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1. Introduction

Random surfaces with independent plaquettes were studied by Aizenman
et al. [2] in connection with bond percolation in Z 3. Such surfaces arise
naturally as dual objects to percolation dusters, and they exhibit critical
phenomena similar to other percolation models (cf. [2]). Random surfaces with
dependent plaquettes have recently been considered in several other physical
contexts [1], [6] but here we stick to situations where the plaquettes have
independent characteristics. Our original motivation was to generalize the
estimates on the resistances of random two-dimensional subnetworks of Z2 of
[8] and [12, Ch. 11], to three-dimensional subnetworks of Z3. Since our results
in this direction are still unsatisfactory (as indicated in (2.23) below) we
concentrate here on the relation with first-passage percolation and maximal
flows.
We begin with a brief description of the fundamental results of first-passage

percolation on Zd (d not necessarily restricted to 2 or 3). A good introduction
to the subject is the monograph [15] of Smythe and Wierman. For later results
see also [13]. To each edge e of Zd between two neighboring vertices2 of Zd

one assigns a random nonnegative value t(e). It is assumed that all t(e),
e zd, are independent and have the same distribution function F with

(1.1) F(0 -) 0;

t(e) was interpreted by Hammersley and Welsh in [10]--the article which
started the subject--as the passage time of e. A path on Zd (from v0 to vn) is
a sequence (v0, ex, vx,..., en, vn) of vertices v0,..., v, alternating with edges
el,..., e,, such that v_ and v are neighbors on Zd with e .the edge of Zd
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between them, 1 < < n. If r is the path (vo, et,..., e, v) we set

T(r) E t(e,).

T(r) can be interpreted as the passage time of r, and it is natural to introduce
the following quantities which can be interpreted as travel times between the
origin (denoted by 0) and the point (k, 0,..., 0), and between 0 and the
hyperplane

Hk
.’= (x’x(1) k},

respectively.

a o, k ’= inf( T(r)" r a path from 0 to (k, 0,..., 0) ),
bo, k := inf( T(r)" r a path from 0 to a point in Hk }.

In many respects it is easier to work with the more restricted "cylinder passage
times"

to, k := (infT(r) r a path from 0 to (k, 0,..., 0) which,
with the exception of its endpoints, lies strictly
between the hyperplanes Ho and Hk },

So, k
:= inf{ T(r)" r a path from 0 to Hk which, with

the exception of its endpoints lies strictly
between the hyperplanes Ho and Hk }.

Finally, we shall need the passage times between hyperplanes:

1, {infT(r)’r a path from Ho to H which is

contained in the box [0, k x [0, m ]d-t}.
Since we took the t(e) non-negative we may restrict the inf in the definitions
of a, b, t, s and 1 to selfavoiding paths r, i.e., to paths r all of whose vertices
are distinct.
One of the fundamental results of first-passage percolation is the following

theorem3 (see [15, Sections 5.1-5.3], [8], [13]).

THEOREM A. If

(1.2) Et(e) f[ o, oo)xdF(x) <

aWe do not state minimal conditions here; for refinements see [5] and [13].
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then there exists a constant # tt( F, d) < oo such that

1(1.3) lim 00k=# w.p.1 and inL

for 0 a, b, t or s. If m -, oo with k in such a way that

1
log m -, 0,

then also

1(1.4) lim-lk,,n # w.p.1, and in L

Our main objective is to prove a version of this theorem when the role of the
edges e is taken over by "plaquettes" in Z 3. To explain why this is desirable
we interpret t(e) as a capacity of the edge e. In other words t(e) is the
maximal amount of fluid which can flow through e per unit time. A good
introduction to this interpretation is given by Fulkerson in [7]. (See also [8] for
an interpretation of t(e) as a limitation on electrical current which can flow
through e, i.e., as a conductivity.) For given t(e) we denote by (k, m) the
maximalflow through the restriction of zd to the box

from its bottom

to its top

B(k, m) := [0, k,] x x [0, ka_] x [0, m]

eo ’= [o, k,] x x [o, k,_,] x (0}

F,,, := [0, kt] X X [0, kd_,] X (m}.

(Of course k is short for (kt,..., kd_l) here.) By definition, such a flow is an
assignment of nonnegative numbers f(e) and a direction to all the edges e in
B(k, m) such that 0 < f(e) < t(e) for all e, and such that for each vertex v

Eof(e)outside F0 U F, the total inflow equals the total outflow, that is, /

F_.d(e), where Y’.o+ (E-) is the sum over all edges incident to o and directed
towards o (away from v). For any such assignment, the flow from F0 to Fm is
defined as E+f(e) Y’.-f(e) where E+ (E-) is the sum over all edges e with
exactly one endpoint in F,, and e directed towards this endpoint (away from
this endpoint). The maximum of this expression over all possible choices of
f(.) is (k, m). See [7], [4] for more details.4

4To make the connection with these references, which deal with directed graphs, we should
replace in our graphs each edge e by a pair of edges between the endpoints of e, and assign
opposite orientation to the two edges replacing e.
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The max-flow min-cut theorem allows us to express (k, m) in a different
way (which for d 2 immediately expresses (k, m) in terms of lk/t,,_l). A
set of edges E is said to separate Fo from F, in B(k, m) if there is no path in
B(k, m) \ E from F0 to Fm. We call E an (F0, Fm)-CUt if E separates F0 from
F, in B(k, m) and if E is minimal, in the sense that no proper subset of E
separates Fo from F,. Note the minimality requirement in this definition;
some authors do not include this in the definition of a cut (cf. [4] and [7]).
Note also that we shall usually not explicitly refer to B(k, m) when talking
about an (F0, F,,)-cut. However, we shall occasionally use the alternative
phrase that E is a cut which separates the bottom from the top in B(k, m) to
indicate that E is an (F0, F,,)-cut in B(k, m).
To each set of edges E we assign the value

(1.5) V(E) E t(e).
eE

The max-flow min-cut theorem [4], [7] states that

(1.6) (k, m) min{ V(E)" E an (F0, Fm)-CUt)

This much still holds for any d. However, it seems that only for d 2 a
simple description of all (F0, Fm)-Cuts is available. When d 2, the dual graph
of z is z 2 + (1/2, 1/2) (of. [15, Section 2.1], [12, Section 2.6]). Its vertices
are the points (Jl+ 1/2, J2 + 1/2), Jr, J2 z and there is an edge of
between (Jl + 1/2, J2 + 1/2) and (it+ 1/2, 2+ 1/2) if and only if Jr-ill +
J2 i21 1; see Fig. 1. Each edge e of Z2 intersects exactly one edge e* of

.W* and vice versa. We call the intersecting e and e* associated to each other.
Through this association we have a one to one correspondence between the
edges of Z2 and the edges of .Z’*. It is therefore unambiguous to define t(e*)
for an edge e* of .L’* as t(e), where e is the edge of Z2 associated to e*. It is
a special case of Whitney’s theorem (see [17, Theorem 4], [15, Section 2.1], [12,

FIG. 1 The graph Z2 (solid edges) and its dual ’* (dashed edges).
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(o ,m) k ,m)

(0,0) (k,O)

Fro. 2 The dashed path is an (Fo, Fm)-CUt in B(k, m).

Proposition 2.2]) that a set of edges E in B(k, m)= [0, k] x [0, m] is an
(Fo, F,,)-cut if and only if E consists of the edges associated to the edges

* of a self-avoiding pathe, e

r* (v, e,..., e*, v*)

on L’* from a point on x(1)=- 1/2 to a point on x(1)= n + 1/2, and
contained in (- 1/2, k + 1/2) x [1/2, rn 1/2] (except for its endpoints). This has
the intuitive meaning that the minimal sets which separate the top from the
bottom of [0, k] [0, m] correspond to paths on the dual graph through this
rectangle from left to right. (See Fig. 2.)
From the above we see that for d 2, if E consists of the edges associated

to the edges e’, 1 < < v, of the path

on a,, then

, o:)r*

V(E) T(r*) :=
., t(eT)
i=1

(cf. (1.5)), and by virtue of (1.6),

(k, m) (minT(r*)" r* a self-avoiding path on a, from

x (1) 1/2 to x (1) n + 1/2 contained in

[-1/2, k+ 1/2] X [1/2, m+ 1/21}.
Thus, for d 2, (k, m) is the analogue of lk+l,m_ on L’*. Consequently,
by (1.4),

(1.7) lim(k, m) w.p.1
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when k --, oo, m --, oo such that

1
-r-log m - 0.
K

It is the result (1.7) which we want to generalize to higher dimensions, and
in particular to d--- 3. In view of (1.7), the most obvious guess is that under
some restrictions on kx,..., ka_ and m,

(klkE,...,kd_l)-lO(k,m)
will converge to a constant. If one attempts to imitate for d 3 the two-
dimensional proof indicated above, then one probably will replace the edge e*
associated to e by the unit square r* perpendicular to e and bisecting e
(compare also [2]). We shall call these unit squares of the form

[jt 1/2, jt + 1/2] x [j=- 1/2, j + 1/2] x ( j + 1/2), jtez,

or the similar forms obtainable by interchanging the roles of the coordinates,
plaquettes. Thus the plaquettes are faces of the unit cubes with centers in Z3;
the "comers" of the plaquettes are on .L’* .’= Z3+ (1/2, 1/2, 1/2). Again each
plaquette intersects a unique edge of Z3 and vice versa, so that plaquettes are
associated in a one to one way to edges of Z3, and we can set t(r*) t(e) if
e is the edge associated to the plaquette r*. However, we do not know how to
characterize in a simple manner a collection of plaquettes E* for which the
associated edges form an (F0, F,)-cut in the box

B(k, I, m) [0, k] x [0, 1] x [0, m].

