DIAGONAL EMBEDDINGS OF NILPOTENT GROUPS

BY

NARAIN GUPTA,¹ NORAI ROCCO² AND SAID SIDKI²

Dedicated to the memory of William Boone

1. Introduction

Among various embeddings of a group G into $G \times G \times G$ are the embeddings

$$\phi_1: g \to (g, g, 1)$$
 and $\phi_2: g \to (1, g, g)$

which yield a weak form of permutability between the isomorphic groups G^{ϕ_1} and G^{ϕ_2} , namely, $g^{\phi_1}g^{\phi_2} = g^{\phi_2}g^{\phi_1}$ for all $g \in G$. This natural situation leads to the study of the double group

$$\mathbf{D}(G) = \langle G^{\phi_1}, G^{\phi_2}; g^{\phi_1}g^{\phi_2} = g^{\phi_2}g^{\phi_1} \text{ for all } g \in G \rangle$$

as the quotient group of the free product $G^{\phi_1} * G^{\phi_2}$ by the commutator relations $[g^{\phi_1}, g^{\phi_2}] = 1$ for all $g \in G$. When G is finite, $\mathbf{D}(G)$ is finite (Sidki [4]), and when G is a finite p-group of order p^k , p odd, $\mathbf{D}(G)$ is of order dividing $p^{2k}p^{k(k-1)/2}$ (Rocco [3]). In this paper we develop commutator calculus for the double group $\mathbf{D}(G)$ and obtain a detailed description of its lower central series $\gamma_i(\mathbf{D}(G))$, $i \geq 1$, in terms of the lower central series of G. We prove that if G is an m-generator nilpotent group of class at most c with $m \geq 2, c \geq 1$, then $\mathbf{D}(G)$ is nilpotent of class at most $\max\{m, c+2\}$. Furthermore, if $m \geq c + 3$ then $\gamma_{c+3}(\mathbf{D}(G))$ is an elementary abelian 2-group of rank at most

$$\sum_{k=c+3}^{m} \binom{m}{k}$$

(Theorems 3.2 and 3.3).

© 1986 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received April 12, 1985.

¹Research supported by NSERC (Canada)

²Research supported by CNP_q (Brazil)

2. Preliminaries

We use standard commutator notation (see, for instance, [2]). For elements x, y, x_i , y_i in a group G,

$$[x, y] = x^{-1}y^{-1}xy = x^{-1}x^{y};$$

$$[x_{1}, \dots, x_{n+1}] = [[x_{1}, \dots, x_{n}], x_{n+1}];$$

$$[x, ny] = [x, y_{1}, \dots, y_{n}] \text{ with } y_{1} = \dots = y_{n} = y;$$

$$[x_{1}, \dots, x_{m}; y_{1}, \dots, y_{n}] = [[x_{1}, \dots, x_{m}], [y_{1}, \dots, y_{n}]]$$

and so on. If G_1, \ldots, G_n are subgroups of G, then $[G_1, \ldots, G_n]$ is the subgroup of G generated by all commutators $[g_1, \ldots, g_n], g_i \in G_i$. In particular, $\gamma_n(G)$ = $[G_1, \ldots, G_n]$ with $G_1 = \cdots = G_n = G$, is the *n*-th term of the lower central series of G.

For elements x, y, z in G, the following commutator identities are standard and will be used without reference:

$$[x, y = [x, y^{-1}]^{-y} = [x^{-1}, y]^{-x};$$

$$[x, yz] = [x, z][x, y]^{z} = [x, z][x, y][x, y, z];$$

$$[xy, z] = [x, z]^{y}[y, z] = [x, z][x, z, y][y, z];$$

$$[x, y^{-1}, z]^{y}[y, z^{-1}, x]^{z}[z, x^{-1}, y]^{x} = 1;$$

or equivalently

$$[z, [x, y]] = [z, y^{-1}, x^{z}]^{y} [z, x^{-1}, y^{-1}]^{xy} \quad \text{(Witt identity)}$$
$$[x, y, z][y, z, x][z, x, y] \equiv 1 \mod \gamma_{2}(\gamma_{2}\langle x, y, z \rangle) \quad \text{(Jacobi Congruence)}$$

We simplify our notation by redefining the double group D(G) of G as

$$\mathbf{D} = \mathbf{D}(G) = \langle G, G^{\phi}; [g, g^{\phi}] = 1 \text{ for all } g \in G \rangle,$$

where $\phi: G \to G^{\phi}$ is an isomorphism (note that in Sidki [4] and Rocco [3] the notation for D(G) is $\chi(G)$). In the following lemmas we derive some fundamental relations which hold in the group D(G).

LEMMA 2.1. For all $x, y, z, y_i, z_i \in G$ we have:

- (i) $[x^{\phi}, y] = [x, y^{\phi}];$
- (ii) $[x^{\phi}, y]^{z^{\phi}} = [x^{\phi}, y]^{z}$; and more generally, (iii) $[x^{\phi}, y]^{\omega(z_1^{e_1}, \dots, z_n^{e_n})} = [x^{\phi}, y]^{\omega(z_1, \dots, z_n)}$ for $\varepsilon_i \in \{1, \phi\}$ and $\omega =$ $\omega(z_1,\ldots,z_n)\in G;$
- (iv) $[x^{\phi}, y, x] = [x, y, x^{\phi}]$; and more generally,
- (v) $[x^{\phi}, y_1, \dots, y_n, x] = [x, y_1, \dots, y_n, x^{\phi}].$

Proof of (i). We use the commuting relations $(xy^{-1})(xy^{-1})^{\phi} = (xy^{-1})^{\phi}(xy^{-1}), xx^{\phi} = x^{\phi}x, yy^{\phi} = y^{\phi}y$ to obtain, in turn

$$\begin{aligned} xy^{-1}x^{\phi}y^{-\phi} &= x^{\phi}y^{-\phi}xy^{-1}; & x^{-\phi}xy^{-1}x^{\phi} &= y^{-\phi}xy^{-1}y^{\phi}; \\ xx^{-\phi}y^{-1}x^{\phi} &= y^{-\phi}xy^{\phi}y^{-1}; & x^{-\phi}y^{-1}x^{\phi}y &= x^{-1}y^{-\phi}xy^{\phi}; \\ & \left[x^{\phi}, y\right] &= \left[x, y^{\phi}\right]. \end{aligned}$$

Proof of (ii). We use (i) to write $[x^{\phi}, yz] = [x, y^{\phi}z^{\phi}]$ which, when expanded, yields, in turn

$$[x^{\phi}, z] [x^{\phi}, y]^{z} = [x, z^{\phi}] [x, y^{\phi}]^{z^{\phi}}; [x^{\phi}, y]^{z} = [x, y^{\phi}]^{z^{\phi}}; [x^{\phi}, y]^{z} = [x^{\phi}, y]^{z^{\phi}}.$$

Proof of (iii). Let $\omega(z_1^{\epsilon_1}, z_2^{\epsilon_2}, \dots, z_n^{\epsilon_n}) = g_1 h_1^{\phi} g_2 h_2^{\phi} \cdots g_m h_m^{\phi}$ so that $\omega(z_1, z_2, \dots, z_n) = g_1 h_1 g_2 h_2 \cdots g_m h_m.$

We prove by induction on $m \ge 1$ that

$$\left[x^{\phi}, y\right]^{g_1h_1^{\phi}\cdots g_mh_m^{\phi}} = \left[x^{\phi}, y\right]^{g_1h_1\cdots g_mh_m}.$$

For m = 1,

$$[x^{\phi}, y]^{g_1h_1^{\phi}} = [x^{\phi}, y]^{g_1^{\phi}h_1^{\phi}} (by (ii)) = [x^{\phi}, y]^{(g_1h_1)^{\phi}} = [x^{\phi}, y]^{g_1h_1} (by (ii)).$$

For the inductive step, we assume $[x^{\phi}, y]^{g_1h_1^{\phi} \cdots g_mh_m^{\phi}} = [x^{\phi}, y]^{g_1h_1 \cdots g_mh_m}$. Then,

$$[x^{\phi}, y]^{g_1 h_1^{\phi} \cdots g_m h_m^{\phi} g_{m+1} h_{m+1}^{\phi}} = [x^{\phi}, y]^{g_1 h_1 \cdots g_m h_m g_{m+1} h_{m+1}^{\phi}}$$
$$= [x^{\phi}, y]^{(g_1 h_1 \cdots g_m h_m g_{m+1})^{\phi} h_{m+1}^{\phi}}$$
$$= [x^{\phi}, y]^{g_1 h_1 \cdots g_{m+1} h_{m+1}} (by (ii))$$

Proof of (iv). We use (iii) to write $1 = [y, x^{\phi}; y, x^{\phi}] = [y, x^{\phi}; y, x]$. Then, expansion of $[y, x^{\phi}x] = [y, xx^{\phi}]$ yields, in turn,

$$[y, x][y, x^{\phi}][y, x^{\phi}, x] = [y, x^{\phi}][y, x][y, x, x^{\phi}];$$

$$[y, x^{\phi}, x] = [y, x, x^{\phi}]; \qquad [x^{\phi}, y, x]^{-[y, x^{\phi}]} = [x, y, x^{\phi}]^{-[y, x]};$$

$$[x^{\phi}, y, x] = [x, y, x^{\phi}] (by (iii)).$$

Proof of (v). By induction on $n \ge 1$. For n = 1 the result is given by (iv). We assume that $n \ge 2$ and that the result holds for n - 1. Thus,

$$[x^{\phi}, y_1, \dots, y_{n-2}, (y_{n-1}y_n), x] = [x, y_1, \dots, y_{n-2}, (y_{n-1}y_n), x^{\phi}]$$

which upon expansion yields,

$$\begin{split} & \left[\left[x^{\phi}, y_{1}, \dots, y_{n-2}, y_{n} \right] \left[x^{\phi}, y_{1}, \dots, y_{n-2}, y_{n-1} \right] \left[x^{\phi}, y_{1}, \dots, y_{n-2}, y_{n-1}, y_{n} \right], x \right] \\ & = \left[\left[x, y_{1}, \dots, y_{n-2}, y_{n} \right] \left[x, y_{1}, \dots, y_{n-2}, y_{n-1} \right] \right] \\ & \times \left[x, y_{1}, \dots, y_{n-2}, y_{n-1}, y_{n} \right], x^{\phi} \right]. \end{split}$$

Therefore,

$$\begin{split} \left[x^{\phi}, y_{1}, \dots, y_{n-2}, y_{n}, x\right]^{\left[x^{\phi}, y_{1}, \dots, y_{n-2}, y_{n-1}\right]\left[x^{\phi}, y_{1}, \dots, y_{n-2}, y_{n-1}, y_{n}\right]} \\ \times \left[x^{\phi}, y_{1}, \dots, y_{n-2}, y_{n-1}, x\right]^{\left[x^{\phi}, y_{1}, \dots, y_{n-2}, y_{n-1}, y_{n}\right]} \\ \times \left[x^{\phi}, y_{1}, \dots, y_{n-2}, y_{n-1}, y_{n}, x\right] \\ &= \left[x, y_{1}, \dots, y_{n-2}, y_{n}, x^{\phi}\right]^{\left[x, y_{1}, \dots, y_{n-2}, y_{n-1}, y_{n}\right]} \\ \times \left[x, y_{1}, \dots, y_{n-2}, y_{n-1}, x^{\phi}\right]^{\left[x, y_{1}, \dots, y_{n-2}, y_{n-1}, y_{n}\right]} \\ \times \left[x, y_{1}, \dots, y_{n-2}, y_{n-1}, x^{\phi}\right]^{\left[x, y_{1}, \dots, y_{n-2}, y_{n-1}, y_{n}\right]} \\ &\times \left[x, y_{1}, \dots, y_{n-2}, y_{n-1}, y_{n}, x^{\phi}\right], \end{split}$$

which by the induction hypothesis, together with (iii) yields

$$\left[x^{\phi}, y_1, \ldots, y_n, x\right] = \left[x, y_1, \ldots, y_n, x^{\phi}\right]$$

as desired. This completes the proof of Lemma 2.1.

For subgroups H, K of a group G, we set [H, 0k] = H and denote by [H, nK] the subgroup

$$[H, K_1, \ldots, K_n] \quad \text{with } K_i = K \ (1 \le i \le n).$$

In particular, $\gamma_{n+1}(G) = [G, nG]$. We now prove:

LEMMA 2.2. (i) $[G^{\phi}, G, G^{\varepsilon_1}, \dots, G^{\varepsilon_n}] = [G^{\phi}, (n+1)G]$ for all $n \ge 1$ and all $\varepsilon_i \in \{1, \phi\}$;

- (ii) $[G^{\phi}, mG; \gamma_n(G)] \leq [G^{\phi}, (m+n)G]$ for all $m \geq 0, n \geq 1$;
- (iii) $[G^{\varepsilon_1}, \ldots, G^{\varepsilon_n}] \leq [G^{\phi}, (n-1)G]\gamma_n(G)^{\mathbf{D}}\gamma_n(G^{\phi})^{\mathbf{D}}$, where $H^{\mathbf{D}}$ denotes the normal closure of H in $\mathbf{D} = \mathbf{D}(G)$.

Proof. The proof of (i) is an immediate consequence of Lemma 2.1 (iii).

The proof of (ii) is by induction on $n \ge 1$. For n = 1, there is nothing to prove. For the inductive step we assume $n \ge 2$ and that the result holds for n - 1. With $x \in \gamma_{n-1}(G)$, $y \in G$, $z \in [G^{\phi}, mG]$, the equivalent form of the Witt identity $[z, [x, y]] = [z, y^{-1}, x^z]^y [z, x^{-1}, y^{-1}]^{xy}$, together with Lemma 2.1 (iii), yields

$$\begin{split} \left[G^{\phi}, mG, \gamma_n(G)\right] &\leq \left[G^{\phi}, (m+1)G, \gamma_{n-1}(G)\right]^G \left[G^{\phi}, mG, \gamma_{n-1}(G), G\right]^G \\ &\leq \left[G^{\phi}, (m+1)G, \gamma_{n-1}(G)\right] \left[G^{\phi}, mG, \gamma_{n-1}(G), G\right] \\ &\leq \left[G^{\phi}, (m+n)G\right]. \end{split}$$

For the proof of (iii) we may assume $n \ge 2$ and

$$(\varepsilon_1,\ldots,\varepsilon_n) \neq (1,\ldots,1), (\phi,\ldots,\phi).$$

Then, without loss of generality,

$$(\varepsilon_1, \ldots, \varepsilon_n) = (\phi, \ldots, \phi, 1, \varepsilon_{i+2}, \ldots, \varepsilon_n)$$
 for some $1 \le i < n$.

Thus

$$[G^{\epsilon_1}, \dots, G^{\epsilon_n}] = [\gamma_i(G)^{\phi}, G, G^{\epsilon_{i+2}}, \dots, G^{\epsilon_n}]$$

= $[\gamma_i(G)^{\phi}, G, (n-i-1)G]$ (by Lemma 2.1 (iii))
= $[\gamma_i(G), G^{\phi}, (n-i-1)G]$
= $[G^{\phi}, \gamma_i(G), (n-i-1)G]$
 $\leq [G^{\phi}, (n-1)G]$ (by (ii)).

As a corollary of Lemma 2.2 we obtain:

LEMMA 2.3. Let $\gamma_{c+1}(G) = \{1\}$ and $\mathbf{D} = \mathbf{D}(G)$. Then (i) $[\gamma_{c+1}(\mathbf{D}), \gamma_2(\mathbf{D})] = \{1\}$, (ii) $[\gamma_i(\mathbf{D}), \gamma_2(\mathbf{D}), (2c - 1 - i)\mathbf{D}] = \{1\}$ for all $i \ge 2$.

Proof. For the proof of (i) we have, by Lemma 2.2 (iii), $\gamma_{c+1}(\mathbf{D}) = [G^{\phi}, cG]$. Thus,

$$\begin{bmatrix} \gamma_{c+1}(\mathbf{D}), \gamma_2(\mathbf{D}) \end{bmatrix} = \begin{bmatrix} G^{\phi}, cG; G^{\varepsilon_1}, G^{\varepsilon_2} \end{bmatrix} \quad (\varepsilon_1, \varepsilon_2 \in \{1, \phi\})$$
$$= \begin{bmatrix} [G^{\phi}, cG], [G, G] \end{bmatrix} \quad (by \text{ Lemma 2.1 (iii)})$$
$$= \begin{bmatrix} [G^{\phi}, cG], [G^{\phi}, G] \end{bmatrix}$$
$$= \begin{bmatrix} [G^{\phi}, G], [G, cG] \end{bmatrix} \quad (by \text{ Lemma 2.1 (iii)})$$
$$= \{1\}.$$

For the proof of (ii) we make repeated application of the inclusion

$$[A, B, C] \leq [A, C, B][B, C, A]$$

for normal subgroups A, B, C of **D** to obtain, for $i \ge 2$,

$$[\gamma_i(\mathbf{D}), \gamma_2(\mathbf{D}), (2c-1-i)\mathbf{D}] \leq \prod_{\substack{m+n=2c+1\\m,n\geq 2}} [\gamma_m(\mathbf{D}), \gamma_n(\mathbf{D})].$$

Since $m \ge c + 1$ or $n \ge c + 1$, the result follows by (i).

As in Levin [1], an immediate consequence of Lemma 2.3 yields:

LEMMA 2.4. If $\gamma_{c+1}(G) = \{1\}$, then for all $g_i \in G$ and $\varepsilon_i \in \{1, \phi\}$,

$$\left[g_1^{\epsilon_1}, g_2^{\epsilon_2}, g_3^{\epsilon_3}, \dots, g_{2c+1}^{\epsilon_{2c+1}}\right] = \left[g_1^{\epsilon_1}, g_2^{\epsilon_2}, g_{3\sigma}^{\epsilon_{3\sigma}}, \dots, g_{(2c+1)\sigma}^{\epsilon_{(2c+1)\sigma}}\right]$$

for all permutations σ of $\{3, \ldots, 2c + 1\}$.

An important consequence of Lemma 2.4 is the following Lemma on local nilpotency of D(G).

LEMMA 2.5. If G is a locally nilpotent group then D(G) is also locally nilpotent.

Proof. Let $\{h_1, \ldots, h_n\}$ be a set of elements of $\mathbf{D} = \mathbf{D}(G)$ and let $\{g_1, \ldots, g_m\}$ be its support in G. We wish to prove that $\langle h_1, \ldots, h_n \rangle$ is a nilpotent subgroup of **D**. Clearly, we may assume $m \ge 2$. Since $\langle g_1, \ldots, g_m \rangle$ is a nilpotent subgroup of G, say of class c, by Lemma 2.2 (iii), it suffices to prove that

$$\left[x^{\phi}, y, z_1, \dots, z_{c^*}\right] = 1$$

for some large $c^* > c$ and all $x, y, z_1 \in \langle g_1, \ldots, g_m \rangle$. With $c^* \ge 2cm$, by Lemma 2.3 and 2.4, $[x^{\phi}, y, z_1, \ldots, z_{c^*}]$ can be written as a product of commutators of the form

$$\left[x^{\phi}, y, k_1 g'_1, \dots, k_m g'_m\right]$$

where $\{g'_1, \ldots, g'_m\} = \{g_1, \ldots, g_m\}, k_1 \ge \cdots \ge k_m \ge 0 \text{ and } \sum_{i=1}^m k_i \ge c^* \ge 2cm$. It follows that $k_1 \ge 2c$ and, therefore, it suffices to prove that $[x^{\phi}, y, kz] = 1$ for all $k \ge 2c$ and $x, y, z \in \langle g_1, \ldots, g_m \rangle$.

Let $\overline{G} = \langle x, y, z \rangle$. Then, by hypothesis, $\gamma_{c+1}(\overline{G}) = \{1\}$. By Lemma 2.3, we may use the Jacobi congruence to write

$$[x^{\phi}, y, z, (k-1)z] = [x^{\phi}, z, y, (k-1)z][x^{\phi}, [y, z], (k-1)z]$$

and

$$[x^{\phi}, [y, z], (k-1)z] = [z, y, x^{\phi}, (k-1)z]$$
$$= [z, y, (k-1)z, x^{\phi}]$$
$$= 1.$$

Thus,

$$[x^{\phi}, y, z, (k-1)z] = [x^{\phi}, z, y, (k-1)z]$$

= $[z^{\phi}, x, y, (k-2)z, z]^{-1}$
= $[z, x, y, (k-2)z, z^{\phi}]^{-1}$ (by Lemma 2.1 (iv))
= 1.

This completes the proof of Lemma 2.5.

3. The main results

Let G be a nilpotent group of class at most $c, c \ge 1$. Then, by Lemma 2.1. (iv), $\mathbf{D} = \mathbf{D}(G)$ satisfies the identity

$$[x^{\phi}, y_2, \dots, y_{c+1}, x] = 1$$
(3.1)

for all $x, y_i \in G$.

If $G = \langle x, y \rangle$ then, modulo $\gamma_{c+3}(\mathbf{D}), \gamma_{c+2}(\mathbf{D})$ is generated by elements of the form $[x^{\phi}, z_2, \ldots, z_{c+1}x]$ and $[y^{\phi}, z_2, \ldots, z_{c+1}, y]$, with $z_1 \in \{x, y\}$, each of which is trivial by (3.1). It follows that $\gamma_{c+2}(\mathbf{D}) = \gamma_{c+3}(\mathbf{D})$. Since **D** is nilpotent (Lemma 2.5), we have $\gamma_{c+2}(\mathbf{D}) = \{1\}$. We record this as follows:

THEOREM 3.1. If G is a 2-generator nilpotent group of class at most c, then D(G) is nilpotent of class at most c + 1.

We now investigate the general case with $\gamma_{c+1}(G) = \{1\}$. Working modulo $\gamma_{c+3}(\mathbf{D})$, the identity (3.1) yields

$$1 = \left[x^{\phi}y_{1}^{\phi}, y_{2}, \dots, y_{c+1}, xy_{1}\right] = \left[x^{\phi}, y_{2}, \dots, y_{c+1}, y_{1}\right] \left[y_{1}^{\phi}, y_{2}, \dots, y_{c+1}, x\right]$$

which on commuting with x and using (3.1) gives

$$\left[y_1^{\phi}, y_2, \dots, y_{c+1}, x, x\right] \equiv 1 \pmod{\gamma_{c+4}(\mathbf{D})}$$
(3.2)

280

for all x, $y_i \in G$. Furthermore, modulo $\gamma_{c+4}(\mathbf{D})$, for $2 \le k \le c$, we have

$$\begin{bmatrix} y_1^{\phi}, y_2, \dots, y_k \end{bmatrix}, \begin{bmatrix} x, y_{k+1} \end{bmatrix}, y_{k+2}, \dots, y_{c+1}, x \end{bmatrix}$$

$$\equiv \begin{bmatrix} y_1^{\phi}, y_2, \dots, y_k \end{bmatrix}, \begin{bmatrix} x^{\phi}, y_{k+1} \end{bmatrix}, y_{k+2}, \dots, y_{c+1}, x \end{bmatrix} \quad \text{(by Lemma 2.1 (iii))}$$

$$\equiv \begin{bmatrix} x^{\phi}, y_{k+1} \end{bmatrix}, \begin{bmatrix} y_1, \dots, y_k \end{bmatrix}, y_{k+2}, \dots, y_{c+1}, x \end{bmatrix}^{-1}$$

$$\equiv \begin{bmatrix} x, y_{k+1} \end{bmatrix}, \begin{bmatrix} y_1, \dots, y_k \end{bmatrix}, y_{k+2}, \dots, y_{c+1}, x^{\phi} \end{bmatrix}^{-1} \quad \text{(by (3.1))}$$

$$\equiv 1 \quad (\text{since } \gamma_{c+1}(G) = \{1\}).$$

We record this as

$$\left[\left[y_{1}^{\phi}, y_{2}, \dots, y_{k}\right], [x, y_{k+1}], y_{k+2}, \dots, y_{c+1}, x\right] \equiv 1 \pmod{\gamma_{c+4}(\mathbf{D})} \quad (3.3)$$

for all $x, y_i \in G$ and all $2 \le k \le c$. By (3.3), for $2 \le k \le c$, we have

$$\begin{bmatrix} y_1^{\phi}, y_2, \dots, y_k, x, y_{k+1}, y_{k+2}, \dots, y_{c+1}, x \end{bmatrix}$$

$$\equiv \begin{bmatrix} y_1^{\phi}, y_2, \dots, y_{k+1}, x, y_{k+2}, \dots, y_{c+1}, x \end{bmatrix}$$

$$\vdots$$

$$\equiv \begin{bmatrix} y_1^{\phi}, y_2, \dots, y_{c+1}, x, x \end{bmatrix}$$

$$\equiv 1 \quad (by (3.2)).$$

Also, $[y_1^{\phi}, x, y_2, \dots, y_{c+1}, x] \equiv [x^{\phi}, y_1, \dots, y_{c+1}, x]^{-1} \equiv 1$ by (3.1). Thus we have

$$[y_1^{\phi}, y_2, \dots, y_k, x, y_{k+1}, \dots, y_{c+1}, x] \equiv 1 \pmod{\gamma_{c+4}(\mathbf{D})}$$
 (3.4)

for all $1 \le k \le c+1$. Replacing x by xz in (3.4) and expanding modulo $\gamma_{c+4}(\mathbf{D})$ yields the congruence

$$\left[y_1^{\phi}, \dots, y_k, x, y_{k+1}, \dots, y_{c+1}, z\right] \equiv \left[y_1^{\phi}, \dots, y_k, z, y_{k+1}, \dots, y_{c+1}, x\right]^{-1}.$$
(3.5)

Using (3.5) it follows that every commutator of weight c + 3 in **D** with a repeated entry x can be expressed, modulo $\gamma_{c+4}(\mathbf{D})$, as a product of commutators of the form

$$[y_1^{\phi}, \dots, y_k, x, y_{k+1}, \dots, y_{c+1}, x], \quad 1 \le k \le c+1,$$

which is trivial by (3.4). In particular, if G is an m-generator group with

 $\gamma_{c+1}(G) = \{1\}$ and $m \le c+2$, then $\gamma_{m+3}(\mathbf{D}) = \gamma_{m+4}(\mathbf{D}) = \cdots = \{1\}$, by Lemma 2.5. We have thus proved:

THEOREM 3.2. Let G be an m-generator nilpotent group of class at most c with $m \ge 2$, $c \ge 1$. Then for $m \le c + 2$, $\gamma_{c+3}(\mathbf{D}(G)) = \{1\}$.

Let G be nilpotent of class at most c. The congruence (3.5) also yields

$$\begin{bmatrix} y_1^{\phi}, \dots, y_{c+1}, x, z \end{bmatrix} \equiv \begin{bmatrix} y_1^{\phi}, \dots, y_{c+1}, z, x \end{bmatrix}^{-1}$$
$$\equiv \begin{bmatrix} y_1^{\phi}, \dots, y_{c+1}, x, z \end{bmatrix}^{-1} \text{ (by Lemma 2.3(i)),}$$

so that

$$\left[y_1^{\phi},\ldots,y_{c+1},x,z\right]^2 \equiv 1 \pmod{\gamma_{c+4}(\mathbf{D})}$$

By Theorem 3.2 every commutator of weight c + 4 in **D** with entries from the set

$$\{y_1, \ldots, y_{c+1}, x, z\}$$

is trivial. Thus we have

$$[y_1^{\phi}, \dots, y_{c+1}, x, z]^2 = 1.$$
 (3.6)

Repeated application of (3.5) yields

$$\left[y_1^{\phi}, y_2, \dots, y_{c+3}\right] = \left[y_1^{\phi}, y_{2\sigma}, \dots, y_{(c+3)\sigma}\right]^{|\sigma|}$$

where σ is a permutation of $\{2, \ldots, c+3\}$ and $|\sigma| = 1$ or -1 according as σ is even or odd. Thus, if G is an *m*-generator group with $m \ge c+3$, then for $c+3 \le k \le m$, there are $\binom{m}{k}$ choices for distinct *k*-element sets from the generators of G. This fact together with (3.6) gives us the following theorem.

THEOREM 3.3. Let G be an m-generator nilpotent group of class at most c with $m \ge 2$, $c \ge 1$. Then, for $m \ge c + 3$, $\gamma_{c+3}(\mathbf{D}(G))$ is an elementary abelian 2-group of rank at most

$$\sum_{k=c+3}^{m} \binom{m}{k}.$$

COROLLARY 3.4. (c.f. Rocco [3]) Let G be a p-group of class c with p odd. Then D(G) is a p-group of class at most c + 2.

DIAGONAL EMBEDDINGS OF NILPOTENT GROUPS

References

- 1. FRANK LEVIN, On some varieties of soluble group I, Math Zeitchr. vol. 85 (1964), pp. 369-372.
- 2. HANNA NEUMANN, Varieties of groups, Springer-Verlag, New York, 1967.
- 3. NORAI ROMEO ROCCO, On weak commutativity between finite p-groups, p odd, J. Algebra, vol. 76 (1982), pp. 471-488.
- 4. SAID SIDKI, On weak permutability between groups, J. Algebra, vol. 63 (1980), pp. 186-225.

University of Manitoba Winnipeg, Manitoba, Canada

UNIVERSIDADE DE BRESILIA BRESILIA, D.F., BRASIL

UNIVERSITY OF ALBERTA Edmonton, Alberta, Canada