by a low degree a. is definable from parameters in ( < 0’).

Proof. Let R be the sequence which represents the dements of , perhaps
with duplications but uniformly low. Let G be a set of reals as guaranteed by
the preceding lemma. Let R + G be the sequence defined above. Let fg be the
degrees of the reals in G and let + fg be the degrees of the reals in R + G.
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By the lemma, both and + f are antichains and uniformly low. Proposi-
tion 4.2 implies that they are definable from parameters in (< 0’). Now
lemma 4.4 implies that can be defined from the following equation:

r (ag V g) +

The final ingredient for the definition of the recursively enumerable degrees
below 0’ is a result of Welch.

4.6. THEOREM [10]. There are two uniformly low sets and 6" of recursively
enumerable degrees such that each is bounded by a low degree and the recursively
enumerable degrees are exactly the set ofjoins of one element from each set.

Proof. Let K be the recursively enumerable set defined by

K= (<e,n)ln W).

The Sacks Splitting Theorem implies that K is the disjoint union of two low
recursively enumerable sets A and B. The two uniformly low sequences
that establish the theorem are R equal to (A)ln o) and S equal to
(B")ln to). Recall the notation used here is that A") is the nth column of
A. Every recursively enumerable set is the union of two elements, one from
each sequence; any join of recursively enumerable degrees is recursively
enumerable.

4.7. THEOREM. Let be the set of recursively enumerable degrees. The o#
is definable from parameters in (< 0’).

Proof. Let and 6a be the sets stated to exist in Welch’s theorem. By
Theorem 4.5, both of these are definable from parameters in ( < 0’). Welch’s
theorem states that the following equation defines in ( < 0’):

to e (3r e )(3s e 6a)(w (r V s)).

The methods of this section can be used to obtain sharper definability results
than the one mentioned in theorem 4.5. For example, the assumption that a is
low can be replaced with the condition that a be incomplete. However, the
known definability results are very limited.

4.8. Question. Suppose that R is an arithmetically definable set of degrees
in D( < 0’). Is R definable from parameters in ( < 0’)?

4.9. Question. Is the set of recursively enumerable degrees definable without
parameters in (< 0’)?
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