Loosely speaking, we expect such an E* to be a "surface" which cuts
B(k, 1, m) into a lower and an upper component. We define

(1.8) OE* collection of edges of .Z’* which belong to

an odd number of plaquettes of E*.

We expect that if E* corresponds to a cut, then OE* lies outside B(k, 1, m).
In fact, as we shall see in Lemma 3.6a, OE* lies in

(1.9) [-12, k + 1/2] X {-1/2} X [1’2, m 1/2]
U[-{,k+ 1/2] x {1+ 1/2} x [1/2, m- i2]
u{-21.} x [-1/2,1 + 1.2] x [21-,m- 1/2]
U(k + {} x [-1/2,1 + 1-2] x [1/2, m- i2],

the "vertical surface surrounding B(k,l,m)". However, E* can be quite
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complicated; the union of the plaquettes in E* is not necessarily a two-mani-
fold. Rather than getting involved in complicated topological classifications we
simply decide to call a collection of plaquettes E* an (Fo, Fm)-CUt or a cut
which separates the bottom from the top in B(k, l, m) if and only if the set E of
associated edges of Z3 is an (F0, Fm)-Cut. We then study cut sets on .W*, show
how to patch several of them together, and finally obtain an analogue of (1.4)
which also shows that (kl)-ld#(k, l, m) converges under suitable conditions
to a constant v.

It is more ambiguous to decide what the proper analogues of a0, n, b0, n, to,
and So, are for plaquettes. For any collection E* of plaquettes define

(1.10) V(E*)= ’ t(rr*).
r* E*

We also must extend our definition of separating set and a cut. Let S be a
rectangle of the form [k, k2] [l,/2], k, l Z, k < k2, lx < 12. We say
that a set E of edges of Z3, or the set E* of associated plaquettes, separates
-oo from +oo over S if there is no path on Z in (SxZ)\E from
S (-N } to S (+N } for some (and hence all sufficiently large) N > 0.
Similarly we call E, or the set E* of associated plaquettes, a cut over S if E
separates -oo from + oo over S, but no proper subset of E separates
from + oo over S. As analogues of to, and ao, we now propose

(1.11) ,(k, 1) (infV(E*)" E* a cut over [0, k] [0, 11 whose
boundary OE* consists of the edges of

on thepefimeter of [-1/2, k + 1/2] x [-1/2, + 1/2] (1/2}}
and

(1.12) a(k, 1) (inf V(E*)" E* separates from + oo over

[0, k] [0, l, and OE* consists of the edges
of .oe* on the perimeter of

[-1/2, k + x [-1/2, + 1/21 x {1/2}},

respectively.

Remark. The greek names have been chosen to bring out the analogy with
ordinary first passage percolation. The quantity a is the analogue of a, and
of t. o and fl in (2.5) and (2.6) correspond to s and b, respectively.

50f course (k, l, m) is the flow which we denoted above by (k, m) for the case k (k, l).
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It will be seen in (3.1a) that the requirement that E* separate -oo from
+ oo over [0, k] [0, l] is superfluous in (1.12). It is already implied by the
requirement on the form of OE*.

As a partial analogue of (1.3) we show that under extra conditions there
exists a constant g < oo such that

1 1(1.13) lim Tz(k,l)= lim -a(k,l)=v w.p.1;
k, l--" oo k, l--" oo

this v equals lim(kl)-le(k, l, m). Analogues of bo, k and SO, k and precise
results aregiven in Section 2, to which the reader can skip now.

It is instructive, though, to discuss further the relationship with bond-perco-
lation in Z3, and the random surfaces of Aizenman et al. [2]. Bond-percolation
corresponds to the case where t(e) can take only the values 0 or 1, with
probabilities q 1 p and p, respectively. This means that F is taken to be
the Bernoulli distribution

0 ifx <0,
Bl(X ) 1- p ifO<x<l,

1 ifx> 1.

We shall call an edge e with t(e) 1 open and one with t(e) 0 closed. The
space of all configurations of open and closed edges can then be identified
with {0,1}, where d’ denotes the set of all edges of Z3. We write Pp for
the joint distribution of the t(e) in this case; it can be identified with the
product measure on fl according to which each coordinate is 0(1) with
probability q(p).

Call a path on Z3 open if all its edges are open. It follows from Menger’s
theorem [4, Theorem III.5.ii] that in the present casemwith 0 and 1 the only
possible values for t(e)--

(1.14) (k, 1, m) maximal number of edge disjoint open paths

on Z N B(k, 1, m) from F0 to F,.

Our Theorem 2.12 implies that for d 3 and sufficiently large p and k, 1, m
oo such that k > 1 and k-1 +Slog m 0 for some > 0,

(1.15)
(kl)-(maximal number of edge disjoint open paths on

Z3 N B(k, 1, m) from F0 to Fm } v(B,,3) w.p.1.

It is also known that (k, k, k) 0 eventually, w.p.1 when p is sufficiently
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small. In fact, for bond-percolation on Zd for any d, let

W open cluster of 0 collection of all edges belonging
to an open path starting at 0,

and denote by #W the number of edges in W. One of the critical probabilities
considered in percolation theory is

(1.16) pr=pr(d) sup{p" E,{#W) < o).

Then it is known ([12, Theorem 5.1] or [9, Theorem 2]) that for p < pr(d),

(1.17) P(there is any open path from [0, k] a- x (0) to

[O,k] e-’X (k}intO, k] e} --0

exponentially fast as k

One would hope that for d 3, (1.15) holds as soon as p > pr(3), but we
have not been able to prove this. (We note here that for d 2 we do know the
analogous result; pr(2) 1/2 and for p > 1/2,

k-x(maximal number of edge disjoint open paths on

Z2f [0, k] X [0, m] from [0, k] x {0} to [0, k] x (m}}
-/(B,,2) > 0 w.p.1,

where k, m oo such that k-Xlog m 0; (see [12, p. 54] for pr(2) 1/2, and
[8, Cor. 4.1]).
Aizenman et al. [2] investigate among other things for d--- 3 the behavior

for large k, 1 of

(1.18) P, (there exists a set of plaquettes E * such that tgE* consists

of the edges of the perimeter of [- 1/2, k + 1/2]
X [- 1/2, + x2] X { 1/2 } and such that all edges e

associated to E* are closed }.
The above probability can be seen to equal P,( a(k, l) 0) when F Bp (see
Remark 3.3 below). Thus [2] studies the probability of the existence of a
separating set of zero value (in the case of Bernoulli distributions), whereas
our interest here is more in the center of the distribution of the smallest value
assigned to any separating set. Results on (1.18) are a special type of large
deviation results for this distribution. In [2] it is shown that for p sufficiently
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large, F B, and d 3,

(1.19) c(p) .’= lim log Pv { a(k, 1) 0 } exists and is

strictly positive.

For ao, k, So, k and to, k even more precise results are known (even for general
F), namely

1
lim log P{ 80 k <- k(/- e)}B(e F, d)
k--,oo

exists and is strictly positive for e > 0 and 8 a, s or (cf. [8], [13]). In the
course of our proofs we also obtain some large deviation estimates for
P( a(k, l) < kl(, e)} but they are by no means the full analogue of (1.19),
(1.20) (cf. Theorem 2.10).

Acknowledgement. The author is indebted to M. Cohen and M. Steinberger
for help with some of the topological lemmas, and to R. Durrett for several
helpful discussions about this paper in general.

2. Statement of results and open problems

We need a preliminary lemma to define the domain of validity of our
results. This first lemma relies on a Peierls argument, and the restriction
F(0) < P0 in the sequel is akin to the restriction F(0) < 1/h which originally
appeared in several theorems of [15]. Since Peieds arguments are rather crude
one may venture that a much better understanding of percolation in dimen-
sion > 3 will be needed to do away with the restriction on F(0) (cf. Problem
2.23 below).
From now on we take d 3.

(2.1) L. There exists a Po 1/27 with the following property: For
every distribution function F with

(2.2) F(0 -) 0, F(0) < Po

there exist constants 0 O(F) > O, 0 < C Ci(F) < oo such that

(2.3) P { there exists a connected set E* of n plaquettes

of.* which contains the point ( 1/2, 1/2, 1/2) and
with V(E*) < On } < Cle-C2", n > O,
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and

P ( there exists a cut E* over [0, k] [0, 1] which

contains the point (- 1/2, 1/2, 1/2) and consists of
at least n plaquettes but has V(E *) < On }
< C1e-C2n,n>0

Next we define some analogues of bo, k and So, k. Recall that ,(k, 1) and
a(k, l) were defined in (1.11) and (1.12).

(2.5) o(k, l) .’= (infV(E*) E* a cut over [0, k] [0, l]
containing the point (- 1/2, 1/2, 1/2) and contained

in[-1/2, k+X2] x [-1/2,1+1/2] xR},
(2.6) fl(k, 1) := {infV(E*) E* a connected set which

separates from + o over [0, k] x [0, 1]
and which contains the point (- 1/2, 1/2, x2) }

We point out that there is a certain arbitrariness in choosing o(k, 1) and
fl(k, 1) as the analogues of So, k and bo, k. There is much less arbitrariness in
the definitions of (k, 1) and a(k, 1) since, as pointed out in [2, Section l(ii)],
the analogues of to, k and no, k should be infima over cuts whose boundaries
are completely described. However, So, k and bo, k are defined as infima over
paths of which only part of the boundary is fixed. Thus, for o(k, 1) and
fl(k, 1) we should also fix only part of the boundary. In fact we chose the

1/2).minimal restriction on E*, namely that it contain the point ( 2,

One could, for instance, also define infima over all cuts E* such that OE*
contains the edges on {- 1/2) [- 1/2, + 1/2] x { 1/2). But such infima would lie
between a(k, l) and fl(k, l), or ,(k, l) and o(k, l), respectively. Thus, in a
way, our theorem below is as extensive as possible, since other reasonable
infima would be sandwiched between the ones dealt with here.

(2.7) Ttt.OltM. Assume F satisfies (2.2) or more generally, F(O ) 0
and (2.3). If in addition,

(2.8) Eevt(r*) f[ e vx dF(x) < oo

for some , > 0, then there exists a number v v(F) < fto, oo)xdF(x) < oo
such that

1(2.9)
k, "loo -O(k, l) v w.p.1 and in L
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for 0 a, fl, o or . This v is strictly positive.

(2.10) THEOREM. Under the assumptions of Theorem 2.7 there exist for each
> O, e > 0 constants 0 < Dr(e, , F), L L(e, , F) < oo such that for 0
fl, o or , and v as in (2.9),

(2.11) P(O(k, l) <_ kl(v e)} _< Dexp(-k-), k >_ l>_ L.

(2.12) THEOREM.
some > 0,

If m(k, 1) oo as k ---> oo in such a way that for

(2.13) k-1 +Slog m(k, 1) ---> 0,

and if the hypotheses of Theorem 2.7 hold, then

(2.14) lim
1

k,too
70(k’ 1, m) v w.p.1, and inL

where dp is dp((k, 1), m) in the notation of (1.6) and v is as in (2.9).

(2.15) Remark. (2.9) and (2.11) for 0 e or and (2.14) are valid for all
F which satisfy F(0 ) 0, (2.4) and (2.8). The proof does not use (2.3) until
(4.63), and there (2.4) would suffice if we restricted ourselves to 0 or .
The replacement of (2.3) by (2.4) may be useful because (2.4) probably holds
for a larger interval of F(0)-values than (2.3). (Compare also problem 2.23
below.)

(2.16) Remark. The estimates in Theorems 2.10 and 2.12 can be improved
if one restricts oneself to k and with k/l bounded away from 0 and oo. For
example in the course of the proof of (2.10) we show that

P{O(k, k) < k2(v- e)} < Dexp(-k2-2.)

(use (4.55) and (4.63)). This implies that (2.14) with k will hold as long as
k-2+2Slog m(k, k) --> 0 for any > 0 (which is less restrictive than (2.13)).

(2.17) Remark. Condition (2.13) may appear somewhat strange. We re-
mind the reader, though, that the two-dimensional analogue of (2.14), namely
(1.7), was only proved under the condition k-llogm(k)-> O, and that the
latter condition is sharp by [8, Theorem 5.2]. Thus, we would hope that the
condition (2.13) could be weakened to (k/)-llog re(k, l) - O. We could not
prove this, but in any case (2.13) allows arbitrary polynomial growth in k
for m.
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(2.18) THEOREM. Assumethat

(2.19) F(0 -) 0, F(0) >l-pr(3) and f[ 0,
x 6 dF(x) <

Then

1(2.20) limsup k + i O(k’ l) < w.p.1

for 0 a, fl, o and . Afortiori, (2.9) holds with v O.
Furthermore, there exists a constant Ca Ca(F) < o0 such that w.p.1,

(2.21) d ( k, 1, rn) 0 for all sufficiently large k, 1,

whenever m(k, 1) as k, in such a way that

(2.22) m(k,l)
fimk,,--,inf d > C3"

Almost immediately, the above results raise a number of problems. We
mention the most obvious ones.

(2.23) Prove analogous results for P0 < F(0)< 1- pr(3). The boldest
conjecture would be that (2.9) holds, irrespective of the value of F(0), but that
r > 0 if and only if F(0) < 1 -Pr(3). This is suggested by two-dimensional
results, if one believes that "there is only one critical probability" for various
phenomena in bond percolation (compare also [2, Section 5]). Probably the
situation with F(0) 1 pr(3) will be most difficult.
The fact that our approach does not seem to work for all F(0) is disappoint-

ing for resistance estimations. Let R, be the resistance between two opposite
faces of the cube [0, n] when the resistances of the edges of Z are chosen
independently equal to 1 or o with probability 1 F(0) and F(0), respec-
tively. As one can check from the proofs in [8, Section 5] or [12, pp. 372, 373],
(2.14) with v > 0 for this situation would imply limsup nR, < w.p.1. This
is here obtained for F(0)< P0. In this respect the results here are poor in
comparison to [12], Theorem 11.3, which already shows that lim sup nR, <
for F(0)< 1/2. J. Chayes and L. Chayes (Comm. Math. Physics, vol. 105
(1986), pp. 133-152) have even proved this for a still larger interval of
F(0)-values.

(2.24) Prove results under weaker moment conditions than (2.8). Most
first-passage percolation results require only very weak moment conditions, if
any (see [5], [8], [13]). Et2(e) < should suffice for most results.
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(2.25) Does limk, t_.oo -71ogP{0(k, l)< kl(v- e)) exist and is it strictly
negative for e > 02

(2.26) Obtain similar results for d > 3 and/or when the plaquettes are
replaced by cells of dimension greater than 2.

3. Topological preliminaries

The reader is advised to skip this section at first reading and to refer to it
only when the need arises. We discuss here various properties of cuts E* and
their boundaries OE*. These properties are all of a topological nature and no
probability is involved.

(3.1) LEMMA. (a) If E* is a collection ofplaquettes such that OE* consists

of the edges on the perimeter of [- 1/2, k + 1/2] [- 1/2, + 1/2] { 1/2 ), then E*
separates -oo from + oo over [0, k] [0, l].

(b) If E* is a cut over [0, k] [0, l], then the interiors of all plaquettes in
E* are contained in (- 1/2, k + 1/2)(- 1/2,1+ 1/2) R.

Proof. (a) Assume that E* does not separate -oo from + o over
[0, k] [0, 1]. Then there exists a path on Z from -o to + oo in [0, k]
[0, 1] R which does not intersect any plaquette of E*. Let D* be the
collection of plaquettes

[Jl 1/2, Jl + 1/2] [J2- 1/2, J2 + 1/2] (2x) with 0 <Jl k,0 <J2 < I.

The union of these plaquettes is the intersection of the hyperplane x(3) 1/2
with [- 1/2, k + 1/2] [- 1/2, + 1/2] R and 0D* consists of the edges on the
perimeter of

[-1/2, k+1/2] X [-1/2,1+1/2] X {1/2).

Clearly , which starts below D* and ends above D*, must intersect D* an
odd number of times. However, it follows from 0E* 0D* that

(3.2) (number of intersections of with D*)
-(number of intersections of with E* ) is an even integer.

This follows from general topological considerations (see also [2, Prop. 2.1]);
for completeness we give a simple standard proof. Let run along the
perimeter of some unit square ,r (with "comers" on Z3) from the vertex v to
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-I

v

FIG. 3 The curve and a perturbation ’ (dashed).

the vertex w of Z3, and let ’ be obtained from by replacing the arc from v
to w by the other arc of the perimeter of r between r and w (see Fig. 3). Let
e* be the edge of .W* which intersects r in its midpoint. Since OD* OE*,
the number of plaquettes in D* containing e* differs by an even integer from
the number of plaquettes in E* containing e*. One easily obtains from this
that

(number of intersections of with D*)
(number of intersections, of with E *)
even integer + (number of intersections of ’ with D*)

-(number of intersections of ’ with E *).

Thus, perturbing to ’ only changes the number of intersections with D*
minus the number of intersections with E* by an even integer. Since we can
change by a number of such perturbations to a curve which intersects
neither D* nor E*, (3.2) follows.
On the other hand (3.2) cannot hold in our situation since intersects D*

an odd number of times, and by construction, is disjoint from E*. It follows
from this contradiction that E* must separate oo from + oo over [0, k]
[0, t].

(b) Let E be the collection of edges of Z associated with the plaquettes
of E*. If E* is a cut over [0, k] [0, l], then by definition E is a minimal set
of edges separating -oo from + oo in [0, k] [0, l] R. Clearly such a
minimal set contains no edges outside [0, k] [0, l] R. From this (b)
follows immediately.

(3.3) Remark. 3.1(a) also shows that (1.18) equals P(a(k, l)= 0} when
F B,. Indeed the sets E* appearing in (1.18) must separate oo from + oo
over [0, k] [0, 1]. It also shows that the requirement that E* separates
from + oo over [0, k] [0, l] can be dropped in the definition (1.12) of
a(k, 1). I

In the next four lemmas, R [0, k] [0, l] and E is an (F0, F,)-cut in
B=R[0, m] (Fo=R (0), F,=R (rn}) and E* is the set of
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plaquettes associated with the edges of E. Furthermore we define

AB "vertical part of the boundary" of [-1/2, k + 1/2]

X[-1/2,1+ 1/2] X[O,m].
AB consists of the four rectangles parallel to the third coordinate axis,
obtained by replacing [1/2, m 1/2] by [0, m] in (1.9).

(3.4) LEMMA. Let B, AB, F0, F, and E be as above.
(a) E contains no edges in Fo or Fm so that E* is contained in

[-1/2, k+ 1/2] X [-1/2,1+ 1/2] X [1/2, m- 1/2].

E* contains no plaquettes in AB.
(b) Let K_ (K+) be the set of edges and vertices of Z which lie on a path

on Z3 in B, which contains no edges in E and which starts at some point of Fo
(Fro). Then, when viewed as subsets of R3, K_ and K+ are closed, connected
and disjoint. Moreover each edge of Z in B which does not belong to E lies in
K_ or K+. Finally Fo c K_, F c K+.

( c) E consists precisely of those edges of Z in B which have one endpoint in
K_ and the other endpoint in K+.

Proof. Part (a) again follows from the minimality of E; E contains no
edges of Fo or F, or outside B (compare also the proof of (3.1b)).
As for (b) and (c), K_ and K/ are closed and connected, and Fo c K_, F,

c K/, all by definition. Moreover, K_ and K/ must be disjoint, since
otherwise Fo and F,, can be connected by a path in K_ U K/. Such a path
would contain no edge in E, contradicting the assumption that E separates F0
from F, in B. Thus K_ K/ . The remainder of (b) and (c) follows
easily from Theorem 5 of [17]. I

We maintain the notation of the last lemma. In addition we introduce the
lower edge and upper edge of AB. These are defined as

A_ := pedmeter of [- 2x,k+1/2] x [-1/2,1+ 1/2] x {0}

and

A+:=pedmeterof[-1/2, k+1/2] x [-1/2,1+1/2] x {m},

respectively.
Our aim is to decompose OE * into a number of circuits on AB \ (A_ u A+).

To do this we must also discuss separation properties of such paths. First,
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more definitions. A circuit on .W* is a sequence

,)(v,e,...,e*n, on
with v’ and e7 vertices and edges, respectively, of 0* such that e’ is the
edge between v’_ and v’, 1 _< < n, and v’ 4: vj*, for 4: j with the single

* To discuss the separation properties of such circuits on ABexception v’ vn
we introduce a number of graphs, if* is the restriction of .W* to A B. f#0 is
the graph whose vertices are the points of the form

with z Z, 1, 2, 3, which lie in AB. Two points

(z. + 1/2, z, z6) and (z.’ + 1/2, z", z6’)

are adjacent on f0 if and only if

Iz{- z.’l + Iz- z’l + Iz;- z6’l 1,

and similarly for two points (z, z. + 1/2, z6) and (z’, z’ + 1/2, z’). Also the
following pairs are adjacent on fo"

(3.5) (- 1/2, 0, z3) and (0, 1/2, z3),

(k + 1/2, 0, z3) and (k, 1/2, z3),

(-1/2, l, z3) and (0, + 1/2, z3),

(k + 1/2, 1, z3) and (k, + 1/2, z3).

Part of fo is drawn in Fig. 4. Finally ff is obtained from f0 by identifying all
vertices of f0 on A_ as one vertex v_, and identifying all vertices of fo on

A+ as another vertex A /, see Fig. 5.
f* and f are planar graphs, since AB is homeomorphic to part of sphere.

Moreover f has one vertex to each face of if*, and each edge of f intersects
exactly one edge of if* and vice versa (cf. Fig. 5). Therefore f9 and f* are
dual to each other in the sense of [16] (see proof of Theorem 29). Therefore, by
Theorems 4 and 5 of [17], the minimal sets cg of edges of f which separate f
into two components, are precisely the sets for which the set cg, of associated
edges of if* forms a circuit on f*. Notice that there is also a 1’-1 correspon-
dence between the edges of f* and the edges of fo which do not lie in

A+ A_. Again one edge of the former type intersects a unique one of the
latter type, and vice versa. It follows from this that if if* is a circuit on f*,
then the collection cg

0 of edges of f0 which intersect some edge in cg, is a
minimal set separating if0 into two components, fro will not contain any
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A+

FIG. 4 The parts of * and 0 on the "front and right face of A B". The edges of * are
dashed, the edges of 0 are drawn as solid curves, the vertices of * and 0 are indicated by
and respectively. The two vertices marked with a solid dot are adjacent on o.

edge in A+ td A_, so that A+ and A_ each belong entirely to one component
of f#o \ o- Thus each circuit ’* of f#* must belong to one of the two classes
which we now define. We say that a circuit * of f#* is of class I (class H) if

A+ and A_ lie in the same component (in different components) of f#0 \ cg0.
The above discussion also shows that any set F* of edges of * which

separates A_ from A+ in AB must contain a circuit of class II. Indeed, if F is
the set of edges of f# which intersect some edge of F*, then F does not
contain any edge in A+ td A_, and therefore also separates v_ from
A circuit * of f#* can also be viewed in an obvious way as a Jordan curve

(i.e., a simple closed curve) on AB. In fact cg, must lie in AB \ (A+ t3 A_),
because the restriction of .La* to AB lies in 112 X [1/2, rn- 1/2]. Thus ’*
divides AB into two path components. If ’0 corresponds to ’* as above,
and v, w belong to the same component of fo \ ’o, then v and w can be
connected by a path on f#o which contains no edge from ’0, and hence does
not intersect ’*. Therefore the components of 0 \ ’o each lie in one path
component of AB \ ’*. Conversely, with a bit more work (using an argument
similar to [12], pp. 410, 411) one can see that if v and w are two vertices of 0
which are connected by a path in AB \ *, then one can deform to a path
on No from v to w which does not intersect *. Consequently all vertices of
No in one path component of AB \ ’* belong to the same component of
No \ ’o, and each path component of AB \ ’* contains exactly one compo-
nent of o \ 0. We introduce the following notation for the path components
of AB \ ’*. If ’* is ef class I, then the exterior of * (denoted *(ex0) is
the path component of AB \ ’* which contains A+ tA A_, and the other path
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V+

FIG. 5 Part of f, obtained by collapsing the vertices of 0 on A+ (A_) to one vertex v+ (v_).

component of AB \ c, is called the interior of c, (denoted c *(int)). If *
is of class II, then we denote by cff (c6,_,) the path component of AB \ *
which contains A+ (A_). (See Fig. 6 for some examples.) Finally, * (int)=

*(int) U c ,, and similarly for cg, (ext), cg+,, _,.
(3.6) LEMMA. (a) E* c AB n (R/ [1/2, m 1/2]). An edge e* of.,W* in

AB belongs to cgE * ifand only if e* is an edge of a "boundary plaquette ", i.e., a
plaquette of the form

[i-1/2, i+ 1/2] [j-1/2, j+ 1/2] (p+ 1/2)

with 0 or k or j 0 or 1, 0 < p < m 1, or

[i-1/2, i+ 1/2] (j+1/2} [P- 1/2, P+ 1/2]
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FIG. 61 A circuit * of class (in the "fight" face) of AB. The hatched region is cg*(int).

FIG. 6II A circuit rg, of class II. The hatched part of the vertical boundary is

with O or k, O <_j l- l, 1 <_p <_ m l or

{i+1/2) [j-1/2, J+1/2] X [p-1/2, P+1/2]

with j O or l, O < < k 1, j=O or l, 1 < p < m 1.
(b) If v* is a vertex of .Z’* in AB then there is always an even number of

edges of OE* incident to v*.
(c) (tgE*)o, defined as the collection of edges of f#o which intersect OE*,

separates A+ from A_ in fo. Consequently OE* contains at least one circuit of
class H.
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Proof. (a) Since
(3.4a), also

E* c [- 1/2, k + 1/21 x [- 1/2,1+ 1/2] x [1/2, rn- 1/21 by

ctE* c: R:z X [1/2, m 1/2].

Note also that once we prove the first statement, the second statement in (a)
follows immediately, because E* contains no plaquettes in AB. Therefore we
only have to prove that OE* c AB, or equivalently, that OE* cannot contain
any edge e* whose interior lies in

(-1/2, k+ 1/2) X (-1/2,1+ 1/2) X [1/2, m- 1/2].

We prove this by giving an alternative description of E*. Let U be the closed
unit cube with center at the origin"

(3.7) U= {xR3"-1/2 <x(i) < 1/2, i=1,2,3).

Note that the faces of the cubes of the form v + U, v Z3, are the plaquettes.
We call v + U a + cube (- cube) if o K+ (K_) (see (3.4b) for K +/-), and
set

(3.8) U (o+u), U
v.K+ v.K_

We claim that

(3.9) E* is the collection of plaquettes ,r* which are a face of a cube
and of a + cube.

(3.9) is immediate from (3.4c). Indeed, if e is the edge of Z associated to a
plaquette ,r*, then r* belongs to E* if and only if e E, and this holds if
and only if there exist vertices v K_, w K/ such that e is the edge
between v and w (by (3.4c)).
We return to the proof of (a), by means of (3.9). Assume e* is an edge of

.Z’* whose interior lies in

(-1/2, k+ 1/2) X (-1/2,/+ 1/2) X [1/2, m- 1/2].

Then e* is an edge of four cubes v + U with vi a vertex of Z in B. We can
number these in such a way that v + U and o/ + U have as common face a
plaquette, ri* say, which contains e*, 1 < < 4 (05 ol). Now e* tgE* if
and only if the number of ,r*, 1 < < 4, which belong to E* is odd.
However, a simple examination of cases shows that this number is always even
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"v 2 "n*2 "v3

T

"V

e ’n 3
r 4 "v 4

FIG. 7 Projection of the (o + U) and the ri* in the direction of e*; e* itself projects onto the
point at the center. No matter how we partition the oi among K_ and K+, an even number of the
cry* will lie between a cube and a + cube.

(see Fig. 7), so that the edge e* under consideration cannot belong to 0E*.
This proves (a).

(b) This also follows from the argument which we just completed.
(c) This statement is a reflection of the fact that E* separates F0 from Fm.

To prove (c) let @ be a path on f0 from A_ to A /. We shall map @ to a path k
on Z3 in B from F0 to F,,, by "pushing @ inwards". k must intersect E*
and this will imply that intersects OE*, thereby showing that OE* has the
required separation property.
To describe how @ is "pushed inwards" we merely have to say where an

edge f of f0 is mapped to. Roughly speaking, when f lies entirely in one face
of AB, then it is mapped to the nearest edge of Z on the boundary of B
which is parallel to f. Thus, if f runs from (z1, 1/2, z3) to (zl + 1, 1/2, z3),
then its image is the edge from (zx, 0, z3) to (z + 1, 0, z3). Similarly the edge
from (z1, 1 + 1/2, z3) to (zl + 1, + 1/2, z3) is mapped to the edge from (z1, 1, z3)
to (z + 1, l, z3). Similarly for vertical edges or edges in the other faces of AB.
Only the edges between any of the pairs in (3.5) are special. In fact the edge f
from (- 1/2, 0, z3) to (- 1/2, 0, z + 1) is. mapped to the edge e from (0, 0, z3) to
(0, 0, z3 + 1). The edge f2 from (0, 1/2, z3) to (0, 1/2, z3 + 1) has the same
image. Accordingly, the whole edge between the first pair in (3.5) should be
mapped to the single point (0, 0, z3). The edges between the other pairs in (3.5)
are similarly mapped to one point in the boundary of B. It is not hard to see
that this "pushing in transformation" does indeed take q, to a path k on Z3
from F0 to Fm. k must intersect some plaquette r* of E*. Since k lies on
the boundary of B, r* must be a "boundary plaquette" as described in part
(a). r* has either one edge e’, or two edges e’ and e’ in AB. By (a) this edge
(or these edges, respectively) belong to OE*, and one easily checks that @ must
intersect e’ (or e’ e’, respectively). This proves that OE* separates A

/

from A_. The rest follows from Whitney’s theorem as discussed before Lemma
3.6, because (0E*)0 must contain a minimal set which separates A_ from A+.
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The next lemma describes the structure of OE* in greater detail. Fig. 8
illustrates this rather lengthy description.

(3.10) LEMMA. OE* can be decomposed into a finite number of circuits
c,. c of .W* on AB \ (A+ U A_). These circuits can be chosen in such a
way that the following properties hold:

(3.11) Any two circuits ci* cj, with j have no edges in common.

(3.12) There is an odd number of circuits of class H; these can be numbered as
c,..., c, ( odd) such that cj, c and ci* c cj+ if < j. In words ci*
lies "above" cj, if < j.

(3.13) If c is a circuit of class I, then it "lies between
circuits of class H, i.e., for some 0 < < , two successive

(Here we interpret cd as A+ and 7+1 as A_.)

(3.14) If ci* and cgj, are both of class I, q.j, then either

%* c cgi* (int) or cgi* c *(int)

or both

%* c: i*(ext) and cgi, c *(ext).

(3.15) If 1 < < , odd, then all plaquettes r* in AB which contain an
edge of ci* and with interior in ci*_ (ci*+) are faces of a cube ( + cube). For
even the plaquettes adjacent to ci* in ci*_ (ci*+) are faces of + cubes (-

cubes).

(Note that despite the notation i*- may contain faces of + cubes.)

Proof. By (3.6b) and Euler’s theorem (cf. [4], Theorem 1.10) one can
decompose OE* into a number of edge disjoint circuits. However, we have to
choose these circuits with some care to guarantee (3.11)-(3.15). By (3.6c) OE*
contains at least one circuit of class II. Exactly as in [11], Lemma 1, we can
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FIG. 8 A typical configuration of circuits in tgE*. The circuits of class are dashed and those of
class II are solidly drawn.

find a "highest" circuit cg, among all such circuits. That is we can choose 1"
such that for any other circuit * of class II in OE* * c and cg, c -,+,.
We claim that once cgx* has been chosen in this way, any other circuit c6’* in
0E *, which is edge disjoint from cg, must lie entirely in *_ or entirely in *+.
This is true for cg, of class I as well as of class II, and follows from the proof
of Lemma 1 in [11]. Indeed if cg, contains a point, x in c6’*_ and a point y in
1"+, then * must contain a whole arc s in c,+ from some vertex v* on

W* to some vertex w* = v*, also on W*. By replacing the arc from o to w of

W* by s we would obtain a circuit of class II in OE*, which lies above
contradicting the choice of * as the highest circuit of class II in tgE*. This
proves our claim.
Now remove 1" and consider any vertex v* of .q’* in *+ *+ t3 *.

If v* W*+, then there are still an even number of edges of OE*"\
incident to o*, since no edges incident to o* were removed. If v* W* then
two edges of W* incident to o* were removed, so that there is still an even
number of edges of OE*\ ff’’ incident to o*. Thus the edges of BE*\
in */ can be decomposed into a number of edge disjoint circuits. All of these
must belong to class I, since ,’x* was the highest of class IL We want to
choose these circuits such that they satisfy (3.14). In the rest of this paragraph
we only use edges in OE * \ c, which lie in 7,+. If there are such edges, we
first choose a circuit c, say, such that there is no other circuit c,, with

W* -(int), nor another circuit c, which is edge disjoint from * and
contains points in *(int) as well as points in W*(ext). Such a "maximal
circuit" can be constructed by imitating the proof of [11], Lemma 1. If ’*and c, are located as in Fig. 9, then we can construct a larger circuit. Of

course if * c W*(int), then we simply replace c, by c,. After a finite
number of such steps we end up with a W* with the above property. We can
then remove the edges of *, and repeat the argument separately with the
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\_/ Ca)

Fit3. 9 In (a) the circuit of short dashes is a candidate for * and the circuit of long dashes
represents *. Then rg, should be replaced by the larger, solidly drawn circuit of (b).

edges of tgE*\ cg. t * in cg*(ext) and the edges in *(int). We
continue in this way until we exhausted all edges in t*+. The resulting set of
circuits, cgt* and the circuits in t*+ then satisfy (3.13) and (3.14).
We now proceed by induction. We remove all edges of cg. and of the

circuits of class I in 7.+ which we just constructed. From the remaining edges
of OE* we construct the next highest circuit of class II, if one exists. Assume
it exists. Denote it by cg2*. Automatically ’2" c ’*_, since we had.removed all
edges of t*+. Remove 2" as well and decompose all edges between cg2* and
t* (i.e., the edges in 72"+ N which do not belong to ’* orCg2*) into
circuits of class I which satisfy (3.14), in the same way as with the edges of ’t*/.
These circuits then automatically satisfy (3.13).
We continue in this way until OE* is exhausted. This yields a system of

circuits which satisfies (3.13) and (3.14) and the circuits of class II will be
ordered, i.e.,

*c:-/*_ and i*c::---+ forl<i<j_<z.

We must show that z is odd, and that (3.15) holds. As we shall see, z odd
will follow from (3.15), so we prove (3.15) first. Let , be a path on 0 from a
vertex v of 0 to a vertex w of fg0. Whenever crosses an edge e* of OE* it
goes from a face of a + cube to a face of a cube or vice versa, since e* is
the edge of a boundary plaquette r* which has a + cube and a cube at its
two sides (see (3.6a) and (3.9)). Thus,

(3.16) if v and w belong to the same component of AB \ cgi* for each of
the circuits ’i*, then o and w both lie in the face of a + cube, or both lie in
the face of a cube.

(Since must cross each circuit g* an even number of times in this
situation.)
Next observe that if r* is a plaquette in AB which has an edge e* in

common with the circuit i* of class II (i.e., 1 < _< z), then r*, the interior
of r*, must lie in *(ext) for each .* of class I. Indeed if * c cg, then
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we can connect e* to A_ by a path in c,_ (except for its initial point on e*),
and this path avoids .* (note that e* is not an edge of * since c, and

.* are edge disjoint). Thus the interior of e* and the interior of r* lie in

.*(ext). A similar argument works if .* /*_.
Now let the interiors of rx* and r2* both lie in c,+ for some 1 _< _< r and

both with an edge in common with c,. Denote the edge of rt* in c, by e’,
1, 2. Then by the last paragraph, r and *ri belong to the same compo-

nent of AB \ .* for j > z. Also, Cry* and r belong to .*+ for < j <
since ’,. ._, for c, above *. Finally e’ and e’ belong to c,
for 1 < j < i. From this one sees that rq* and r2* also belong to .*_ for
1 < j < i. Thus, rx* and r2* belong to the same component of AB \ .* for
all j. Therefore, by (3.16) they both are faces of + cubes or both faces of
cubes.
The faces in c--- which contain e’ and e’ belong both to cubes of the

opposite parity of the cubes corresponding to rx* and rr2*, since we reach these
faces by crossing the single edge e’ from q* or e from r2*, respectively. To
complete the proof of (3.15) we therefore only have to decide whether q* and
rr2* are both faces of + cubes or both faces of cubes. Assume first that
and r2* are in cox*+ with e’ and e’ edges of cox* (i.e., take i= 1 in the last
paragraph). Then the center v of r* can be connected to A/ by a path on if0
which stays in ’*+ and hence does not intersect any c, of class II.
Moreover, as we saw above the initial point ; of lies in *(ext) for any
of class I. The same is true for the endpoint, w say, of , since this endpoint
lies on A+. The endpoint w on A+ belongs to the face of a + cube, by
definition. Thus, by (3.16) q* (and r2") will also be the face of a + cube. This
proves (3.15) for 1. For general it follows by induction on i. For
example, let r3* (r4*) have an edge in common with c, (c2,) and let rr3* lie
in *_ (r4* lie in 2"+). Then r3* is the face of a cube, as we just proved.
Moreover, 3" and r lie in the same component of AB \ .* for every j. We
already saw this for * of class I, and for * of class II it follows from the
fact (see the part of (3.12) which we already proved) that

Thus, rr4* is the face of a cube. In this way (3.15) follows by induction.
Finally, it follows that z is odd. Indeed the same argument which showed

that a or* in C*+ with an edge in common with c, belongs to a + cube,
shows that a rr* in *_ with an edge in common with c, belongs to a
cube. By (3.15) this means that is odd.
We only give an outline of the proof of our last purely topological lemma,

which is very intuitive in any case. Here we identify E* with the union of the
plaquettes in E*, i.e., we view E* as a closed subset of R3.
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(3.17) LEMMA. E*, when viewed as a subset of R, is connected.

Indication ofproof. Fix some 0 < e < - and let

U*= (xR3’-1/2-e<x(i) < 1/2 +e,i=1,2,3}
and

vK_

Compare with (3.8);

_
_(0) so that for e > 0, /’_(e) is a fattened 7_.

We also set

and

"(,) O ( o + v*}
v.B

x

X[-1/2-e,m+ 1/2 +el
[-1/2-,,t+

AB(e) vertical part of the boundary of

[-1/2-e,k+ 1/2+e] X [-1/2-e,l+ 1/2 +e] [0, m].

With each edge e of E we now associate an "e-plaquette" defined as follows.
If e E, then it has exactly one endpoint, v say, in a cube (see 3.4c). Then
the e-plaquette, r*(e) say, associated with e will be the unique face of v + U
which intersects e. Thus ,r*(e) is a (1 + 2e) (1 + 2e) square parallel and
close to the plaquette r* associated to e. Let E*(e) be the intersection of the
boundary of K_(e) with the union of all e-plaquettes associated to edges e of
E. One easily checks that two e-plaquettes rt*(e) and r2*(e) intersect if and
only if the corresponding plaquettes ,rt* and r2* of E have at least one point
in common. Moreover, for each e E, E*(e) will contain a rectangle from
the e-plaquette associated to e. Therefore, it suffices to prove that E*(e) is
connected. The advantage of E *(e) over E* is that E *(e) is smoother. In fact
one can show that E*(e) is a topological two-manifold with boundary, and
this boundary lies in AB(e) (see [13], proof of Step (i) in Lemma 2.23 for a
similar argument). Note that there exists a homeomorphism h from B(e) onto
the unit ball

C ,= {x R3" x2(1) + x2(2) + x2(3) < 1}.

If M is the image under h of E*(e), then M is a two-manifold in C with
boundary, and M is contained in OC, the two-sphere in R3. Moreover C \M
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consists of two co,rnponents, since B(e)\ E*(e) consists of two components.
(One of these is K_(e) and the other consists of a union of boxes around
vertices v in Kr. This second piece is still connected, since any pair of vertices
v and w in Kr can be connected by a path , on Z in Kr. The path will lie
entirely in the complement of _(e).) Thus we have reduced the lemma to the
purely topological problem of showing that a manifold M with the above
properties is connected.
One can show that M is connected by mapping C to the upper half of S in

R4 by means of the map which takes

(x(1), x(2), x(3)) C

to

(x(1), x(2), x(3), +(1 x2(1) x2(2)- x3(2))1/2).
Let M+ be the image of M under this mapping. Then OM+ lies on the
equator, i.e., on

{x R4" x(4) 0, x2(1) + x2(2) + x2(3) 1}.

Let M_ be the reflection of M+ in this equator. Then M+ O M_ is a compact
manifold without boundary on S 3. One can also check that $3\ (Mr t2 M_)
still has exactly two components and that M/ t2 M_ has exactly as many
components as Mr (or M). But by Alexander duality, a compact two-mani-
fold without boundary on S 3, whose complement has two components, must
be connected (compare proof of Step (i) in Lemma 2.23 of [13] again). Thus
M+ and E *(e) and E * are connected, m

4. Probabilistic part of the proofs

Throughout, Ci and Di will denote constants strictly between 0 and c. The
precise values of these constants will have no importance and may vary from
one occurrence to another. We use C for constants which depend on F only,
while the D may depend on additional parameters such as e, 8.

In broad outline the proof of Theorem 2.7 consists of the following steps:
(i) The constant v is defined as

1 1
lim -,(k, k) limsup ,(k, 1).(4.1)
k--,oo k,t-,oo

These limits exist and are equal w.p.1; we obtain this as an easy consequence
of the multiparameter subadditive ergodic theorem. Since a(k, l), fl(k, 1),
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e(k, 1) < ,(k, 1) (see proof of (2.10) below) it follows from (4.1) that

1(4.2) limsup TO(k, l) _< v

for/9 a, fl, , and the difficult part is to handle liminf(kl)-O(k, l).
(ii) We next derive a kind of recurrence relation for

(4.3) f(k, 1, m, e):= P(:I(Fo, Fm)-CUt E* of [0, k] [0, l] [0, m]
with V(E*) < (v- 5e)kl}.

Roughly speaking this relation (see (4.12)) says that this f grows at most
linearly in m. We prove this relation by constructing from a cut in [0, k]
[0, 1] [0, m] another cut of height at most a constant times max(k, l). This
recurrence relation is combined with an estimate which says that f(k, l, m, e

+ 8) is smaller than exp(-D2pq) if f(k/p, l/q, m, e) is smaller than some
multiple of i. The latter estimate is based on a simple large deviation
argument and the observation that any (F0, Fm)-CUt in [0, k] [0, l] [0, m]
contains 1/4pq cuts which separate the bottom from the top in

[i(p-lk + 1), i(p-lk + 1) + p-k] [j(q-l + 1), j(q-Xl + 1) + q-ll]
X[0, m], 0_<i<p/2, O<_j<q/2.

These two estimates are then combined in Prop. 4.34 to prove a rapid decrease
of f(k, 1, m, e) in kl, provided we have a moderately good estimate for
f(k/p, l/q, m, e). More specifically, Prop. 4.34 says that (4.35) implies (4.36),
where

(4.35) f(sl, s2, D3 (4e) k e) <

and

(4.36) f(k, 1, m, 4e) < --exp CSelS% + 6mD6(4e)exp(-DT(4e)kl ).

(p and q above correspond to k/s and l/s2, respectively).
(iii) To provide the "moderately good" estimate of the type (4.35) which

we need to exploit Prop. 4.34 we first estimate f(k, k, m, e) in terms of

e(,((r, r)) _< r:(,,

when r pk, for a large p. This is done by "patching together"p2 cuts in

[i(k + 1), i(k + 1) + k] [j(k + 1), j(k + 1) + k] [0, D3k ],
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0 < < p, 0 < j < p, each with value at most (, 5e)k 2. After some modifi-
cations at the boundary this provides a cut E* in

[o, [o,

with boundary equal to the edges in the perimeter of [- 1/2, r + 1/2]2 { 1/2 }. In
this way we find in Prop. 4.45 the following inequality for f(k, k, m, e) in
terms of (4.4): if (p + 1)k < r < (p + 2)k and m > k then

(4.46) e{ r))

> 1/4 9Dnm { f(k, k, m, e) 6mD6exp( D7k2) }

(iv) Finally, we show by an easy subadditivity argument that

(4.5) (1)P(((r,r)) <r2(v-e)) O lgr

along some subsequence of r ’s. This estimate, together with step (iii) yields the
required moderate estimate for f(k, k, m, e), which is turned into a good
estimate by repeated application of step (ii). Here are some more details. (4.5)
gives us the moderate estimate

f(ko,ko,m,e) <
-2

9Dnm 4Dx3 P

ko (log"r} + 6mD6exp(- DTk),

for some large starting value ko and an r, with log k0 and log r of the same
order. We take

m m0
.’= D3(4e)k with k ko(log k0)/2p:.

Substitution of this m0 easily yields

f(ko, ko, D3(4e)k, e) < ely,

which is precisely (4.35) for sx, S2 ko, k kl. As outlined under step (ii) we
can then conclude from (4.36) that

f(kx, k, m, 4e) < -exp -Cae -o + 6mD6(4e)exp(-Dv(4e)k)"

This sets us up for an iteration of Prop. 4.34. By choosing

m m :----" D3(16e)kxlog k
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we find

f(k, k, Da(16e)kllog kx, 4e) 4e/v,

which is (4.35) for sx s2 kx, e replaced by 4e and k k2
:= kxlog kx.

Then (4.36) gives an estimate for f(k2, k2, m, 16e). We iterate once more by
choosing

m m2
:= D3(64e)kX2 +t for some , > 1.

We get (4.35) for sx s2 k2, e replaced by 16e and k by k2x+t. The final
result read off from (4.36) with n k2TM is (see (4.55))

9mexp(-D5(e)nf(n, n, m, e) < --if-- 2-28) m > n,

for n > n0(e, 8). This is our required good estimate of f(k, l, m, e) when
k 1. Analogous arguments work for k > 1, and Theorems 2.7, 2.10, 2.12
follow easily after this. As a prologue we give:

Proof of Lemma 2.1. We first give an equivalent formulation of (2.3) in
first-passage percolation terms. Let ’ be a graph whose vertices are in
one-to-one correspondence with the plaquettes of .’*, and two of whose
vertices are adjacent if and only if the corresponding plaquettes intersect. We
can think of these vertices as being located at the centers of the corresponding
plaquettes, or--what is the samemat the midpoints of the edges of Z3. Then
the vertex at (0,0, 1/2) has neighbors in A’ at (+ 1/2,0, a), (0, + 1/2, a),
(-1-1, + 1/2, a), (+ 1/2, + 1, a) for a 0,1 (all combinations of + and are
permitted). Also, there are four neighbors at ( + 1, 0, 1/2) and (0, + 1, 1/2). In total
each vertex has 28 neighbors. Now attach to each vertex v of a random
variable t(o) with distribution F and take all the t(o), v .f’, independent.
To a set V of vertices attach the value

r(v) E t(o).
o.V

Then the probability in (2.3) equals

(4.6) P(there exists a connected set V of n vertices of which contains oo
and with T(V) < On),

where vo is any fixed vertex of o, and a set V of vertices is connected if for
any pair v’, v" V there is a sequence v’ Vo, vt,..., Vk v" of vertices in V
such that v and v+ are neighbors on A’ for 0 < < k.

If we are content with a poor estimate of P0 we can now argue that there
exist at most C4 connected sets V containing a fixed Vo for some C4 < oo
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(C4 292928 -28 will do; el. [12], (5.22)). Therefore, for each h > 0, (4.6) is
bounded by

C,P ( t + + n < On ) <_ ( C4eXE { e-xt() ) ) n

(for tl,..., tn i.i.d, with the distribution F). If P{t(v)= 0} < C4-1 we can
choose 2 and O > 0 so that this expression decreases exponentially in n.
Not much is gained by improving the lower bound for P0 to 1/27, so we

merely list the main ingredients of the proof. First we define the critical
probability corresponding to Pr for site percolation on t". Specifically,
denote by P the distribution of (t(v): v o,’} when P(t(v) O)
p, P{ t(v) 1) 1 p. For a fixed vo let N be the number of vertices v for
which there exists a sequence v0, vx,..., v v of distinct vertices with v+
adjacent to v, 0 < < n and t(vj) O, 0 < j < n (N is the number of points
which can be reached from v0 "along a path of zero passage time"). The
critical probability we want is

Po ’= sup( p" ErN < oo }.

Since there are at most 28(27)n-1 sequences v0,..., on with distinct vi, and
oi+ adjacent to v, a simple Peierls argument shows that this P0 > 1/27.
Next one shows that (2.3) holds for F(0) less than the above P0. This is done

by combining a block argument almost identical to Lemmas 5.2 and 5.3 of [12]
with the first part of this proof. Going over to large blocks is useful, because
for F(0) < P0 one has for sufficiently small O’ > 0,

P (there exists a connected set of plaquettes E* which intersects

the boundaries of [0, 1] and of [-1, 2113 and
V(E*) < 0’1} "-) O, 1 ---) oo.

This follows from the (proof of) Prop. 5.8 in [13] applied to ’. In fact this
proposition shows that the above probability converges to 0 exponentially fast
in 1, which already indicates that (2.3) holds. We omit further details.

(2.4) follows from (2.3) since a cut E* over [0, k] [0,/] has to be
connected by Lemma 3.17. m

We now start on Step (i). In all the succeeding lemmas the hypotheses of
Theorem 2.7 are tacitly assumed. Recall that O is the constant of Lemma 2.1.

(4.7) LEtup. There exists a constant v [0, Et(e)] such that both limits in
(4.1) equal v w.p.1.
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Proof. The existence of the limit , will be immediate from the multi-
parameter subadditive ergodic theorems of Akcoglu and Krengel (Theorem 2.4
of [3]) and Smythe (Theorem 1.1 in [14]) once we show that is subadditive in
the sense of [3]. More specifically, for k < k2, 11 < 12, k, l Z, define

z([k, k2 + 1), [lx, 12 + 1))
inf( V(E*)" E* a cut over[ kl, k21 [11,121

whose boundary OE* consists of the edges
of * on the perimeter of

[k,- 1/2, k + ] x It,- 1/2, t_ + 1/2] x {1/2}}.
We need only show that

(4.8)

whenever

(s)
_

1

S= [kl, k2+l) X [11, 12+1) and Si= [kj, ki+l) x [1,l.+1)
are disjoint rectangles of the above form such that S U ’S (p arbitrary, but
finite; see Fig. 10).
To prove (4.8) we choose cuts E* over

such that 8E* consists of the edges on the perimeter P of

[k, 1/2, k_ + ] x [ 1/2, ’ + -] x (- }.

Then E* .’= U ’E* is a collection of plaquettes whose boundary consists of
the edges on the perimeter P of

[k,- 1/2, k: + ] x [t,- 1/2, t_ + ] x {1/2}.

This is easily seen from the fact that 8(UE*) c U(OE*), and that each edge
on some P which does not belong to P, must belong to exactly one other Pj
with j #: (of course P is the perimeter of S; see Fig. 10). The latter edges
therefore do not belong to OE* (see (1.8)). It follows from Lemma 3.1(a) that
E* separates -oo from + oo over S. Finally, it follows from Lemma 3.1(b)
that the different E* have no plaquettes in common (recall that the S are
disjoint). Therefore E* must be a minimal separating set, because if we
remove a plaquette from E*, say we remove r* from Ei*, then there exists a



132 HARRY KESTEN

Sl r

S 4
S
3

FIG. 10 S 0Si. The solid segments consist of edges of Z which form the boundaries of the
Sj. The dashed segments consist of edges of Z + (, ) and the OE’ lie above then.

path @ from -oo to + oo in

[k[, kl] X [ll, l] X R

which does not intersect Ei* \ ,r* (since Ei* \,r* no longer separates -oo
from + oo over [k, k] x tli, aoes not intersect E* \ ,r* either (again
by Lemma 3.1(b)).
The above proves that E* is a cut over [kt, k2] X [/1,12] with OE*

consisting of the edges on the perimeter of

[k- 1/2, k2+ 1/21 [l- 2x,l2+ x21.
Thus

p

(4.9) (S) < V(E*) < _V(E,*).
1

Taking the infimum over Ex*,..., E0* now yields (4.8).
Theorem 2.4 in [31 now states that the first limit in (4.1) exists w.p.1, while

Theorem 1.1 of [14] shows that the limsup in the second member of (4.1)
exists and equals the first limit w.p.1. If we denote the common value by v,
then v is a function of the { t(e): e Z} which is invadant under the shifts
0t and 02 which take t(e) to t(e + (1, 0, 0)) and t(e + (0,1, 0)), respectively
(as remarked in the proof of Theorem 1.1 of [14]). By Kolmogorov’s zero-one
law all sets in the o-field generated by { t(e): e Z3} and invariant under 0
or 02 have probability zero or one. Thus v is a constant w.p.1.
To prove (4.7) it remains to show that 0 < v < Et(e). The second in-

equality is immediate from the strong law of large numbers and the fact that
((k, k)) is at most equal to the value of the collection of plaquettes

([i- 1/2, i+ 1/2] X [j-1/2, j+ x2l X (1/2}’O<iNk, O<j<k}.

To prove v > O we observe that any cut E* which separates -oo from
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over [0, k] x [0, k] has V(E*) > O(k + 1) 2, outside a set of probability at
most Cexp(-C2(k + 1)2) (by (2.4), since E* must intersect each vertical line
{ } { j } R, 0 < i, j < k). The Borel-Cantelli lemma and (4.1) now imply
v>_o. m

This takes care of Step (i) and we turn to Step (ii). We recall that
B(k, 1, m) [0, k] x [0, 1] [0, m] and that f(k, 1, m, ) is defined in (4.3).

(4.10) LE. There exists an eo > 0 and for 0 < e < eo constants 0 < D
Di(F, e) < such that for m >_ k >_ >_ D4 there exists K K(k, 1, m, e)

and L L(k, l, m, e) for which

(4.11) (1-eE)k<K<k, (1-e2)I<L<I
and

(4.12) P { there exists an ( Fo, F(D3K ))-cut E’ ofB ( K, L, D3K )
such that V(E’ ) < ( v 3e) EL and such that OE
contains fewer than D5K edges }

k
>_ ( f(k, l, m, e) 6mD6exp(-DTkl) }.

Note that we assumed k > l, and that the dimensions of B in (4.12) are
different from those in (4.3). We have written F(D3K ) instead of FD3K for
typographical reasons. The lemma is of interest only if m is much larger than
k; we shall see that (4.12) is easy when rn < Dk with D3 2D.

Proof. Let E* be an (F0, F,)-cut in B B(k, 1, m) with v(E*) < (v-
5e)kl. Then E* is a cut over [0, k] [0, l] and must contain one of the
plaquettes [-,1/2]x[-1/2,1/2] (p+ 1/2), and hence the point ( 2, 2,

p + 1/2), 0 < p < m. (Otherwise, we can connect F0 and F, along the coordi-
nate axis {0} {0} R without hitting E*.) For each fixed p, the probabil-
ity that there exists a cut over [0, k] [0, l] through (- 1/2,- 1/2, p + 1/2) with
value < vkl and containing more than vO-tkl plaquettes is at most

Clexp( CEvO- Ikl ) Cxexp( C2kl),

by virtue of (2.4) and v > O. We shall write E*I for the number of plaquettes
in E* and OE*I for the number of edges in OE*. Also we write B for
B(k, l, m) and Cs for O-. With this notation the above argument shows that

(4.13) P (there exists an ( F0, F,)-cut E * of B with V(E * ) <

< (,- 5e)kland IE*I < Ckl} >_/- mCexp(-C2kl).
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Now we take an E* with the properties in (4.13) and denote by Zj the
number of plaquettes of E* which intersect the vertical part of the boundary
of

(4.14) [j- 1/2, k-j+ 1/2] [j- 1/2, l-j+ 1/2] [0, m].

Since each plaquette intersects at most two such vertical boundaries,

Z < 21E*I < 2Cskl.
0 <j< 21/2

Consequently, the number of j < e21/2 with Z <_ 8Cse-Ek is at least e21/4.
In view of (4.13), with D8 8C5e-E, this implies

e21-- ( f mClexp( C2kl ))

< E (number of j < e2//2 for which there exists an (Fo, Fm)-cut
E* in B with V(E*) < (v- 5e)kl and IE*I _< Ckt

a Jg k}
< E P(there exists an (F0, F,,)-cut E* in B with

j<e2//2

V(E*) < (v- 5e)M and IE*I -< Cakl
and Z < Dsk }.

In particular, we can find a Jl < e21/2 such that the corresponding probability
in the right hand side above is at least

{ ( f mClexp( C2kl )).

We choose K k 2jx, L l 2jl, and observe that any (F0, F,n)-CUt E*
in B contains a subset E’, which is a minimal set separating the bottom from
the top of

B’= [Jl, k-Jl] [Jl, l-jl] x [0, m].

Moreover, V(E’) < V(E*), E2* < E* l, and the number of plaquettes of

E’ which intersect the vertical part of the boundary of (4.14) for j j is at
most Zjl. Finally observe that B’ is just a translate of B(K, L, rn), and recall
that AB(K, L, m) denotes the vertical part of the boundary of

[-1/2, K+ 1/21 x [-1/2, L + 1/21 x [0, ml.
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We have therefore proven that

(4.15) P{there exists an (F0, Fm)-cut E2* in B(K, L, rn) with

V(Eff ) < (v- 5e)kl, IE2*I Cskl and the number

of plaquettes of E’ which intersect AB(K, L, rn)
is at most Dsk }

k -} { f mCexp(- Czkl) ).

By construction, our choice of K, L also satisfies (4.11).
For the remainder of this proof we denote B(K, L, m) by B1. Let E’ be a

cut in B with V(E) < (v 5e)kl and IOE2*I < number of plaquettes of Eft
which intersect AB < Dak. Such an E2* satisfies almost all requirements in
(4.12). Our only job is to reduce the height, i.e., to replace the rn in
B(K, L, m) by D3K. We shall do this by using the part of E’ between two
horizontal planes of the form H, ,= { x(3) p + 1/2 } plus certain plaquettes in
those two H,’s. The succeeding steps serve to choose the Hp such that only few
plaquettes in H, have to be added to Eft. Let

U number of plaquettes of E2* which intersect H,
V number of plaquettes of E2* which intersect Hp A ABx.

Since

m-1

U 2lEVI -< 2Ck!
p-0

there are at most 2e-xCsk values of p for which U > el. Similarly,

m-1

Z V < 2(number of plaquettes in E2* which intersect ABt)
p-0

< 2Dsk.

so that there are at most 2Dsk values of p with, 0. Assume now that we
have two H,i), 1, 2 such that

(4.16) U,) < el, V(i) O.

We claim that in this case for fixed (i 1 or 2) all plaquettes in Ho which
have one edge in AB are faces of cubes of only one parity, i.e., they are all
only faces of + cubes or all only faces of cubes. (Here and in the sequel +
and cubes are defined with respect to B B(K, L, m) rather than B.) To



136 HARRY KESTEN

FIO. 11 A picture of [- K + 1/2] X [- L + {pi, ] X (i)}. The vertices of Z in this square
adjacent to its boundary are connected by the path of long dashes on Z3. This path does not cross
any plaquette of E’, because (i) 0.

see this, observe that the centers of all the cubes with such a face can be
connected to each other by paths on Z3 in B which avoid E’, and use (3.9).
The existence of such paths is illustrated in Fig. 11. Also the edge from
(a, b, p(i)) to (a, b, p(i) + 1) from a cube below H,(i to one above np(i)
does not intersect E2* if a 0 or K or b 0 or L, again because (i) 0
implies that the plaquettes in H(o adjacent to AB do not belong to E’.
We have shown that under (4.16) all cubes with a face in H(0 adjacent to

AB1 are of one parity. We next assume that

(4.17) for 1 all the above cubes are cubes and for 2 all the above
cubes are + cubes,

and

(4.18) let S*(1) (S*(2)) be the collection of plaquettes in
which are a face of at least one + cube (- cube).

The next observation--which allows us to construct a narrower cut--is that
irrespective of (4.16),

(4.19) S*(1) U S*(2) U (collection of all plaquettes in E2* between
and H,(2)) separates the bottom from the top in

[0, K] X [0, L] X [rain(p(1), p(2)),max(p(1), p(2)) + 1].

To simplify the notation in the proof of (4.19) we assume p(1) < p(2)" the
case p(2) < p(1) is similar. Write T* for the collection of the plaquettes of E’
in

[-1/2, K+ 1/2] X [-1/2, L + 1/2] X [p(1) + 1/2, p(2) + 1/2].
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Now let q be a path on Z3 from some point (a, b, p(1)) to (c, d, p(2) + 1),
such that q, except for its endpoints, lies in

[0, K] [0, L] (p(1), p(2) + 1).

To prove (4.19) we must show that any such , intersects a plaquette of

S*(1) U S*(2) U T*.

If the plaquette

[a- 1/2, a+ 1/2] x [b- 1/2, b+ 1/2] {p(1) + 1/2}

lies in S*(1), then already the first edge of q intersects this plaquette of S*(1).
Thus, we may assume that

[a- 1/2, a+ 1/2] X [b- 1/2, b+ 1/2] X {p(1)+ 1/2}

is not in S*(1), so that by (4.18), (a, b, p(1)), the initial point of q, is the
center of a cube. For similar reasons we may assume that the final point of
q, (c, d, p(2) + 1) is the center of a + cube. But then runs from a cube
to a + cube, and since E’ separates the + cubes from the cubes (el. (3.9))
q must intersect a plaquette in E’. Since q lies between the hyperplanes
(x(3) p(1)} and (x(3) p(2) + 1 } the only plaquettes of E’ which it can
intersect belong to T*. Thus (4.19) follows.
We remark that (4.19) remains valid if p(1) -1 with S*(1) and/or

p(2)-- rn with S*(2)= . If p(1)= -1, then we do not have to consider
cubes below Hp(1) H_ 1, but all the cubes directly above H_ 1, i.e., the v + U
with v (a, b, 0), 0 < a < K, 0 < b < L, are cubes by definition, and E*
does not intersect H_r The above argument needs no change therefore, if
p(1) -1, and the same holds if p(2) m.

Our final cut set will be (a translate of)

E3* := a minimal subset of $*(1) u S*(2) u T* which

separates [0, K] x [0, L { p (1)} from

[0, K] X [0, L] X {p(2) + 11 in [0, K] x [0, LI x R.

To show that this is a good choice we first observe that

(4.20) aEt c aEt,

by virtue of (3.6a) and the fact that S*(1) and S*(2) contain no edges in ABx
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because of (4.17), (4.18). Next we note that

(4.21) V(E’) < V(S*(1)) + V(S*(2)) + V*(T)
v(s*0)) + v(s ,(2)) +

Clearly an estimate for V(S *(i)) is needed now. First we estimate IS *(i)l, the
number of plaquettes in S*(i). