DIMENSION SUBGROUPS OF FREE CENTER-BY-METABELIAN GROUPS

BY
Chander Kanta Gupta ${ }^{1}$ and Frank Levin

Dedicated to the memory of W.W. Boone

Introduction

Let $\mathbf{Z} G$ be the integral group ring of a group G and $\Delta(G)$ be its augmentation ideal. For each $n \geq 1$, the subgroup $D_{n}(G)=G \cap\left(1+\Delta^{n}(G)\right)$ is the n-th dimension subgroup of G. It is easily verified that $D_{n}(G) \supseteq \gamma_{n}(G)$, the n-th term of the lower central series of G. The validity of the reverse inequality, namely, $D_{n}(G) \subseteq \gamma_{n}(G)$, is known as the dimension subgroup problem for G. Rips [8] has constructed an example of a finite 2-group such that $D_{4}(G) \neq$ $\gamma_{4}(G)$. On the other hand, a well-known result due to P. Hall and S.A. Jennings states that if the lower central factors $\gamma_{k}(G) / \gamma_{k+1}(G)$ are torsion free for all $k \geq 1$, then $D_{n}(G)=\gamma_{n}(G)$ for all $n \geq 1$ (cf. [6, Corollary 3.1]). In particular, it follows that if $G=F / F^{\prime \prime}$ is a free metabelian group, then $D_{n}(G)=\gamma_{n}(G)$ for all n. For a free center-by-metabelian group $G=$ $F /\left[F^{\prime \prime}, F\right]$, the lower central factors have elementary abelian 2 -subgroups (Ridley [7], Hurley [5]), and hence these groups are not covered by the Hall-Jennings result. The purpose of this paper is to prove that if G is a free center-by-metabelian group, then $D_{n}(G)=\gamma_{n}(G)$ for all n. This answers a question of I.B.S. Passi (verbal communication).

In terms of the free group ring $\mathbf{Z} F$, with $G=F / R$, the dimension subgroup problem reduces to identifying the subgroup $F \cap\left(1+\mathbf{r}+\mathbf{f}^{n}\right)$ as $R \cdot \gamma_{n}(F)$, where $\mathbf{f}=\Delta(F)=\mathbf{Z} F(F-1)$ and $\mathbf{r}=\mathbf{Z} F(R-1)$. If $R=\left[F^{\prime \prime}, F\right]$, then $\mathbf{r} \subseteq$ faf, where $\mathbf{a}=\mathbf{Z} F\left(F^{\prime}-1\right)$, so as a first approximation to the identification of $F \cap\left(1+\mathbf{r}+\mathbf{f}^{n}\right)$, in Section 3 we identify $F \cap\left(1+\mathbf{f a f}+\mathbf{f}^{n}\right)$ for all n. (The identification $F \cap\left(1+\mathbf{f a}+\mathbf{f}^{n}\right)=F^{\prime \prime} \cdot \gamma_{n}(F)$ for all n has been shown by N.D. Gupta [2]).

[^0]
2. Notation and preliminaries

Our commutator notation is as follows:

$$
\begin{gathered}
{\left[g_{1}, g_{2}\right]=g_{1}^{-1} g_{2}^{-1} g_{1} g_{2},} \\
{\left[g_{1}, g_{2}, g_{3}\right]=\left[\left[g_{1}, g_{2}\right], g_{3}\right],} \\
{\left[g_{1}, g_{2} ; g_{3}, g_{4}\right]=\left[\left[g_{1}, g_{2}\right],\left[g_{3}, g_{4}\right]\right]}
\end{gathered}
$$

for group elements g_{i}, and

$$
\begin{gathered}
\left(r_{1}, r_{2}\right)=r_{1} r_{2}-r_{2} r_{1}, \quad\left(r_{1}, r_{2}, r_{3}\right)=\left(\left(r_{1}, r_{2}\right), r_{3}\right), \\
\left(\left(r_{1}, r_{2}\right),\left(r_{3}, r_{4}\right)\right)=\left(r_{1}, r_{2} ; r_{3}, r_{4}\right)
\end{gathered}
$$

for ring elements r_{i}. Also, $\gamma_{n}(G)$ is the n-th term of the lower central series of $G, G^{\prime}=\gamma_{2}(G), G^{\prime \prime}=\gamma_{2}\left(G^{\prime}\right)$. Other unexplained notation follows Gupta-Hurley-Levin [3].

As in [3], [4], [5], our basic tool is the following power series representation of $F /\left[F^{\prime \prime}, F\right]$: Let $\mathbf{Z}\left[\left[y_{1}, y_{2}, \cdots\right]\right]$ be the free associative power series ring over \mathbf{Z} generated by $y_{i}, i \geq 1$, and denote by C the ideal generated by all elements $y_{i}\left(y_{j}, y_{k}\right) y_{1}$. Set $\mathbf{P}=\mathbf{Z}\left[\left[y_{1}, y_{2}, \cdots\right]\right] / C$ and denote the generators of \mathbf{P} by $x_{i}=y_{i}+C, i \geq 1$. The group $U(\mathbf{P})$ of units of \mathbf{P} is a center-by-metabelian group (Hurley [5]). If F is a free group freely generated by f_{1}, f_{2}, \ldots, then

$$
\theta: f_{i} \rightarrow 1+x_{i}
$$

defines a homomorphism of F into $U(\mathbf{P})$. For any word $w \in F, w \theta$ is a power series of the form

$$
w \theta=1+\sum_{i \geq 1}\langle w \theta\rangle_{i}
$$

where $\langle\boldsymbol{w} \boldsymbol{\theta}\rangle_{i}$ denotes the component of $w \boldsymbol{\theta}$ of terms of total degree i. In particular, if $w \in \gamma_{k}(F)$, then $\langle w \theta\rangle_{i}=0$ for all $i \leq k-1$. The linear extension of θ yields the ring homomorphism

$$
\theta: \mathbf{Z} F \rightarrow \mathbf{P}
$$

with $\operatorname{Ker} \boldsymbol{\theta}=$ faf. Thus, we obtain a power series representation of $\mathbf{Z} F / \mathbf{r}$, where $\mathbf{r}=\mathbf{Z} F(R-1), R=\left[F^{\prime \prime}, F\right]$.

Apart from the subgroups $\left[F^{\prime \prime}, F\right]$ and $\gamma_{c+1}(F)$ of F, in the sequel we shall refer to the fully invariant subgroups $K_{6}(F), U_{c}(F), c$ even, $c \geq 6$, and $T_{c}(F)$, c odd, $c \geq 5$, defined as follows.
(i) $K_{6}(F)$ is the fully invariant closure of

$$
\begin{aligned}
u_{6}= & \prod_{\tau}\left[f_{1 \tau}, f_{2 \tau} ; f_{1 \tau}, f_{2 \tau}, f_{3 \tau}, f_{4 \tau}\right] \\
& \times\left[f_{2}, f_{4}, f_{3} ; f_{2}, f_{4}, f_{1}, f_{3}\right]\left[f_{4}, f_{3}, f_{2} ; f_{2}, f_{3}, f_{1}, f_{4}\right] \\
& \times\left[f_{3}, f_{1}, f_{4} ; f_{3}, f_{1}, f_{2}, f_{4}\right]\left[f_{4}, f_{3}, f_{1} ; f_{4}, f_{1}, f_{2}, f_{3}\right] \\
& \times\left[f_{4}, f_{1}, f_{2} ; f_{4}, f_{1}, f_{2}, f_{3}\right]\left[f_{2}, f_{4}, f_{1} ; f_{2}, f_{1}, f_{3}, f_{4}\right] \\
& \times\left[f_{2}, f_{1}, f_{3} ; f_{2}, f_{1}, f_{3}, f_{4}\right]\left[f_{3}, f_{2}, f_{1} ; f_{3}, f_{1}, f_{2}, f_{4}\right]
\end{aligned}
$$

where τ runs over those permutations of $\{1,2,3,4\}$ with $1 \tau<2 \tau, 3 \tau<4 \tau$.
(ii) $U_{c}(F)$ is the fully invariant closure of $\left[f_{1}, f_{2} ; f_{1}, f_{2}, \ldots, f_{c-2}\right]$.
(iii) $T_{c}(F)$ is the fully invariant closure of $v_{c}^{*}=w_{c}^{*} g_{c+1}^{-1} h_{c+1}$, where

$$
\begin{aligned}
w_{c}^{*}= & {\left[f_{1}, f_{2} ; f_{3}, f_{4}, f_{5}, \ldots, f_{c}\right] } \\
& \times\left[f_{1}, f_{3} ; f_{4}, f_{2}, f_{5}, \ldots, f_{c}\right] \\
& \times\left[f_{1}, f_{4} ; f_{2}, f_{3}, f_{5}, \ldots, f_{c}\right] \\
= & \prod_{\sigma}\left[f_{1}, f_{2 \sigma} ; f_{3 \sigma}, f_{4 \sigma}, f_{5}, \ldots, f_{c}\right]
\end{aligned}
$$

where σ ranges over the powers of the permutation $(2,3,4)$;

$$
\begin{aligned}
g_{c+1}= & \prod_{\sigma}\left[f_{1}, f_{2 \sigma} ; f_{1}, f_{3 \sigma}, f_{4 \sigma}, f_{5}, \ldots, f_{c}\right] \\
& \times\left[f_{2 \sigma}, f_{3 \sigma} ; f_{2 \sigma}, f_{1}, f_{4 \sigma}, f_{5}, \ldots, f_{c}\right] \\
& \times\left[f_{2 \sigma}, f_{1} ; f_{2 \sigma}, f_{4 \sigma}, f_{3 \sigma}, f_{5}, \ldots, f_{c}\right] \\
& \times\left[f_{2 \sigma}, f_{4 \sigma} ; f_{2 \sigma}, f_{3 \sigma}, f_{1}, f_{5}, \ldots, f_{c}\right]
\end{aligned}
$$

σ as above;

$$
h_{c+1}=\prod_{k=5}^{c} \prod_{\sigma}\left[f_{k}, f_{2 \sigma} ; f_{k}, f_{4 \sigma}, f_{3 \sigma}, f_{1}, f_{5}, \ldots, \hat{f}_{k}, \ldots, f_{c}\right]
$$

σ as above, where \hat{f}_{k} indicates f_{k} missing from the sequence f_{5}, \ldots, f_{c}.
The following Lemma follows from the definitions and the identity

$$
[r, s]=1+r^{-1} s^{-1}(r, s)
$$

valid for any ring units.

Lemma 2.1 (i) [4, Lemma 3.4]. Let

$$
w \theta=\left[1+z_{1}, 1+z_{2} ; 1+z_{3}, \ldots, 1+z_{n}\right]
$$

where $1+z_{i} \in \boldsymbol{F \theta}$. Then

$$
\begin{aligned}
w \boldsymbol{\theta}=1+(-1)^{n-4} & \left(z_{1}, z_{2}\right) z_{5} \ldots z_{n}\left(1+z_{3}\right)^{-1} \ldots\left(1+z_{n}\right)^{-1}\left(z_{3}, z_{4}\right) \\
& -\left(z_{3}, z_{4}\right) z_{5} \ldots z_{n}\left(1+z_{1}\right)^{-1}\left(1+z_{2}\right)^{-1}\left(z_{1}, z_{2}\right), \quad n \geq 4 .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \left\langle\left[1+z_{1}, 1+z_{2}, \ldots, 1+z_{n}\right]\right\rangle_{n} \\
& \quad=\left(z_{1}, z_{2}\right) z_{3} \ldots z_{n}+(-1)^{n} z_{n} \ldots z_{3}\left(z_{1}, z_{2}\right), \quad n \geq 3 .
\end{aligned}
$$

Lemma 2.1 (ii) follows by a straight-forward expansion. Using Lemma 2.1 (i) the various degree components $\langle\boldsymbol{\theta} \boldsymbol{\theta}\rangle_{i}$ of the power series $\boldsymbol{w} \boldsymbol{\theta}$ can be determined directly by using the power series expansion

$$
(1+z)^{-1}=1-z+z^{2}-z^{3}+\cdots
$$

The main properties required of the fully invariant subgroups listed earlier are stated in the following Lemmas.

Lemma 2.2 (C.K. Gupta [1]). (i) $F \cap(1+\mathrm{faf})=K_{6}(F) \cdot\left[F^{\prime \prime}, F\right]$.
(ii) $K_{6}(F) \subseteq\left[F^{\prime \prime}, F\right]$ if and only if rank $F \leq 3$.
(iii) $u^{2} \in\left[F^{\prime \prime}, F\right]$ for all $u \in K_{6}(F)$.

Lemma 2.3. Let c be odd, $c \geq 5$.
(i) $\left\langle w_{c}^{*} \boldsymbol{\theta}\right\rangle_{c}=0$.
(ii) $v_{c}^{* 2} \in\left[F^{\prime \prime}, F\right] \gamma_{c+2}(F)$.
(iii) $\left\langle v_{c}^{*} \theta\right\rangle_{c}=\left\langle v_{c}^{*} \theta\right\rangle_{c+1}=0$. Hence, for any $w \in T_{c}(F),\langle w \theta\rangle_{c}=\langle w \theta\rangle_{c+1}$ $=0$.
(iv) If $\left\langle v_{c}^{*} v \theta\right\rangle_{c+1}=0$ for some $v \in \gamma_{c+1}(F)$, then $\left\langle v_{c}^{*} v \theta\right\rangle_{c+2} \neq 0$. In particular, $\left\langle v_{c}^{*} v \theta\right\rangle_{c+2} \neq 0$ for any $v \in \gamma_{c+2}(F)$.
(v) $T_{c}(F) \subseteq\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ if F has rank less than c.
(vi) $w_{c}^{*}\left(f_{1}, \ldots, f_{c}\right) \equiv w_{c}^{*}\left(f_{1 \sigma}, \ldots, f_{c \sigma}\right)$ modulo $\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$, for any permutation σ of $\{1,2, \ldots, c\}$.
(vii) If $\langle w \theta\rangle_{c}=0$ for some $w \in F^{\prime \prime} \cap \gamma_{c}(F)$, then

$$
w \in T_{c}(F) \cdot K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)
$$

Proof. (i), (iv) and (vi) are proved in [4, Lemma 3.8]. (ii) follows by direct expansion, using Lemma 2.1. (iii) follows from (ii) and the fact that

$$
\left\langle v^{2} \theta\right\rangle_{c+1}=2\langle v \theta\rangle_{c+1} \quad \text { for any } v \in \gamma_{c}(F) .
$$

(v) follows from the fact that $w_{c}^{*} \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ if F has rank less than c [4, Lemma 4.1 (ii)]. Finally, (vii) follows from Lemma 4.1 (ii) and (iv) of [4].

Lemma 2.4. Let $u \in U_{c}(F)$, c even, $c \geq 6$.
(i) $u^{2} \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$.
(ii) $\langle u \theta\rangle_{c}=0$.
(iii) If

$$
u=\left[f_{i, 1}, f_{i, 2} ; f_{i, 1}, f_{i, 2}, f_{i, 3}, \ldots, f_{i, c-2}\right]
$$

then $u \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ if and only if each $f_{i, j}$ occurs an even number of times.
(iv) If $\langle u v \theta\rangle_{c+1}=0$ for some $v \in \gamma_{c+1}(F)$, then

$$
u \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)
$$

(v) If $\langle w \theta\rangle_{c}=0$ for some $w \in F^{\prime \prime} \cap \gamma_{c}(F)$, then

$$
w \in U_{c}(F) \cdot K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)
$$

(vi) For $c \geq 8$ define $u_{c}=\Pi_{\sigma}\left[f_{1 \sigma}, f_{2 \sigma} ; f_{1 \sigma}, f_{2 \sigma}, f_{3 \sigma}, \ldots, f_{(c-2) \sigma}\right]$, where σ ranges over all those permutations of $\{1, \ldots, c-2\}$ with $1 \sigma<2 \sigma$ and $3 \sigma<4 \sigma<\cdots<(c-2) \sigma$. Then $u_{c} \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$.

Proof. (i) and (iii) are straight forward consequences of Lemma 3.1 (i) of [4]. (ii) follows directly by using Lemma 2.1. (v) follows from Lemma 4.1 (i) and (iii) of [4]. (vi) is proved in Lemma 4.3 of [4]. For the proof of (iv) we proceed as follows: For any $w \in F$ let $\alpha_{i j}\langle w \theta\rangle_{n}$ denote the component of $\langle w \theta\rangle_{n}$ of terms beginning with x_{i} and ending with x_{j}. By Lemma 4.2 of [4], if u involves $c-2$ generators and $\langle u \theta\rangle_{c+1} \equiv 0$ (2) then $u=u_{c}$, as defined in (vi). By Lemma 4.4 of [4], if F has rank less than $c-2$ then

$$
u \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F) \quad \text { if }\langle u \theta\rangle_{c+1} \equiv 0(2)
$$

Hence, in each case $u \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ if $\langle u \theta\rangle_{c+1} \equiv 0$ (2). However, in the proofs of these lemmas the weaker hypothesis that $\alpha_{i i}\langle u \theta\rangle_{c+1} \equiv 0$ (2) was all that was used, and it follows that $u \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ if $\alpha_{i i}\langle u \theta\rangle_{c+1} \equiv 0$ (2), for all i. On the other hand, if $v \in \gamma_{c+1}(F)$, then it follows easily from Lemma 2.1 (ii) that $\alpha_{i i}\langle v \theta\rangle_{c+1} \equiv 0$ (2), and, hence, if $\langle u \vee \theta\rangle_{c+1}=0$, then $\alpha_{i i}\langle u \theta\rangle_{c+1} \equiv 0$ (2), also.

$$
\text { 3. } F \cap\left(1+\mathbf{f a f}+\mathbf{f}^{c+1}\right)
$$

Let $D(c)=F \cap\left(1+\mathbf{f a f}+\mathbf{f}^{c+1}\right)$.
Theorem A. (i) $D(c)=\gamma_{c+1}(F)$ if $1 \leq c \leq 4$.
(ii) $D(c)=T_{c}(F) \cdot K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ for c odd, $c \geq 5$.
(iii) $D(c)=T_{c-1}(F) \cdot U_{c}(F) \cdot K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ for c even, $c \geq 6$.

Proof. It follows from Lemmas 2.2 (i), 2.3 (iii) and 2.4 (ii) that $D(c)$ contains the respective right sides of (i), (ii) and (iii), so it remains to prove the reverse inclusions. Thus, suppose $w \in D(c)$, that is, $\langle w \theta\rangle_{i}=0$ for all $i \leq c$, since faf $=\operatorname{Ker} \boldsymbol{\theta}$. For the proofs of our results it will suffice to assume that all terms of w involve the same set of generators and, since all statements are made modulo some term of the lower central series of F, that all entries in the commutators are generators. Also, by [2], since faf $\subseteq \mathbf{f a}$, we may further assume that $w \in F^{\prime \prime}$, and, since $F^{\prime \prime}<\gamma_{4}(F)$, that $w \in F^{\prime \prime} \cdot \gamma_{5}(F)$. In particular, if $w \notin \gamma_{5}(F)$, then, using these assumptions,

$$
\langle w \theta\rangle_{4}=a_{1}\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)+a_{2}\left(x_{1}, x_{3} ; x_{2}, x_{4}\right)+a_{3}\left(x_{1}, x_{4} ; x_{2}, x_{3}\right)
$$

or

$$
\langle w \theta\rangle_{4}=a_{1}\left(x_{1}, x_{2} ; x_{1}, x_{3}\right)+a_{2}\left(x_{1}, x_{2} ; x_{2}, x_{3}\right)+a_{3}\left(x_{1}, x_{3} ; x_{3}, x_{2}\right)
$$

but in either case it follows by directly expanding that $\langle w \theta\rangle_{4}=0$ only if all $a_{i}=0$, that is, $w \in \gamma_{5}(F)$. This proves (i).

For the proofs of (ii) and (iii) we proceed by induction. Since $K_{6}(F) \subset$ $\gamma_{6}(F)$, the case $c=5$ for (ii) follows immediately from Lemma 2.3 (vii). By induction, suppose (ii) and (iii) hold for $c<k, k \geq 6$. If k is even, then (ii) holds for $c=k-1$ and $w \in T_{k-1}(F) \cdot K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{k}(F)$. Thus, modulo $K_{6}(F) \cdot\left[F^{\prime \prime}, F\right]$, $w=w_{1} w_{2}, w_{1} \in T_{k-1}(F), w_{2} \in F^{\prime \prime} \cap \gamma_{k}(F)$. By Lemma 2.3 (iii), $\left\langle w_{1} \theta\right\rangle_{k-1}=\left\langle w_{1} \theta\right\rangle_{k}=0$ so $\left\langle w_{2} \theta\right\rangle_{k}=0$. Thus, by Lemma 2.4 (v),

$$
w_{2} \in U_{k}(F) \text { modulo } K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{k+1}(F)
$$

whence $D(k)$ has the desired form. Finally, if k is odd, $k \geq 7$, then (iii) holds for $c=k-1$. Hence,

$$
\begin{aligned}
w= & w_{1} w_{2} w_{3}, w_{1} \in T_{k-2}(F), w_{2} \in U_{k-1}(F), w_{3} \in F^{\prime \prime} \cap \gamma_{k}(F) \\
& \text { modulo } K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{k+1}(F)
\end{aligned}
$$

Since terms in $T_{k-2}(F)$ involve $k-2$ generators while those in $U_{k-1}(F)$ involve at most $k-3$ generators, we may write $w=w_{1} w_{3}^{\prime} w_{2} w_{3}^{\prime \prime}$, where $w_{3}=$
$w_{3}^{\prime} w_{3}^{\prime \prime}$ and the terms in $w_{1} w_{3}^{\prime}$ involve $k-2$ generators, while those in $w_{2} w_{3}^{\prime \prime}$ involve at most $k-3$ generators. By Lemma 2.3 (iv), $\left\langle w_{1} w_{3}^{\prime} \theta\right\rangle_{k} \neq 0$, so $w_{1} w_{3}^{\prime} \equiv 1$ since $\langle w \theta\rangle_{k}=0$. Similarly, by Lemma 2.4 (iv), we may assume that $w_{2} \equiv 1$ and, hence, $\left\langle w_{3}^{\prime \prime} \theta\right\rangle_{k}=0$. Hence, by Lemma 2.4 (vii),

$$
w_{3}^{\prime \prime} \in T_{k}(F) \text { modulo } K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{k+1}(F)
$$

which completes the proof.
Remark. By [2],

$$
F \cap\left(1+\mathbf{f a}+\mathbf{f}^{c+1}\right)=F^{\prime \prime} \cdot \gamma_{c+1}(F)=(F \cap(1+\mathbf{f a})) \cdot\left(F \cap\left(1+\mathbf{f}^{c+1}\right)\right)
$$

A similar result does not, however, hold true for faf. In other words,

$$
F \cap\left(1+\mathbf{f a f}+\mathbf{f}^{c+1}\right) \neq(F \cap(1+\mathbf{f a f})) \cdot\left(F \cap\left(1+\mathbf{f}^{c+1}\right)\right)
$$

for any $c \geq 5$.

4. Free center-by-metabelian groups

In this section we shall complete the proof of our principal result that

$$
F \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right)=R \cdot \gamma_{c+1}(F)
$$

where $R=\left[F^{\prime \prime}, F\right]$ and $\mathbf{r}=\mathbf{Z} F(R-1)$. Since

$$
R \cdot \gamma_{c+1}(F) \subseteq F \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right)
$$

to complete the proof the reverse inclusion must be verified. Since $\mathbf{r} \subset$ faf, Theorem A is directly applicable, and to complete the proof it will be necessary to eliminate the "unwanted" factors $K_{6}(F), T_{c}(F)$ and $U_{c}(F)$. For this purpose we shall need to consider the ideal \mathbf{f}^{2} af, which contains fr but not \mathbf{r} itself, and the following power series representation of $\mathbf{Z} F / \mathbf{f}^{2} \mathbf{a f}$.

Let C_{1} be the ideal of $\mathbf{Z}\left[\left[y_{1}, y_{2}, \ldots\right]\right]$, the free associative power series ring, generated by all $y_{i} y_{j}\left(y_{k}, y_{l}\right) y_{m}$. The map $f_{i} \rightarrow 1+z_{i}$, where $z_{i}=y_{i}+C_{1}$, extends by linearity to a representation φ of

$$
\mathbf{Z} F / \mathbf{f}^{2} \text { af } \text { in } \mathbf{Z}\left[\left[y_{1}, y_{2}, \ldots\right]\right] / C_{1} .
$$

In particular, the elements of $F \cap\left(1+\mathbf{f}^{2} \mathbf{a f}+\mathbf{f}^{c+1}\right)$ are characterized by $w \in F \cap\left(1+\mathbf{f}^{2}\right.$ af $\left.+\mathbf{f}^{c+1}\right)$ if and only if $\langle w \varphi\rangle_{i}=0, i \leq c$.

The restriction of φ to $\left[F^{\prime \prime}, F\right]$ can be thought of as being the composition of two maps, the map θ defined in Section 2 and the map ψ of f_{i} to
$1+y_{i}+A$, where A is the ideal generated by all $\left(y_{i}, y_{j}\right)$, where, with the obvious interpretation,

$$
\begin{equation*}
\langle[f, v] \varphi\rangle=f \psi \cdot v \theta \quad \text { for } f \in F \text { and } v \in F^{\prime \prime} \tag{4.1}
\end{equation*}
$$

The fact that the above definition is unambiguous comes again from the identity

$$
[r, s]=1+(1+r)^{-1}(1+s)^{-1}(r, s)
$$

for unit elements. With this interpretation the following lemma follows directly from Lemmas 2.3 and 2.4.

Lemma 4.1. (i) Let v_{c}^{*} be as defined in Section 2. Then for any f_{i},

$$
\left\langle\left[v_{c}^{*}, f_{i}\right] \varphi\right\rangle_{c+1}=\left\langle\left[v_{c}^{*}, f_{i}\right] \varphi\right\rangle_{c+2}=0 \quad \operatorname{codd}, c \geq 5 .
$$

(ii) For any $u \in U_{c}$, c even, $\left\langle\left[u, f_{i}\right] \varphi\right\rangle_{c+1}=0$.

The following lemma lists some further extensions of Lemmas 2.3 and 2.4.
Lemma 4.2. (i) If $\left\langle\left[v_{c}^{*}, f_{i}\right] v \varphi\right\rangle_{c+2}=0$ for any $v \in \gamma_{c+2}(F)$, then $\left\langle\left[v_{c}^{*}, f_{i}\right] v \varphi\right\rangle_{c+3} \neq 0(c f$. Lemma 2.3 (iv)).
(ii) If $u \in U_{c}(F)$, c even, but $u \notin\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$, then $\langle[u, f] v \varphi\rangle_{c+2}$ $\neq 0$ for any $v \in \gamma_{c+2}(F)(c f$. Lemma 2.4 (iv)).

The following result is essential to eliminate the factors $T_{c}(F)$.
Lemma 4.3. For any c odd, $\mathrm{c} \geq 5, w_{c}^{*} \notin 1+\mathbf{r}+\mathbf{f}^{c+1}$. In particular, if

$$
w \in\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right) \cap T_{c}(F)
$$

then

$$
w \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)
$$

Proof. If $w_{c}^{*}-1 \in \mathbf{r}+\mathbf{f}^{c+1}$, then $w_{c}^{*}-1$ can be expressed as a sum $s_{5}+s_{6}+\cdots+s_{c}$, modulo f^{c+1}, where s_{i} is a sum of terms of the form $g\left(r_{i}-1\right)$, where $g \in F$ and $r_{i} \in R \cap \gamma_{i}(F), r_{i} \notin \gamma_{i+1}(F)$. However, by Lemma 2.1, for any $i<c,\left\langle r_{i} \varphi\right\rangle_{c}$ will involve repetitions of generators. Since the terms of w_{c}^{*} are linear in each generator, we may assume that $\left\langle w_{c}^{*} \varphi\right\rangle_{c}=\left\langle s_{c} \varphi\right\rangle_{c}$. Moreover, since \mathbf{f}^{2} af contains $\mathbf{f r},\left\langle s_{c} \varphi\right\rangle_{c}=\langle r \varphi\rangle_{c}$, for some $r \in \mathbf{Z}(R-1)$. In particular, the terms in $\left\langle w_{c}^{*} \varphi\right\rangle_{c}$ with left factor z_{c}, the " z_{c}-component" of
$\left\langle w_{c}^{*} \varphi\right\rangle_{c}$, must be equal to the z_{c}-component of $\langle r \varphi\rangle_{c}$. This leads to an equation

$$
\begin{align*}
& z_{c}\left\{\left(z_{3}, z_{4}\right) z_{5} \cdots z_{c-1}\left(z_{1}, z_{2}\right)\right. \\
& \left.\quad+\left(z_{4}, z_{2}\right) z_{5} \cdots z_{c-1}\left(z_{1}, z_{3}\right)+\left(z_{2}, z_{3}\right) z_{5} \cdots z_{c-1}\left(z_{1}, z_{4}\right)\right\} \\
& \quad=z_{c} \sum_{i} a_{i}\left(z_{i, 1}, z_{i, 2} ; z_{i, 3}, z_{i, 4}, \ldots, z_{i, c-1}\right) \tag{4.2}
\end{align*}
$$

where $a_{i} \in \mathbf{Z},\{i, 1, \ldots, i, c-1\}$ is a permutation of $\{1, \ldots, c-1\}$. For $c=5,(4.2)$ reduces to

$$
\begin{aligned}
& z_{5}\left\{\left(z_{3}, z_{4}\right)\left(z_{1}, z_{2}\right)+\left(z_{4}, z_{2}\right)\left(z_{1}, z_{3}\right)+\left(z_{2}, z_{3}\right)\left(z_{1}, z_{4}\right)\right\} \\
& \quad=z_{5}\left\{a_{1}\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)+a_{2}\left(z_{1}, z_{3} ; z_{2}, z_{4}\right)+a_{3}\left(z_{1}, z_{4} ; z_{2}, z_{3}\right)\right\}
\end{aligned}
$$

This equation can have no integral solution, which can be observed by an easy comparison of terms. For $c \geq 7$, (4.2) remained valid if we replace each of z_{5}, \ldots, z_{c-1} by z_{4}. Using the Jacobi identity, (4.2) reduces to

$$
\begin{array}{l}
z_{c}\left\{\left(z_{3}, z_{4}\right) z_{4}^{c-5}\left(z_{1}, z_{2}\right)+\left(z_{4}, z_{2}\right) z_{4}^{c-5}\left(z_{1}, z_{3}\right)+\left(z_{2}, z_{3}\right) z_{4}^{c-5}\left(z_{1}, z_{4}\right)\right\} \\
=z_{c}\{
\end{array} a_{1}(z_{4}, z_{1} ; z_{4}, z_{2}, z_{3}, \underbrace{z_{4}, \ldots, z_{4}}_{c-6}) . \underbrace{c-6}_{c-6})\} .
$$

Comparing the z_{c}-components $z_{c} z_{1} z_{3} z_{4}^{c-4} z_{2}$ and $z_{c} z_{1} z_{2} z_{4}^{c-4} z_{3}$ shows that $a=1=a_{2}=0$. Now comparing the z_{c}-components $z_{c} z_{3} z_{1} z_{4}^{c-4} z_{2}$ and $z_{c} z_{2} z_{1} z_{4}^{c-4} z_{3}$ gives $1=a_{3}$ and $-1=a_{3}$ respectively, which is meaningless. This completes the proof of the lemma.

The elimination of $U_{6}(F)$ and, in particular, of $K_{6}(F)$, hinges on the following lemma.

Lemma 4.4. Let $u \in U_{6}(F)$ and suppose that u is a nontrivial product of terms

$$
\left[f_{i, 1}, f_{i, 2} ; f_{i, 1}, f_{i, 2}, f_{i, 3}, f_{i, 4}\right]
$$

with $f_{i, 3} \neq f_{i, 4}$, each term occuring at most once. Then $u \notin 1+\mathbf{r}+\mathbf{f}^{7}$. In particular, $K_{6}(F) \nsubseteq 1+\mathbf{r}+\mathbf{f}^{7}$.

Proof. Suppose $u \in 1+\mathbf{r}+\mathbf{f}^{7}$. Then, as in Lemma 4.3, we may write $u-1=s_{5}+s_{6}$, modulo f^{7}. Since $u \in \gamma_{6}(F)$ it follows that $\left\langle s_{5} \varphi\right\rangle_{5}=0$, which, using (4.1), further implies that there is a non-trivial element of $F^{\prime \prime} \cap \gamma_{4}(F)$ with zero 4 -weight component under the θ-map. However, this has been shown in the proof of Theorem A (i) to be impossible. Hence, we may assume that $\langle u \varphi\rangle_{6}=\langle r \varphi\rangle_{6}$ for some $r \in R \cap \gamma_{6}(F)$. Any two commutators of length 6 of the type exhibited in the lemma have either different entries or, if the sets of entries are the same, the number of occurrences of the generators will be different. Hence the existence of a solution for $\langle u \varphi\rangle_{6}=\langle r \varphi\rangle_{6}$ will imply a solution factor-wise, and, in particular, there will be a solution to an equation of the form

$$
\begin{align*}
& \left(z_{i, 1}, z_{i, 2} ; z_{i, 1}, z_{i, 2}, z_{i, 3}, z_{i, 4}\right) \\
& \quad=\sum a_{j}\left(z_{j, 1}, z_{j, 2} ; z_{j, 3}, z_{j, 4}, z_{j, 5} ; z_{j, 6}\right) \tag{4.3}
\end{align*}
$$

Also, we may assume $i, 3<i, 4$, so the substitution of z_{1} for both $z_{i, 1}$ and $z_{i, 3}, z_{2}$ for both $z_{i, 2}$ and $z_{i, 4}$, will lead to an equation (4.3) with left side

$$
\left(z_{1}, z_{2} ; z_{1}, z_{2}, z_{1}, z_{2}\right)
$$

and right side

$$
a_{1}\left(z_{1}, z_{2} ; z_{1}, z_{2}, z_{1} ; z_{2}\right)+a_{2}\left(z_{1}, z_{2} ; z_{1}, z_{2}, z_{2} ; z_{1}\right)
$$

which, modulo C_{1}, is equal to

$$
-a_{1} z_{2}\left(z_{1}, z_{2} ; z_{1}, z_{2}, z_{1}\right)-a_{2} z_{1}\left(z_{1}, z_{2} ; z_{1}, z_{2}, z_{2}\right)
$$

and a straightforward comparison of the z_{2}-components of each side, that is, $z_{2}\left(z_{1}, z_{2}\right) z_{1}\left(z_{1}, z_{2}\right)$ with $-a_{1} z_{2}\left(z_{1}, z_{2} ; z_{1}, z_{2}, z_{1}\right)$, shows that there is no integral solution for a_{1}.

Corollary 4.5. (i) $F \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right) \subseteq U_{c}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ if c is even, $c \geq 8$.
(ii) $\quad F \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right)=\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ if $c=6$ or if c is odd, $c \geq 5$.

Proof. Suppose $w \in F \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right)$. By Theorem A,
(a) $w \in T_{c}(F) \cdot K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F), c$ odd, and
(b) $\quad w \in T_{c-1}(F) \cdot U_{c}(F) \cdot K_{6}(F) \cdot\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F), c$ even.

Thus, let $w=w_{1} w_{2}$, with $w_{2} \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ and w_{1} in the remaining factors, accordingly as c is odd or even. Since $w \in F \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right)$,
$w_{1}=1+\sum a_{i} g_{i}\left(r_{i}-1\right)+s \quad$ where $a_{i} \in \mathbf{Z}, g_{i} \in F, r_{i} \in\left[F^{\prime \prime} F\right], s \in \mathbf{f}^{c+1}$.
If $c=5$, then $w_{1} \in T_{5}(F)$ and, $\left\langle w_{1} \varphi\right\rangle_{5}=\left\langle\sum a_{i}\left(r_{i}-1\right) \varphi\right\rangle_{5}$. By Lemma 4.3, it follows that $w_{1} \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{6}(F)$, and, hence $w \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{6}(F)$. If $c=6$,
then $w_{1} \in T_{5}(F) \cdot U_{6}(F)$, and by the argument for $c=5$, we may assume that $w_{1} \in U_{6}(F)$. Thus, by Lemma 4.4, w_{1} and, hence, w is in $\left[F^{\prime \prime}, F\right] \cdot \gamma_{7}(F)$. Finally, if $c \geq 7$, then $w_{1}=w_{1}^{\prime} w_{1}^{\prime \prime}$, where $w_{1}^{\prime} \in K_{6}(F)$ and $w_{1}^{\prime \prime} \in \gamma_{7}(F)$. Hence,

$$
\left\langle w_{1}^{\prime} \varphi\right\rangle_{6}=\left\langle\sum a_{i}\left(r_{i}-1\right) \varphi\right\rangle_{6}
$$

and, by Lemma 4.4, $w_{1}^{\prime} \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{7}(F)$. Since $K_{6}(F) \cap \gamma_{7}(F) \subseteq\left[F^{\prime \prime}, F\right]$, and it follows that $w_{1} \in T_{c}(F), c$ odd, or $w_{1} \in T_{c-1}(F) \cdot U_{c}(F), c$ even. The corollary now follows directly from Lemma 4.3.

Thus, by Corollary 4.5, we are left with the factor $U_{c}(F), c$ even, $c \geq 8$, to resolve. This was relatively easy for $c=6$ since the number of generators of $U_{6}(F)$ is small. Modulo $\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F), U_{c}(F)$ is an elementary abelian 2-group, and a basis for this group has been determined in N.D. Gupta, Hurley and Levin [3]. Before quoting this basis, in Lemma 4.6, below, we need a definition.

Let $u=\left[f_{i}, f_{j} ; f_{i}, f_{j}, f_{i, 5}, \ldots, f_{i, c}\right] \in U_{c}(F)$, and suppose that u involves the generators f_{1}, \ldots, f_{n} for $n \leq c$. Then u will be abbreviated by

$$
\left[i, j ; p_{1}, p_{2}, \ldots, p_{n}\right]
$$

where p_{k} is the number of occurrences of f_{k} in the sequence $f_{i, 5}, f_{i, c}$.
Lemma 4.6 [3]. Let F be free of rank $\leq c-3$. A basis for $U_{c}(F)$ modulo $\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$ is given by the set of elements of the form

$$
\left[i, j ; p_{1}, \ldots, p_{n}\right], \quad i<j
$$

such that $p_{k} \leq 1$ for $k<i$ and the first non-zero integer reading left to right in the sequence $p_{n}, p_{n-1}, \ldots, p_{1}$ is odd. If the rank of F is $c-2$, then we must also include the commutators, less any one factor, occuring in u_{c}, as defined in Lemma 2.4 (vi), to complete a basis.
(In the above notation u_{c} is the product of all commutators

$$
\left[i, j ; p_{1}, \ldots, p_{c-2}\right]
$$

with $1 \leq i<j \leq c-2, p_{i}=p_{j}=0$ and $p_{k}=1$ for $k \neq i, j$.)
Before applying Lemma 4.6, for our forthcoming Lemma 4.8, we need a further result from [4].

Lemma 4.7 [4, Lemma 3.2 (i)]. For c even, $c \geq 8$,

$$
\prod_{k=3}^{c-3}\left[f_{1}, f_{2} ; f_{1}, f_{2}, f_{3}, \ldots, f_{k}, f_{k}, \ldots, f_{c-3}\right]
$$

is in $\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$.

LEMMA 4.8. If there exists an element $w \in U_{c}(F) \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right)$, c even, $c \geq 8$, with $w \notin\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$, then there exists an element with these properties involving at most $c-4$ distinct generators.

Proof. Suppose an element w exists as described above. Without loss of generality we may assume that w involves at most $c-2$ generators f_{1}, \ldots, f_{c-2}. By Lemma 4.6, if w involves precisely $c-2$ generators, then w is a proper factor of u_{c}, modulo $\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$. Thus, either for some fixed i, w does not contain all factors $\left[i, j ; p_{1}, \ldots\right], j>i$, or for some fixed j, w does not contain all factors $\left[i, j ; p_{1}, \ldots\right], i<j$. In either case, after a suitable change of subscripts, we may assume that w has the factor

$$
\left[f_{1}, f_{2} ; f_{1}, f_{2}, f_{3}, \ldots, f_{c-2}\right]
$$

but not

$$
\left[f_{1}, f_{3} ; f_{1}, f_{3}, f_{2}, \ldots, f_{c-2}\right]
$$

Let w^{\prime} be the word obtained from w by identifying f_{3} with f_{2}. Then

$$
w^{\prime} \in U_{c}(F) \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right)
$$

and involves $c-3$ generators. To see that $w^{\prime} \notin\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$, we use the basis given in Lemma 4.6 as follows. First we observe that the factors of the form $\left[f_{1}, f_{i} ; f_{1}, f_{i}, \ldots\right.$] in w^{\prime} are basis elements since $c \geq 8$. In fact, the only terms that are not basic will have the form

$$
\left[f_{i}, f_{j} ; f_{i}, f_{j}, f_{1}, f_{2}, f_{2}, \ldots\right] \text { with } i \geq 4
$$

However, by using the Jacobi identity (cf. [1]) modulo [$\left.F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$, such a term is equal to the product

$$
\begin{equation*}
\left[f_{2}, f_{i} ; f_{2}, f_{i}, f_{1}, f_{4}, \ldots, f_{j}, f_{j}, \ldots\right]\left[f_{2}, f_{j} ; f_{2}, f_{j}, f_{1}, f_{4}, \ldots, f_{i}, f_{i}, \ldots\right] \tag{4.4}
\end{equation*}
$$

the left factor in (4.4) is basic unless $j=c-2$ and the right factor unless $i=c-3$ and $j=c-2$. If $j=c-2$, the left factor of (4.4) has the form

$$
\left[f_{2}, f_{i}, f_{2}, f_{i}, f_{1}, f_{4}, \ldots, f_{c-2}, f_{c-2}\right]
$$

which, by Lemma 4.7, is congruent to

$$
\begin{align*}
& {\left[f_{2}, f_{i} ; f_{2}, f_{i}, f_{1}, f_{1}, f_{4}, \ldots, \hat{f}_{i}, \ldots, f_{c-3}, f_{c-2}\right]} \\
& \cdot \prod_{k=4}^{c-3}\left[f_{2}, f_{i} ; f_{2}, f_{i}, f_{1}, f_{4}, \ldots, \hat{f}_{i}, \ldots, f_{k}, f_{k}, \ldots, f_{c-3}, f_{c-2}\right] \tag{4.5}\\
& \operatorname{modulo}\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F) .
\end{align*}
$$

Each term in the product in (4.5) is basic, and again by [1],

$$
\left[f_{2}, f_{i} ; f_{2}, f_{i}, f_{1}, f_{1}, f_{4}, \ldots, \hat{f}_{i}, \ldots, f_{c-3}, f_{c-2}\right]
$$

is congruent to

$$
\left[f_{1}, f_{2} ; f_{1}, f_{2}, f_{4}, \ldots, f_{i}, f_{i}, \ldots, f_{c-2}\right]\left[f_{1}, f_{i} ; f_{1}, f_{i}, f_{2}, f_{2}, f_{4}, \ldots, f_{c-2}\right]
$$

which is a product of basis elements. The right factor in (4.4) can be represented analogously as a product of basis elements if $i=c-3, j=c-2$. However, in all these reductions the basis term

$$
\left[f_{1}, f_{2} ; f_{1}, f_{2}, f_{2}, f_{4}, \ldots, f_{c-2}\right]
$$

does not occur. Hence, by Lemma 4.6, $w^{\prime} \notin\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$.
Finally, suppose w involves precisely the $c-3$ generators f_{1}, \ldots, f_{c-3}. After a possible change of subscripts, we may assume basis elements of the form [$f_{1}, f_{2} ; f_{1}, f_{2}, \ldots$] occur as factors of w. There are three possible forms for such elements, based on Lemma 4.6:
(i) $\left[f_{1}, f_{2} ; f_{1}, f_{2}, f_{1}, f_{3}, f_{4}, \ldots, f_{c-3}\right]$
(ii) $\left[f_{1}, f_{2} ; f_{1}, f_{2}, f_{2}, f_{3}, f_{4}, \ldots, f_{c-3}\right]$
(iii) $\left[f_{1}, f_{2} ; f_{1}, f_{2}, f_{3}, \ldots, f_{i}, f_{i}, \ldots, f_{c-3}\right]$ for $3 \leq i \leq c-4$.

Further, we may assume that basis elements of the form (iii) occur and at least one, say $\left[f_{1}, f_{2} ; f_{1}, f_{2}, f_{3}, f_{4}, f_{4}, f_{5}, \ldots, f_{c-3}\right.$] does not occur in w. Let w^{\prime} be obtained from w by identifying f_{4} with f_{3}. After identifying f_{4} with f_{3}, the factors of w of the form $\left[f_{1}, f_{2} ; f_{1}, f_{2} \ldots\right]$ will still be in the basis and remain independent modulo $\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$. As in the above case, the non-basic factors of w^{\prime} will come from those in w which after replacing f_{4} by f_{3} have the form $\left[f_{i}, f_{j} ; f_{i}, f_{j}, f_{1} f_{2}, f_{3}, f_{3}, \ldots\right]$ with $i \geq 5$. As in the $(c-2)$-case, such terms may be expressed as products of basis elements. However, in the present case the resulting basis elements of the form

$$
\left[f_{1}, f_{k} ; f_{1}, f_{k}, \ldots\right]
$$

will appear with $k \in\{i, j, 3\}$ only, and it follows that $w^{\prime} \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$. If either (i) or (ii) is the case, then identifying f_{4} with f_{3} will, as in the case for $c-2$ generators, yield an element w^{\prime} in $c-4$ generators having the desired properties.

We shall now establish our main result.

Theorem B. For any $c \geq 5$,

$$
F \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right)=\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)
$$

where $\mathbf{r}=\mathbf{Z} F\left(\left[F^{\prime \prime}, F\right]-1\right)$.

Proof. Suppose $w \in F \cap\left(1+\mathbf{r}+\mathbf{f}^{c+1}\right), \quad w \notin\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$. By corollary 4.5, we may assume that $w \in U_{c}(F), c \geq 8$, and, by Lemma 4.8, that w involves at most $c-4$ distinct generators, modulo $\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$. Thus,

$$
w=w_{1} w_{2}, \quad w_{1} \in U_{c}(F), \quad w_{2} \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F),
$$

and it follows as before that

$$
\begin{equation*}
w_{1} \varphi=1+\sum a_{i}\left(r_{i}-1\right) \varphi+s \varphi, \quad r_{i} \in\left[F^{\prime \prime}, F\right], s \in \mathbf{f}^{c+1}, a_{i} \in \mathbf{Z} \tag{4.6}
\end{equation*}
$$

Since $w_{1} \in \gamma_{c}(F)$,

$$
\left\langle\sum a_{i}\left(r_{i}-1\right) \varphi\right\rangle_{k}=0 \quad \text { for } k<c .
$$

Thus, by Lemma 4.2, we may assume that all $r_{i} \in \gamma_{c-2}(F)$ and, in particular, that the summand of those $r_{i}-1$ with $r_{i} \in \gamma_{c-2}(F) \backslash \gamma_{c-1}(F)$ is a linear combination of $r_{i}-1$ with $r_{i} \in\left[T_{c-3}(F), F\right]$. Since w_{1} involves less than $c-3$ distinct generators, it follows, by Lemma 2.3 (v), that these r_{i} are in

$$
\left[F^{\prime \prime}, F, F\right] \cdot \gamma_{c-1}(F)
$$

However, $\left[F^{\prime \prime}, F, F\right]$ is in the kernel of φ, so for the purpose of finding a solution to (4.6) we may in fact, assume that all $r_{i} \in \gamma_{c-1}(F)$. In particular, by Lemma 2.4, we may further assume that the summand with $r_{i} \in \gamma_{c-1}(F) \backslash$ $\gamma_{c}(F)$ is a linear combination of terms $r_{i}-1$ with $r_{i} \in\left[U_{c-2}(F), F\right]$. Let w_{1} be expressed as a product of basis elements as given by Lemma 4.6, and, without loss of generality, suppose that terms of the form

$$
\left[1,2 ; p_{1}, \ldots, p_{n}\right]
$$

occur in this product, where n is the number of generators involved in $w_{1}, n \leq c-4$. For any such term $t=\left[1,2 ; p_{1}, \ldots, p_{n}\right]$,

$$
\begin{equation*}
\langle t \varphi\rangle_{c}=\sum_{k=1}^{n} p_{k} z_{k}\left(z_{1}, z_{2}\right) z_{1}^{p_{1}} \cdots z_{k}^{p_{k}-1} \cdots z_{n}^{p_{n}}\left(z_{1}, z_{2}\right) . \tag{4.7}
\end{equation*}
$$

By Lemma 4.6, p_{n} will be odd for this factor t of w_{1}. If all r_{i} in (4.6) are in $\gamma_{c}(F)$, the terms in the summand which will have left factor z_{n} will be those terms coming from $\left[F^{\prime \prime}, f_{n}\right]$, and, in particular, those with left factor $z_{n} z_{1}$ and right factor z_{1} will come from products of terms of the form

$$
\left[f_{1}, f_{i} ; f_{1}, f_{j}, \ldots ; f_{n}\right]
$$

However, $\left(z_{1}, z_{i} ; z_{1}, z_{j}, \ldots, z_{n}\right)=-z_{n}\left(z_{1}, z_{i} ; z_{1}, z_{j}, \ldots\right)=2 \cdot z_{n} z_{1} \cdots z_{1}$
$+\ldots$, so if there is a solution to (4.6), then not all r_{i} will be in $\gamma_{c}(F)$. Hence, in (4.6) we may assume that some of the r_{i} are in $\left[U_{c-2}(F), F\right]$, and, in particular, the terms of the form

$$
v=\left[f_{1}, f_{j} ; f_{1}, f_{j}, q_{1} f_{1}, \ldots, q_{m} f_{m} ; f_{k}\right] \in \gamma_{c-1}(F)
$$

occur. Further, modulo $\left[F^{\prime \prime}, F, F\right]$, we may assume that q_{m} is odd, $m=n$, using the basis given in Lemma 4.6. However, if $f_{k} \neq f_{n}$, one summand of $\langle v \varphi\rangle_{c}$ is $z_{k} q_{n}\left(z_{1}, z_{j}\right) \ldots z_{n}^{q_{n}+1} \ldots\left(z_{1}, z_{j}\right)$, and since $q_{n}+1$ is even, we observe from (4.7) that this term will not compare with one from $\left\langle w_{1} \varphi\right\rangle_{c}$. Further, since q_{m} is odd, there will be not term from

$$
\left\langle\left(r_{i}-1\right) \varphi\right\rangle_{c}, \quad r_{i} \in \gamma_{c}(F)
$$

to compare with this term. Since, as observed above, such terms occur with a coefficient 2 or a multiple of 2 . Hence, it follows that $f_{k}=f_{n}$. However, c is even and p_{n} is odd, so in each term of w_{1} of the form (4.7) there must be a p_{i}, $i<n$, with p_{i} odd. Thus, there will be a term in the expansion (4.7) of this element with an odd coefficient p_{i}. By the remarks following (4.7) this term with odd p_{i} cannot be compared with a term from an $r_{i}-1, r_{i} \in \gamma_{c}(F)$. Hence, if equation (4.6) is to be possible, there must be terms in

$$
\left[U_{c-2}, F\right] \cap \gamma_{c-1}(F)
$$

of the form

$$
\left[f_{1}, f_{j} ; f_{1}, f_{j}, \ldots ; f_{i}\right]
$$

Since $i \neq n$, this is a contradiction, which shows that (4.6) has a solution for $a_{i} \in \mathbf{Z}$ only if $w_{1} \in\left[F^{\prime \prime}, F\right] \cdot \gamma_{c+1}(F)$, which completes the proof of the theorem.

Finally, we wish to acknowledge useful discussions with N.D. Gupta while preparing this paper and to the referee for his critical reading of our original manuscript which has lead to this revision.

References

1. Chander Kanta Gupta, The free centre-by-metabelian groups, J. Australian Math. Soc., vol. 16 (1973), pp. 294-299.
2. Narain Gupta, On the dimension subgroups of metabelian groups, J. Pure Applied Algebra, vol 24 (1982), pp. 1-6.
3. N.D. Gupta, T.C. Hurley and F. Levin, On the lower central factors of free centre-by-metabelian groups, J. Australian Math. Soc. (Series A), vol. 38 (1985), pp. 65-75.
4. N.D. Gupta and F. Levin, Separating laws for free centre-by-metabelian nilpotent groups, Comm. Algebra, vol. 4 (1976), pp. 249-270.
5. T.C. Hurley, Representations of some relatively free groups in power series rings, Proc. London Math. Soc. (3), vol. 24 (1972), pp. 257-294.
6. I.B.S. Passi, Group rings and their augmentation ideals, Lecture Notes in Mathematics No. 715, Springer, New York, 1979.
7. J.N. Ridley, The free centre-by-metabelian groups of rank two, Proc. London. Math. Soc. (3), vol. 20 (1970), 321-347.
8. E. RIPS, On the fourth integer dimension subgroup, Israel J. Math., vol. 12 (1972), 342-346.

University of Manitoba
Winnipeg, Canada

Ruhr Universität
Bochum, West Germany

[^0]: Received April 8, 1985.
 ${ }^{1}$ Research supported by NSERC, Canada.

