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I. Introduction

In this paper we develop representations of partial recursive functions and
recursively enumerable (r.e.) sets by equations in finitely presented groups.
These representations are an attempt to provide an algebraic method for
studying concepts from recursive function theory. Using our representations
we are able to obtain a new characterization of finitely generated (f.g.) groups
with solvable word problems.

This work is an outgrowth of a result by Boone and Higman [1].

THEOREM 1. (Boone-Higman) Let G be any finite presentation of a group
and S be any set of words of G that is closed under equality in G. Then S is

recursit)ely enumerable if and only if there exists a finitely presented group G’ in
which G is embedded and having an expression (X) such that for each word ,
of G, tb (Y,) holds if and only if , S.

In [1] a combinatorial proof of Theorem I was outlined by giving a proof for
the important case where the set S was a semigroup. Boone and Higman also
developed an algebraic proof based on the Higman embedding theorem. This
proof is a subargument of our argument and will be pointed out along the way.
It should be noted that the proof in [1] does not use the Higman embedding
theorem, so there is a possibility of getting a new proof of the Higman
embedding theorem from [1].

2. Terminology and statements of the main results

We envision ourselves as doing recursive function theory on elements of
groups, and we identify elements with the equivalence classes of words that
represent them. When it is necessary to distinguish between elements and

Received April 15, 1985.
The results of this paper were part of the author’s doctoral thesis [4] under the direction of

Professor W.W. Boone at the University of Illinois. The work could not have been done without
his advice and encouragement.

(C) 1986 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

284
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words, we use [w] to denote the element that is represented by the word w. A
set S of elements of a group is recursively enumerable (r.e.) if the underlying
set {w: [w] S) is r.e.
Our representations are in terms of parametric equations, where a parametric

equation of n variables in a group G is an element of the free product of G
with a free group F of rank n. The generators of the free group F are regarded
as variables ranging over G. Our Theorem 2 below differs from the Boone-
Higman theorem in that the restriction on the domain of the variable in the
parametric equation is removed.

THEOREM 2. Let G be a finitely generated, recursitely presented group, and
let S be a set of elements of the group. Then S is recursively enumerable if and
only if there exist a finitely presented group H into which G is embedded and a
parametric equation f(x) I in H such that for each element h of H, f(h) 1
if and only if h is in S.

DEFINITION. Let G and H be groups with finite, fixed sets of generators. A
partial function q from G to H is partial recursive if there is a partial recursive
function q’ from the words of G to the words of H such that for each word w
of G,

(i) whenever q’(w) is defined, q([w]) is defined and equals [q’(w)], and
(ii) whenever q([w]) is defined, there exists a word u for [w] such that

q’(u) is defined.
The partial function q’ is called a skeleton for q.

In the above definition, (i) assures that the skeleton is consistent with q and
is not defined for any extra arguments. Requirement (ii) assures that the
skeleton is large enough to support q0. Note also that this paper deals only with
finitely generated groups, so the definition always makes sense.

THEOREM 3. Let G be a finitely generated, recursively presented group and q
a partial function from G to G. Then p is partial recursive if and only if there
exist a finitely presented group H into which G is embedded and a parametric
expression f(x) in H such that for each element h in H,

(i) f(h) p(h), if p(h) is defined, and
(ii) f( h ) q G, if p(h ) is undefined.

DEFINITION. A parametric expression f(x) satisfying (i) and (ii) of the
above theorem is said to represent .
The simultaneous representation of all partial recursive functions from a

group to itself would be the analog in our group theoretic setting of the
enumeration theorem of recursive function theory [5]. The enumeration theo-
rem is the theorem that asserts the existence of a universal partial function.
The last theorem in this paper asserts that the enumeration theorem holds

for a finitely generated group if and only if the group has a solvable word
problem.
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THEOREM 4. Let G be a finitely generated group. Then G has a solvable word
problem if and only if there exist a finitely presented group H into which G is
embedded and a parametric expression p(z, y) of H such that for each partial
recursioe function from G to G there is an element of h ofHfor which p(h, y)
represents a(y) in H. Furthermore, if G is infinite and has a solvable word
problem, the element h can be taken to lie in G itself.

3. The proof of Theorem 2 and the basic construction

We prove the theorems in an order that avoids introducing all the details in
one proof. The proof of Theorem 2, which follows, illustrates the basic
algebraic construction for all three theorems in its most simple form.

Proof of Theorem 2. In one direction the proof of Theorem 2 is trivial.
Given a finite presentation for H, an effective enumeration of the words equal
to the identity exists and can be used to give an effective enumeration of the
solution set of f(x ) 1.

To demonstrate Theorem 2 in the other direction, we give an explicit
construction of the group H and the parametric expression f(x). Let G and S
be as in the statement of the theorem. Let G be G (s), the free product of G
with the infinite cyclic group (s). Let G2 be the group given by the presenta-
tion

(G1, r: r-lg-lsgr g-Xsg for g S).
Here we are using the notation

G (q,..., qj: r,..., r)

to show that G is given by a presentation with generators q through q and
relators r through r,. We use the shorthand notation (G, h: s) to abbreviate
the addition of an additional generator h and relator s to the presentation
of G.

Let F denote the set of elements ( g-lsg: g S } in G. Note that the set F
freely generates a free subgroup of G. The group G2 is the HNN extension of
G1 with respect to the identity isomorphism on this free subgroup. Since S is
recursively enumerable and G is finitely generated and recursively presented,
the group G2 is finitely generated and recursively presented. By the Higman
embedding theorem [2], G2 can be embedded in a finitely presented group G3.

The group G suffices for the role of the group G’ in the original Boone-
Higman result, Theorem 1. The construction so far, together with the next
lemma, complete the algebraic proof by Boone and Higman of their result. The
equation

r-x- sxrx- s-x 1

is the required expression (x) for this theorem.
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LEMMA 3.1.
in S.

For each x in G, r-ix-Isxr x-sx in G if and only if x is

Proof Suppose that x is a word of G satisfying

r- ix- 1sxl" x- 1sx in G3.
Since x, r, and s are all in G2, the equation

r- lX- lsxrx- Is-x 1

holds in G2. Britton’s lemma then shows that there must be an r-pinch between
r-a and r. Thus x-lsx must be in the free subgroup of G generated by F.
Since this subgroup is free and x is s-free, we conclude that x-sx must be a
generator of the free subgroup. Thus x is a word for an element of S.

On the other hand, if x is in S, that r-x-lsxr equals x-sx is an immediate
consequence of the defining relations.
To continue with the proof of Theorem 2, let G4 be given by

(G3, P P lyp y for each generatory of G).
Let H be the free product G4 * {t). The group G4 is an HNN extension of G3,
and it is finitely presented since the distinguished subgroup G is finitely
generated. The group H is then also finitely presented.
We diagram the groups defined so far, together with some groups yet to be

defined that are to play a role later in the proof. The reader’s attention is
drawn to the fact that the same diagram is valid for future proofs and will be
cited again.

G

G1 G,

x

K

G G3, p IP YP Y, for each
generator y of G)

n G4 * (t )
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The group H is our desired finitely presented group. The desired parametric
equation is

(1) r- ix- Xsxrtp- ix- lpxt- ix- is- 1x 1.

LEMMA 3.2. Let w be a word ofH that satisfies

r- lw- lswrtp- lw- lpwt- 114)- 1S- 11 1

in H. Then there exists a word v of G4 such that
( ) w v holds in H,
( ii ) p- lvp v holds in G4, and

( iii ) r- iv- lsvr v- lsv holds in G4.

Proof. It is more convenient to deal with the equivalent form

(2)

of the equation.

r- lw- lswrtp- lw- lp w- lswtw-

First it must be shown that (2) cannot hold for w unless w satisfies (i) for
some t-free word v. Suppose that w is not equal to any t-free word. Then w is
equal in H to a t-reduced word guh, where g and h are words of G4 and u
begins and ends with (possibly the same) occurrences of t-symbols. We
substitute guh for w in (2) to obtain

(3) r-lh-lu-lg-lsgtthrt-lh-lu-lg-lp h-lu-Xg-sguhth-Xu-lg-.
A B C D E F

Now we analyze (3) in light of the normal form theorem for free products.
Observe that if no t-cancellations occur in (3), then (3) cannot hold in H. This
is because if no t-cancellations occur, the left and right sides of (3) are in free
product normal form, but they begin with the unequal factors r-h- and h-.
Next observe that because u is in t-reduced form and begins and ends with

t-symbols, no t-cancellations occur inside u and, indeed, the possible t-cancel-
lations are across the subwords identified in (3). Since g-lsg 1, there can be
no t-cancellation across the subwords labeled A and D. This leaves the
possibilities B, C, E, and F.
Now observe that in (3) as written, the fight and left sides are parallel in t,

i.e., they have the same sequence of occurrences of and t-1. If (3) holds, then,
by the normal form theorem for free products, a t-cancellation on one side of
the equation must be balanced by one on the other side. Suppose now that
there is a t-cancellation at either of the remaining fight-hand side locations E
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or F. Then h 1. However, h 1 implies hr r 1 and p-lh-1 p-1 4: 1.
Thus there can be no t-cancellation on the left-hand side (locations B and C)
that occurs simultaneously with one on the fight-hand side.
The possibilities for t-cancellations in (3) are exhausted, and the assumption

that w does not have a t-free form and yet satisfies (2) is contradicted. Thus
there is a t-free word v that equals w in H and satisfies (2).
We substitute v for w in (2) to obtain

r- iv- Xsvrtp- 113- lp v- Xsvtv- 1,

which has only the displayed occurrences of t-symbols. Thus by the normal
form theorem for free products, the corresponding pairs of factors from G4 are
equal, that is,

p-lv-lp V -1 and r-lv-svr V-Isv,

and the proof of the lemma is complete.

Continuing with the proof of Theorem 2, we assume that w is a word
satisfying (2). From the last lemma we know w is equal to a t-free word v.
From (ii) of that lemma, pv vp. Thus we know that v represents an element
of the subgroup of G4 generated by G together with p. Call this subgroup I,
and assume now that v is written on the generators of I. Let J be the
subgroup of G4 generated by G together with p and s. Let K be the subgroup
of a4 generated by G together with p, r, and s. Considered as a subgroup of
the HNN extension G4 of G3, we see that K has the presentation

(G r, s, p" r- x- sxr x- lsx, if x S,

p-yp y, for each generator y of G).

Thus K is an HNN extension of J with stable letter r. To conclude finally that
(2) implies w is in S, we require only the following result.

LEMMA 3.3. For w in I, the equation r-
only if w is in S.

w-swr w- lsw holds in G4 if and

The statement and the proof of Lemma 3.3 are those of Lemma 3.1 with w,
I, J, K, and G4 replacing x, G, Gx, G2, and G3, respectively.
To finish the proof of Theorem 2, observe that, if w is in S, then (2) holds

for w as a direct consequence of the relations of the groups constructed.

4. How to represent partial recursive functions

In this section we give the proof of Theorem 3 and show how to represent
partial recursive functions in a group.
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Proof of Theorem 3. Suppose first that the group H and the parametric
expression f(x) satisfying (i) and (ii) exist. A partial recursive skeleton for tp is
defined as follows. There exist effective procedures for enumerating all the
words in G and for enumerating all pairs of words equal in H. The words on
the generators of G alone can be effectively recognized. In one list the words
f(wi), where {wi: i= 0,1,... ) is an effective listing of words of G, are
enumerated. In a second list the pairs of words equal in H are enumerated.
After each f(w) in the first list is enumerated, the portion of the second list
that already exists is checked for pairs consisting of f(wi) and a word u on the
generators of G alone. If such a pair is found, f(w) is crossed off and the pair
(w, u) is added to qY. Similarly when a pair is added to the second fist, the
portion of the first list that already exists is checked, and words are crossed off
and pairs added to p’ as appropriate. Thus the graph of a skeleton tp’ for tp is
recursively enumerated, and tp is partial recursive.

To go the other way, we assume that tp is partial recursive and that tp’ is a
partial recursive skeleton for tp. The construction of H is similar to the
construction used in Theorem 2. Let G G (s) as before. Let G2 be defined
by

(G1, r" r-lw-ls2wr w-lsq’(w)sw
for each word w for which tp’(w) is defined).

Let A and B be the sets

and
{ w-sEw" p’(w) is defined)

{ w-lsp’(w)sw p’(w) is defined).

These are sets of words. Let [A] and [B] be the sets of elements represented by
words in A and B, respectively. Each of the sets [A] and [B] freely generates a
free subgroup of G1. The map sending g-ls2g to g-isp(g)sg is a bijection
between [A] and [B] and induces an isomorphism between the free subgroups.
Thus G2 is an HNN extension of G. Since tp is partial recursive, we can
effectively enumerate the set of relations of G2 that equates words in A to
words in B. Thus, since G1 is finitely generated and recursively presented, so is
G2. Therefore G2 can be embedded in a finitely presented group G by the
Higman embedding theorem. The groups G4 and H are constructed from G as
in the proof of Theorem 2.
The parametric expression f(x) required for the theorem is

s- lxr- ix- is 2xrtpx- lp- lxt- x s 1.

We need a lemma similar to Lemma 3.2 in the proof of Theorem 2.
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LEMMA 4.1. Let q be a word of G, and let w be a word of H satisfying
q f(w). Then there is a word o of G4 such that

(i) o= winH,
( ii) p-lvp o in G4, and
( iii ) r- iv is 2vr v- lsqsv in G4.

Proof. Assume without loss of generality that w is t-reduced. First of all it
must be shown that w has no occurrences of t. Suppose that w has an
occurrence of t. Then w is guh, where g and h are words of G4 and u begins
and ends with (possibly the same) occurrences of t-symbols. Writing out
f(guh) q and conjugating, we get

r- lh- lu- lg- ls2guhrtph- lu- lg- h-u-g- lsqsguhth-u-g- lp.
A B C D E F

This equation is now analyzed via the normal form theorem for free
products, as in lemma 3.2, to show that the assumption that w has a t-reduced
form containing must be false. Thus there is a v in G4 with v w in H.

Substituting v for w in f(w) q and conjugating, we get

r- iv 1s 2vrtpv v sqsvtv- lp

which has only the displayed occurrences of t. Equations (ii) and (iii) of the
lemma statement then follow from the normal form theorem for free products.
To continue with the proof of Theorem 3, assume that f(h) is in G for some

element h of H, that is, f(w) q for some word w representing h in H and
for some word q of G. By arguments parallel to those in the proof of Theorem
2 we find that w is equal to a word v of G for which V-Is2v is in A. Thus ’(v)
is defined and (h) ([w]) ([v]) ’(v). So (ii) of our theorem holds
for f.
That (i) of the theorem holds is a direct consequence of the defining

relations.

5. Characterizing f.g. groups with solvable word problem

Recall our last theorem, Theorem 4, asserts that the enumeration theorem
holds for a finitely generated group if and only if the group has a solvable
word problem. Essentially all of the algebra has been done in the proofs of the
previous theorems. Thus the proof that follows involves arguments that have
the flavor of recursive function theory.

Proof of Theorem 4. Assume that G has solvable word problem, and let q
be a universal partial function, which for simplicity of notation we consider as
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going from pairs consisting of a natural number and a word of G to the words
of G. Thus (i, w) pi(w), where (tpi: 0,1,... } is an enumeration of the
partial recursive functions from the words of G to the words of G. The
existence of such a function is a consequence of the enumeration theorem of
ordinary recursive function theory.
We define a partial function from the ordered pairs consisting of a natural

number and a word of G to the words of G as follows. The partial function q9

considered as the set

((i, o, w): tp(i, v) w}

is r.e. The new partial function is to be a subset of tp such that for each
natural number j, tk(j, v) is a partial function of v that is compatible with
equality in G. We construct this new partial function k by sorting out extra
triples from qo. Enumerate qo. At each stage of the enumeration, add the newly
enumerated triple (i, v, w) to , unless there is a triple (i, v’, w’) already in 6,
for which v v’ but w : w’. This procedure is effective, since we have an
algorithm for the word problem of G. Thus 6 is partial recursive.

Let G’ be G (n). Since the solvability of the word problem implies that G
has a recursive presentation, G’ is recursively presented. If G is infinite, let
S ( gi: N } be a set of words each of which represents a distinct element
of G. Since G has solvable word problem, such a set can be enumerated
effectively. It can also be assured in the enumeration of S that when is less
than j, the Godel number of gi is less than the Godel number of gj.. Thus S
may be taken to be recursive. If G is finite, let g be n. Again S
(gi: N } is recursive.
The word ginv encodes the pair (gi, v }. Define p’(ginv) to be tp(i, v), and

let 6’ be undefined for other arguments. Apply the construction of Theorem 3,
with minor modifications, to ’ considered as the skeleton of a partial
recursive function from G’ to G’. The construction is the same up to the
construction of G4, which must be defined by the presentation

(G3, p: p-lyp y if y is a generator of G),

rather than by the presentation

(G3, p: p-lyp y if y is a generator of G’),

which would be the case if the construction were applied exactly as in the
proof of Theorem 3. The group H is then G4 * (t) as before.
The parametric expression p(z, y) is then

s ( zny ) r- ( zny ) s 2 ( zny ) rtp ( y ) p ( y ) ( zny ) Xs
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Here zny has been substituted for x in the part of the expression f(x) in the
proof of Theorem 3 actually used to define values, and y has been substituted
for x in the part where the "domain" is limited to G. The latter substitution
assures that y is limited to G, the original group, and not the group G’.

Given some particular partial recursive function et from G to G, let a’ be a
partial recursive skeleton for a. Then for some in N, we have a’(y) p(i, y)
as partial functions of y. Since a’ is a skeleton, tp(i, y) (i, y). Thus from
the relations set forth in the construction, it is dear that p(g, y) a(y)
when a(y) is defined.

Consider the parametric equation q P(gi, Y), which is

q s- lgirlyr- ly-1n Igs -g,nyrtpy-p-yt-y-in lg]- S- 1.

It is of the same form as the parametric equation in Lemma 4.1 except that
sgn or n-lg s appears instead of s. However, the s-weight remains 2 in the
subwords

n-Ig-s 2gin and n-lg sqsgin

(which appears after conjugation) and this is all that is required in the proof of
Lemma 4.1. Thus Lemma 4.1 can be used to show that if w is a word of H,
then q p(g, w) for some word q of G implies that there is a word v of G4
satisfying

(i) v=winH,
(ii) p-op v in G4, and
(iii) r- XV in lg s2gnvr v- Xn- Xg[ sqsgnv in G4.

Proceeding as in the proof of Theorem 3 and using the fact that G4 has
relations p-yp =y for each generator y of G (not G’), we conclude that
p(gi, y) is in G only if a(y) is defined. Thus p(g, y) represents a(y).
Now we prove the theorem going in the other direction. Assume the

existence of a finitely presented group H in which G is embedded and a
parametric expression p(z, y) that is universal for the one variable partial
recursive functions from G to G in the manner set forth in the statement of
the theorem. Without loss of generality assume that G is non-trivial. Let z be
a fixed word of G that is not equal to the identity.

Since H is finitely presented, the set of words of H that are equal to the
identity and the set of words of G that are equal to the identity are each r.e.
The parametric expression p(x, y) will be used to show that the set of words
that are not equal to the identity is also r.e. We call this last set NE.

Let #w be the Godel number of a word w of H. Let (i, j, k) be the image
of (i, j, k) under a recursive bijection from N3 onto N. We enumerate the set
NE in stages.
At stage (#w, #v, k) we do k steps in the enumeration of the sets

Ao= {u: uisawordofGandu=p(v,1)}
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and

Bo,w= (u" uisawordofGandu=p(v,w))

If, at this stage, 1 appears in A o and z appears in Bo, w, we put w in our listing
of NE.

It remains to show that all words in NE are enumerated. Suppose that
w 4:1 for a word w of G. Then

1
z
undefined

if x is 1,
if x is w,
otherwise,

is a skeleton of a partial recursive function fl from G to G. This partial
recursive function must be represented by p(h, y) for some h in H. Thus z
eventually appears in Bh, and 1 eventually appears in Ah. Therefore w is
listed as a member of NE by our listing.
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