DIAGONAL EMBEDDINGS OF NILPOTENT GROUPS

BY
Narain Gupta, ${ }^{1}$ Norai Rocco ${ }^{2}$ and Said Sidki ${ }^{2}$
Dedicated to the memory of William Boone

1. Introduction

Among various embeddings of a group G into $G \times G \times G$ are the embeddings

$$
\phi_{1}: g \rightarrow(g, g, 1) \text { and } \phi_{2}: g \rightarrow(1, g, g)
$$

which yield a weak form of permutability between the isomorphic groups $G^{\phi_{1}}$ and $G^{\phi_{2}}$, namely, $g^{\phi_{1}} g^{\phi_{2}}=g^{\phi_{2}} g^{\phi_{1}}$ for all $g \in G$. This natural situation leads to the study of the double group

$$
\mathbf{D}(G)=\left\langle G^{\phi_{1}}, G^{\phi_{2}} ; g^{\phi_{1}} g^{\phi_{2}}=g^{\phi_{2}} g^{\phi_{1}} \quad \text { for all } g \in G\right\rangle
$$

as the quotient group of the free product $G^{\phi_{1}} * G^{\phi_{2}}$ by the commutator relations $\left[g^{\phi_{1}}, g^{\phi_{2}}\right]=1$ for all $g \in G$. When G is finite, $\mathbf{D}(G)$ is finite (Sidki [4]), and when G is a finite p-group of order p^{k}, p odd, $\mathbf{D}(G)$ is of order dividing $p^{2 k} p^{k(k-1) / 2}$ (Rocco [3]). In this paper we develop commutator calculus for the double group $\mathbf{D}(G)$ and obtain a detailed description of its lower central series $\gamma_{i}(\mathbf{D}(G)), i \geq 1$, in terms of the lower central series of G. We prove that if G is an m-generator nilpotent group of class at most c with $m \geq 2, c \geq 1$, then $\mathbf{D}(G)$ is nilpotent of class at most $\max \{m, c+2\}$. Furthermore, if $m \geq c+3$ then $\gamma_{c+3}(\mathbf{D}(G))$ is an elementary abelian 2-group of rank at most

$$
\sum_{k=c+3}^{m}\binom{m}{k}
$$

(Theorems 3.2 and 3.3).

[^0]
2. Preliminaries

We use standard commutator notation (see, for instance, [2]). For elements x, y, x_{i}, y_{i} in a group G,

$$
\begin{aligned}
{[x, y] } & =x^{-1} y^{-1} x y=x^{-1} x^{y} ; \\
{\left[x_{1}, \ldots, x_{n+1}\right] } & =\left[\left[x_{1}, \ldots, x_{n}\right], x_{n+1}\right] ; \\
{[x, n y] } & =\left[x, y_{1}, \ldots, y_{n}\right] \text { with } y_{1}=\cdots=y_{n}=y ; \\
{\left[x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n}\right] } & =\left[\left[x_{1}, \ldots, x_{m}\right],\left[y_{1}, \ldots, y_{n}\right]\right]
\end{aligned}
$$

and so on. If G_{1}, \ldots, G_{n} are subgroups of G, then $\left[G_{1}, \ldots, G_{n}\right.$] is the subgroup of G generated by all commutators $\left[g_{1}, \ldots, g_{n}\right], g_{i} \in G_{i}$. In particular, $\gamma_{n}(G)$ $=\left[G_{1}, \ldots, G_{n}\right]$ with $G_{1}=\cdots=G_{n}=G$, is the n-th term of the lower central series of G.

For elements x, y, z in G, the following commutator identities are standard and will be used without reference:

$$
\begin{aligned}
& {\left[x, y=\left[x, y^{-1}\right]^{-y}=\left[x^{-1}, y\right]^{-x}\right.} \\
& {[x, y z]=[x, z][x, y]^{z}=[x, z][x, y][x, y, z]} \\
& {[x y, z]=[x, z]^{y}[y, z]=[x, z][x, z, y][y, z]} \\
& {\left[x, y^{-1}, z\right]^{y}\left[y, z^{-1}, x\right]^{z}\left[z, x^{-1}, y\right]^{x}=1}
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
& {[z,[x, y]]=\left[z, y^{-1}, x^{z}\right]^{y}\left[z, x^{-1}, y^{-1}\right]^{x y} \quad(\text { Witt identity })} \\
& {[x, y, z][y, z, x][z, x, y] \equiv 1 \bmod \gamma_{2}\left(\gamma_{2}\langle x, y, z\rangle\right) \quad(\text { Jacobi Congruence) }}
\end{aligned}
$$

We simplify our notation by redefining the double group $\mathbf{D}(G)$ of G as

$$
\mathbf{D}=\mathbf{D}(G)=\left\langle G, G^{\phi} ;\left[g, g^{\phi}\right]=1 \quad \text { for all } g \in G\right\rangle
$$

where $\phi: G \rightarrow G^{\phi}$ is an isomorphism (note that in Sidki [4] and Rocco [3] the notation for $\mathbf{D}(G)$ is $\chi(G)$). In the following lemmas we derive some fundamental relations which hold in the group $\mathbf{D}(G)$.

Lemma 2.1. For all $x, y, z, y_{i}, z_{i} \in G$ we have:
(i) $\left[x^{\phi}, y\right]=\left[x, y^{\phi}\right]$;
(ii) $\left[x^{\phi}, y\right]^{z^{\phi}}=\left[x^{\phi}, y\right]^{2}$; and more generally,
(iii) $\left[x^{\phi}, y\right]^{\omega\left(z_{1}^{\ell}, \ldots, z_{n}^{\varepsilon_{n}^{n}}\right)}=\left[x^{\phi}, y\right]^{\omega\left(z_{1}, \ldots, z_{n}\right)}$ for $\varepsilon_{i} \in\{1, \phi\}$ and $\omega=$ $\omega\left(z_{1}, \ldots, z_{n}\right) \in G ;$
(iv) $\left[x^{\phi}, y, x\right]=\left[x, y, x^{\phi}\right]$; and more generally,
(v) $\left[x^{\phi}, y_{1}, \ldots, y_{n}, x\right]=\left[x, y_{1}, \ldots, y_{n}, x^{\phi}\right]$.

Proof of (i). We use the commuting relations $\left(x y^{-1}\right)\left(x y^{-1}\right)^{\phi}=$ $\left(x y^{-1}\right)^{\phi}\left(x y^{-1}\right), x x^{\phi}=x^{\phi} x, y y^{\phi}=y^{\phi} y$ to obtain, in turn

$$
\begin{aligned}
x y^{-1} x^{\phi} y^{-\phi} & =x^{\phi} y^{-\phi} x y^{-1} ; & & x^{-\phi} x y^{-1} x^{\phi}=y^{-\phi} x y^{-1} y^{\phi} ; \\
x x^{-\phi} y^{-1} x^{\phi} & =y^{-\phi} x y^{\phi} y^{-1} ; & & x^{-\phi} y^{-1} x^{\phi} y=x^{-1} y^{-\phi} x y^{\phi} ; \\
{\left[x^{\phi}, y\right] } & =\left[x, y^{\phi}\right] . & &
\end{aligned}
$$

Proof of (ii). We use (i) to write $\left[x^{\phi}, y z\right]=\left[x, y^{\phi} z^{\phi}\right]$ which, when expanded, yields, in turn

$$
\begin{aligned}
{\left[x^{\phi}, z\right]\left[x^{\phi}, y\right]^{z} } & =\left[x, z^{\phi}\right]\left[x, y^{\phi}\right]^{z^{\phi}} ; \\
{\left[x^{\phi}, y\right]^{z} } & =\left[x, y^{\phi}\right]^{z^{\phi}} ; \quad\left[x^{\phi}, y\right]^{z}=\left[x^{\phi}, y\right]^{z^{\phi}}
\end{aligned}
$$

Proof of (iii). Let $\omega\left(z_{1}^{\varepsilon_{1}}, z_{2}^{\varepsilon_{2}}, \ldots, z_{n}^{\varepsilon_{n}}\right)=g_{1} h_{1}^{\phi} g_{2} h_{2}^{\phi} \cdots g_{m} h_{m}^{\phi}$ so that

$$
\omega\left(z_{1}, z_{2}, \ldots, z_{n}\right)=g_{1} h_{1} g_{2} h_{2} \cdots g_{m} h_{m}
$$

We prove by induction on $m \geq 1$ that

$$
\left[x^{\phi}, y\right]^{g_{1} h_{1}^{\phi} \cdots g_{m} h_{m}^{\phi}}=\left[x^{\phi}, y\right]^{g_{1} h_{1} \cdots g_{m} h_{m}}
$$

For $m=1$,

$$
\left[x^{\phi}, y\right]^{g_{1} h_{1}^{\phi}}=\left[x^{\phi}, y\right]^{g h_{1}^{\phi}}\left(\text { by (ii))}=\left[x^{\phi}, y\right]^{\left(g_{1} h_{1}\right)^{\phi}}=\left[x^{\phi}, y\right]^{g_{1} h_{1}}(\text { by (ii)). }\right.
$$

For the inductive step, we assume $\left[x^{\phi}, y\right]^{g_{1} h_{1}^{\phi} \cdots g_{m} h_{m}^{\phi}}=\left[x^{\phi}, y\right]^{g_{1} h_{1} \cdots g_{m} h_{m}}$. Then,

$$
\begin{aligned}
{\left[x^{\phi}, y\right]^{g_{1} h_{1}^{\phi} \cdots g_{m} h_{m}^{\phi} g_{m+1} h_{m+1}^{\phi}} } & =\left[x^{\phi}, y\right]^{g_{1} h_{1} \cdots g_{m} h_{m} g_{m+1} h_{m+1}^{\phi}} \\
& =\left[x^{\phi}, y\right]^{\left(g_{1} h_{1} \cdots g_{m} h_{m} g_{m+1}\right)^{\phi} h_{m+1}^{\phi}} \\
& =\left[x^{\phi}, y\right]^{g_{1} h_{1} \cdots g_{m+1} h_{m+1}}(\text { by (ii)) }
\end{aligned}
$$

Proof of (iv). We use (iii) to write $1=\left[y, x^{\phi} ; y, x^{\phi}\right]=\left[y, x^{\phi} ; y, x\right]$. Then, expansion of $\left[y, x^{\phi} x\right]=\left[y, x x^{\phi}\right]$ yields, in turn,

$$
\begin{aligned}
{[y, x]\left[y, x^{\phi}\right]\left[y, x^{\phi}, x\right] } & =\left[y, x^{\phi}\right][y, x]\left[y, x, x^{\phi}\right] \\
{\left[y, x^{\phi}, x\right] } & =\left[y, x, x^{\phi}\right] ; \quad\left[x^{\phi}, y, x\right]^{-\left[y, x^{\phi}\right]}=\left[x, y, x^{\phi}\right]^{-[y, x]} \\
{\left[x^{\phi}, y, x\right] } & =\left[x, y, x^{\phi}\right](\text { by (iii)) }
\end{aligned}
$$

Proof of (v). By induction on $n \geq 1$. For $n=1$ the result is given by (iv). We assume that $n \geq 2$ and that the result holds for $n-1$. Thus,

$$
\left[x^{\phi}, y_{1}, \ldots, y_{n-2},\left(y_{n-1} y_{n}\right), x\right]=\left[x, y_{1}, \ldots, y_{n-2},\left(y_{n-1} y_{n}\right), x^{\phi}\right]
$$

which upon expansion yields,

$$
\begin{aligned}
& {\left[\left[x^{\phi}, y_{1}, \ldots, y_{n-2}, y_{n}\right]\left[x^{\phi}, y_{1}, \ldots, y_{n-2}, y_{n-1}\right]\left[x^{\phi}, y_{1}, \ldots, y_{n-2}, y_{n-1}, y_{n}\right], x\right]} \\
& \quad=\left[\left[x, y_{1}, \ldots, y_{n-2}, y_{n}\right]\left[x, y_{1}, \ldots, y_{n-2}, y_{n-1}\right]\right. \\
& \left.\quad \times\left[x, y_{1}, \ldots, y_{n-2}, y_{n-1}, y_{n}\right], x^{\phi}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
{\left[x^{\phi},\right.} & \left.y_{1}, \ldots, y_{n-2}, y_{n}, x\right]^{\left[x^{\phi}, y_{1}, \ldots, y_{n-2}, y_{n-1}\right]\left[x^{\phi}, y_{1}, \ldots, y_{n-2}, y_{n-1}, y_{n}\right]} \\
& \times\left[x^{\phi}, y_{1}, \ldots, y_{n-2}, y_{n-1}, x\right]^{\left[x^{\phi}, y_{1}, \ldots, y_{n-2}, y_{n-1}, y_{n}\right]} \\
\times & {\left[x^{\phi}, y_{1}, \ldots, y_{n-2}, y_{n-1}, y_{n}, x\right] } \\
= & {\left[x, y_{1}, \ldots, y_{n-2}, y_{n}, x^{\phi}\right]^{\left[x, y_{1}, \ldots, y_{n-2}, y_{n-1}\right]\left[x, y_{1}, \ldots, y_{n-2}, y_{n-1}, y_{n}\right]} } \\
& \times\left[x, y_{1}, \ldots, y_{n-2}, y_{n-1}, x^{\phi}\right]^{\left[x, y_{1}, \ldots, y_{n-2}, y_{n-1}, y_{n}\right]} \\
& \times\left[x, y_{1}, \ldots, y_{n-2}, y_{n-1}, y_{n}, x^{\phi}\right]
\end{aligned}
$$

which by the induction hypothesis, together with (iii) yields

$$
\left[x^{\phi}, y_{1}, \ldots, y_{n}, x\right]=\left[x, y_{1}, \ldots, y_{n}, x^{\phi}\right]
$$

as desired. This completes the proof of Lemma 2.1.
For subgroups H, K of a group G, we set $[H, 0 k]=H$ and denote by [$H, n K$] the subgroup

$$
\left[H, K_{1}, \ldots, K_{n}\right] \quad \text { with } K_{i}=K(1 \leq i \leq n)
$$

In particular, $\gamma_{n+1}(G)=[G, n G]$. We now prove:
Lemma 2.2. (i) $\left[G^{\phi}, G, G^{\varepsilon_{1}}, \ldots, G^{\varepsilon_{n}}\right]=\left[G^{\phi},(n+1) G\right]$ for all $n \geq 1$ and all $\varepsilon_{i} \in\{1, \phi\}$;
(ii) $\left[G^{\phi}, m G ; \gamma_{n}(G)\right] \leq\left[G^{\phi},(m+n) G\right]$ for all $m \geq 0, n \geq 1$;
(iii) $\left[G^{\varepsilon_{1}}, \ldots, G^{\varepsilon_{n}}\right] \leq\left[G^{\phi},(n-1) G\right] \gamma_{n}(G)^{\mathbf{D}} \gamma_{n}\left(G^{\phi}\right)^{\mathbf{D}}$, where $H^{\mathbf{D}}$ denotes the normal closure of H in $\mathbf{D}=\mathbf{D}(G)$.

Proof. The proof of (i) is an immediate consequence of Lemma 2.1 (iii).

The proof of (ii) is by induction on $n \geq 1$. For $n=1$, there is nothing to prove. For the inductive step we assume $n \geq 2$ and that the result holds for $n-1$. With $x \in \gamma_{n-1}(G), y \in G, z \in\left[G^{\phi}, m G\right]$, the equivalent form of the Witt identity $[z,[x, y]]=\left[z, y^{-1}, x^{z}\right]^{y}\left[z, x^{-1}, y^{-1}\right]^{x y}$, together with Lemma 2.1 (iii), yields

$$
\begin{aligned}
{\left[G^{\phi}, m G, \gamma_{n}(G)\right] } & \leq\left[G^{\phi},(m+1) G, \gamma_{n-1}(G)\right]^{G}\left[G^{\phi}, m G, \gamma_{n-1}(G), G\right]^{G} \\
& \leq\left[G^{\phi},(m+1) G, \gamma_{n-1}(G)\right]\left[G^{\phi}, m G, \gamma_{n-1}(G), G\right] \\
& \leq\left[G^{\phi},(m+n) G\right]
\end{aligned}
$$

For the proof of (iii) we may assume $n \geq 2$ and

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \neq(1, \ldots, 1),(\phi, \ldots, \phi)
$$

Then, without loss of generality,

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\left(\phi, \ldots, \phi, 1, \varepsilon_{i+2}, \ldots, \varepsilon_{n}\right) \text { for some } 1 \leq i<n
$$

Thus

$$
\begin{aligned}
{\left[G^{\varepsilon_{1}}, \ldots, G^{\varepsilon_{n}}\right] } & =\left[\gamma_{i}(G)^{\phi}, G, G^{\varepsilon_{i+2}}, \ldots, G^{\varepsilon_{n}}\right] \\
& =\left[\gamma_{i}(G)^{\phi}, G,(n-i-1) G\right](\text { by Lemma } 2.1(\mathrm{iii})) \\
& =\left[\gamma_{i}(G), G^{\phi},(n-i-1) G\right] \\
& =\left[G^{\phi}, \gamma_{i}(G),(n-i-1) G\right] \\
& \leq\left[G^{\phi},(n-1) G\right](\text { by }(\mathrm{ii}))
\end{aligned}
$$

As a corollary of Lemma 2.2 we obtain:
Lemma 2.3. Let $\gamma_{c+1}(G)=\{1\}$ and $\mathbf{D}=\mathbf{D}(G)$. Then
(i) $\left[\gamma_{c+1}(D), \gamma_{2}(D)\right]=\{1\}$,
(ii) $\left[\gamma_{i}(\mathbf{D}), \gamma_{2}(\mathbf{D}),(2 c-1-i) \mathbf{D}\right]=\{1\}$ for all $i \geq 2$.

Proof. For the proof of (i) we have, by Lemma 2.2 (iii), $\gamma_{c+1}(\mathbf{D})=\left[G^{\phi}, c G\right]$. Thus,

$$
\begin{aligned}
{\left[\gamma_{c+1}(\mathbf{D}), \gamma_{2}(\mathbf{D})\right] } & =\left[G^{\phi}, c G ; G^{\varepsilon_{1}}, G^{\varepsilon_{2}}\right] \quad\left(\varepsilon_{1}, \varepsilon_{2} \in\{1, \phi\}\right) \\
& =\left[\left[G^{\phi}, c G\right],[G, G]\right] \quad(\text { by Lemma } 2.1(\text { iii })) \\
& =\left[\left[G^{\phi}, c G\right],\left[G^{\phi}, G\right]\right] \\
& =\left[\left[G^{\phi}, G\right],[G, c G] \quad \text { (by Lemma } 2.1\right. \text { (iii)) } \\
& =\{1\}
\end{aligned}
$$

For the proof of (ii) we make repeated application of the inclusion

$$
[A, B, C] \leq[A, C, B][B, C, A]
$$

for normal subgroups A, B, C of \mathbf{D} to obtain, for $i \geq 2$,

$$
\left[\gamma_{i}(\mathbf{D}), \gamma_{2}(\mathbf{D}),(2 c-1-i) \mathbf{D}\right] \leq \prod_{\substack{m+n=2 c+1 \\ m, n \geq 2}}\left[\gamma_{m}(\mathbf{D}), \gamma_{n}(\mathbf{D})\right]
$$

Since $m \geq c+1$ or $n \geq c+1$, the result follows by (i).
As in Levin [1], an immediate consequence of Lemma 2.3 yields:
Lemma 2.4. If $\gamma_{c+1}(G)=\{1\}$, then for all $g_{i} \in G$ and $\varepsilon_{i} \in\{1, \phi\}$,

$$
\left[g_{1}^{\varepsilon_{1}}, g_{2}^{\varepsilon_{2}}, g_{3}^{\varepsilon_{3}}, \ldots, g_{2 c+1}^{\varepsilon_{2 c+1}}\right]=\left[g_{1}^{\varepsilon_{1}}, g_{2}^{\varepsilon_{2}}, g_{3 \sigma}^{\varepsilon_{3 \sigma}}, \ldots, g_{(2 c+1) \sigma}^{\varepsilon_{2 c+1) \sigma}}\right]
$$

for all permutations σ of $\{3, \ldots, 2 c+1\}$.
An important consequence of Lemma 2.4 is the following Lemma on local nilpotency of $\mathbf{D}(G)$.

Lemma 2.5. If G is a locally nilpotent group then $\mathbf{D}(G)$ is also locally nilpotent.

Proof. Let $\left\{h_{1}, \ldots, h_{n}\right\}$ be a set of elements of $\mathbf{D}=\mathbf{D}(G)$ and let $\left\{g_{1}, \ldots, g_{m}\right\}$ be its support in G. We wish to prove that $\left\langle h_{1}, \ldots, h_{n}\right\rangle$ is a nilpotent subgroup of \mathbf{D}. Clearly, we may assume $m \geq 2$. Since $\left\langle g_{1}, \ldots, g_{m}\right\rangle$ is a nilpotent subgroup of G, say of class c, by Lemma 2.2 (iii), it suffices to prove that

$$
\left[x^{\phi}, y, z_{1}, \ldots, z_{c^{*}}\right]=1
$$

for some large $\left.c^{*}\right\rangle c$ and all $x, y, z_{1} \in\left\langle g_{1}, \ldots, g_{m}\right\rangle$. With $c^{*} \geq 2 c m$, by Lemma 2.3 and $2.4,\left[x^{\phi}, y, z_{1}, \ldots, z_{c^{*}}\right]$ can be written as a product of commutators of the form

$$
\left[x^{\phi}, y, k_{1} g_{1}^{\prime}, \ldots, k_{m} g_{m}^{\prime}\right]
$$

where $\left\{g_{1}^{\prime}, \ldots, g_{m}^{\prime}\right\}=\left\{g_{1}, \ldots, g_{m}\right\}, k_{1} \geq \cdots \geq k_{m} \geq 0$ and $\sum_{i=1}^{m} k_{i} \geq c^{*} \geq$ 2 cm . It follows that $k_{1} \geq 2 c$ and, therefore, it suffices to prove that [$x^{\phi}, y, k z$] $=1$ for all $k \geq 2 c$ and $x, y, z \in\left\langle g_{1}, \ldots, g_{m}\right\rangle$.

Let $\bar{G}=\langle x, y, z\rangle$. Then, by hypothesis, $\gamma_{c+1}(\bar{G})=\{1\}$. By Lemma 2.3, we may use the Jacobi congruence to write

$$
\left[x^{\phi}, y, z,(k-1) z\right]=\left[x^{\phi}, z, y,(k-1) z\right]\left[x^{\phi},[y, z],(k-1) z\right]
$$

and

$$
\begin{aligned}
{\left[x^{\phi},[y, z],(k-1) z\right] } & =\left[z, y, x^{\phi},(k-1) z\right] \\
& =\left[z, y,(k-1) z, x^{\phi}\right] \\
& =1 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
{\left[x^{\phi}, y, z,(k-1) z\right] } & =\left[x^{\phi}, z, y,(k-1) z\right] \\
& =\left[z^{\phi}, x, y,(k-2) z, z\right]^{-1} \\
& =\left[z, x, y,(k-2) z, z^{\phi}\right]^{-1}(\text { by Lemma } 2.1 \text { (iv) }) \\
& =1
\end{aligned}
$$

This completes the proof of Lemma 2.5.

3. The main results

Let G be a nilpotent group of class at most $c, c \geq 1$. Then, by Lemma 2.1. (iv), $\mathbf{D}=\mathbf{D}(G)$ satisfies the identity

$$
\begin{equation*}
\left[x^{\phi}, y_{2}, \ldots, y_{c+1}, x\right]=1 \tag{3.1}
\end{equation*}
$$

for all $x, y_{i} \in G$.
If $G=\langle x, y\rangle$ then, modulo $\gamma_{c+3}(\mathbf{D}), \gamma_{c+2}(\mathbf{D})$ is generated by elements of the form $\left[x^{\phi}, z_{2}, \ldots, z_{c+1} x\right]$ and $\left[y^{\phi}, z_{2}, \ldots, z_{c+1}, y\right]$, with $z_{1} \in\{x, y\}$, each of which is trivial by (3.1). It follows that $\gamma_{c+2}(\mathbf{D})=\gamma_{c+3}(\mathbf{D})$. Since \mathbf{D} is nilpotent (Lemma 2.5), we have $\gamma_{c+2}(\mathbf{D})=\{1\}$. We record this as follows:

Theorem 3.1. If G is a 2-generator nilpotent group of class at most c, then $\mathbf{D}(G)$ is nilpotent of class at most $c+1$.

We now investigate the general case with $\gamma_{c+1}(G)=\{1\}$. Working modulo $\gamma_{c+3}(\mathbf{D})$, the identity (3.1) yields

$$
1 \equiv\left[x^{\phi} y_{1}^{\phi}, y_{2}, \ldots, y_{c+1}, x y_{1}\right] \equiv\left[x^{\phi}, y_{2}, \ldots, y_{c+1}, y_{1}\right]\left[y_{1}^{\phi}, y_{2}, \ldots, y_{c+1}, x\right]
$$

which on commuting with x and using (3.1) gives

$$
\begin{equation*}
\left[y_{1}^{\phi}, y_{2}, \ldots, y_{c+1}, x, x\right] \equiv 1 \quad\left(\bmod \gamma_{c+4}(\mathbf{D})\right) \tag{3.2}
\end{equation*}
$$

for all $x, y_{i} \in G$. Furthermore, modulo $\gamma_{c+4}(\mathbf{D})$, for $2 \leq k \leq c$, we have

$$
\begin{aligned}
& {\left[\left[y_{1}^{\phi}, y_{2}, \ldots, y_{k}\right],\left[x, y_{k+1}\right], y_{k+2}, \ldots, y_{c+1}, x\right]} \\
& \quad \equiv\left[\left[y_{1}^{\phi}, y_{2}, \ldots, y_{k}\right],\left[x^{\phi}, y_{k+1}\right], y_{k+2}, \ldots, y_{c+1}, x\right] \quad(\text { by Lemma } 2.1(\mathrm{iii})) \\
& \quad \\
& \quad \equiv\left[\left[x^{\phi}, y_{k+1}\right],\left[y_{1}, \ldots, y_{k}\right], y_{k+2}, \ldots, y_{c+1}, x\right]^{-1} \\
& \quad \equiv\left[\left[x, y_{k+1}\right],\left[y_{1}, \ldots, y_{k}\right], y_{k+2}, \ldots, y_{c+1}, x^{\phi}\right]^{-1} \quad(\text { by }(3.1)) \\
& \quad \equiv 1 \quad\left(\text { since } \gamma_{c+1}(G)=\{1\}\right)
\end{aligned}
$$

We record this as

$$
\begin{equation*}
\left[\left[y_{1}^{\phi}, y_{2}, \ldots, y_{k}\right],\left[x, y_{k+1}\right], y_{k+2}, \ldots, y_{c+1}, x\right] \equiv 1 \quad\left(\bmod \gamma_{c+4}(\mathbf{D})\right) \tag{3.3}
\end{equation*}
$$

for all $x, y_{i} \in G$ and all $2 \leq k \leq c$. By (3.3), for $2 \leq k \leq c$, we have

$$
\begin{aligned}
{\left[y_{1}^{\phi},\right.} & \left.y_{2}, \ldots, y_{k}, x, y_{k+1}, y_{k+2}, \ldots, y_{c+1}, x\right] \\
\equiv & {\left[y_{1}^{\phi}, y_{2}, \ldots, y_{k+1}, x, y_{k+2}, \ldots, y_{c+1}, x\right] } \\
& \vdots \\
\equiv & {\left[y_{1}^{\phi}, y_{2}, \ldots, y_{c+1}, x, x\right] } \\
\equiv & 1 \quad(\text { by }(3.2)) .
\end{aligned}
$$

Also, $\left[y_{1}^{\phi}, x, y_{2}, \ldots, y_{c+1}, x\right] \equiv\left[x^{\phi}, y_{1}, \ldots, y_{c+1}, x\right]^{-1} \equiv 1$ by (3.1). Thus we have

$$
\begin{equation*}
\left[y_{1}^{\phi}, y_{2}, \ldots, y_{k}, x, y_{k+1}, \ldots, y_{c+1}, x\right] \equiv 1 \quad\left(\bmod \gamma_{c+4}(\mathbf{D})\right) \tag{3.4}
\end{equation*}
$$

for all $1 \leq k \leq c+1$. Replacing x by $x z$ in (3.4) and expanding modulo $\gamma_{c+4}(D)$ yields the congruence

$$
\begin{equation*}
\left[y_{1}^{\phi}, \ldots, y_{k}, x, y_{k+1}, \ldots, y_{c+1}, z\right] \equiv\left[y_{1}^{\phi}, \ldots, y_{k}, z, y_{k+1}, \ldots, y_{c+1}, x\right]^{-1} \tag{3.5}
\end{equation*}
$$

Using (3.5) it follows that every commutator of weight $c+3$ in \mathbf{D} with a repeated entry x can be expressed, modulo $\gamma_{c+4}(\mathbf{D})$, as a product of commutators of the form

$$
\left[y_{1}^{\phi}, \ldots, y_{k}, x, y_{k+1}, \ldots, y_{c+1}, x\right], \quad 1 \leq k \leq c+1
$$

which is trivial by (3.4). In particular, if G is an m-generator group with
$\gamma_{c+1}(G)=\{1\}$ and $m \leq c+2$, then $\gamma_{m+3}(\mathbf{D})=\gamma_{m+4}(\mathbf{D})=\cdots=\{1\}$, by Lemma 2.5. We have thus proved:

Theorem 3.2. Let G be an m-generator nilpotent group of class at most c with $m \geq 2, c \geq 1$. Then for $m \leq c+2, \gamma_{c+3}(\mathbf{D}(G))=\{1\}$.

Let G be nilpotent of class at most c. The congruence (3.5) also yields

$$
\begin{aligned}
{\left[y_{1}^{\phi}, \ldots, y_{c+1}, x, z\right] } & \equiv\left[y_{1}^{\phi}, \ldots, y_{c+1}, z, x\right]^{-1} \\
& \equiv\left[y_{1}^{\phi}, \ldots, y_{c+1}, x, z\right]^{-1} \quad(\text { by Lemma 2.3(i) })
\end{aligned}
$$

so that

$$
\left[y_{1}^{\phi}, \ldots, y_{c+1}, x, z\right]^{2} \equiv 1 \quad\left(\bmod \gamma_{c+4}(\mathbf{D})\right)
$$

By Theorem 3.2 every commutator of weight $c+4$ in \mathbf{D} with entries from the set

$$
\left\{y_{1}, \ldots, y_{c+1}, x, z\right\}
$$

is trivial. Thus we have

$$
\begin{equation*}
\left[y_{1}^{\phi}, \ldots, y_{c+1}, x, z\right]^{2}=1 \tag{3.6}
\end{equation*}
$$

Repeated application of (3.5) yields

$$
\left[y_{1}^{\phi}, y_{2}, \ldots, y_{c+3}\right]=\left[y_{1}^{\phi}, y_{2 \sigma}, \ldots, y_{(c+3) \sigma}\right]^{|\sigma|}
$$

where σ is a permutation of $\{2, \ldots, c+3\}$ and $|\sigma|=1$ or -1 according as σ is even or odd. Thus, if G is an m-generator group with $m \geq c+3$, then for $c+3 \leq k \leq m$, there are $\binom{m}{k}$ choices for distinct k-element sets from the generators of G. This fact together with (3.6) gives us the following theorem.

Theorem 3.3. Let G be an m-generator nilpotent group of class at most c with $m \geq 2, c \geq 1$. Then, for $m \geq c+3, \gamma_{c+3}(\mathbf{D}(G))$ is an elementary abelian 2-group of rank at most

$$
\sum_{k=c+3}^{m}\binom{m}{k}
$$

Corollary 3.4. (c.f. Rocco [3]) Let G be a p-group of class c with p odd. Then $\mathbf{D}(G)$ is a p-group of class at most $c+2$.

References

1. Frank Levin, On some varieties of soluble group I, Math Zeitchr. vol. 85 (1964), pp. 369-372.
2. Hanna Neumann, Varieties of groups, Springer-Verlag, New York, 1967.
3. Norai Romeo Rocco, On weak commutativity between finite p-groups, p odd, J. Algebra, vol. 76 (1982), pp. 471-488.
4. Said Sidki, On weak permutability between groups, J. Algebra, vol. 63 (1980), pp. 186-225.

University of Manitoba
Winnipeg, Manitoba, Canada

Universidade de Bresilia
Bresilia, D.F., Brasil

University of Alberta
Edmonton, Alberta, Canada

[^0]: Received April 12, 1985.
 ${ }^{1}$ Research supported by NSERC (Canada)
 ${ }^{2}$ Research supported by CNP_{q} (Brazil)

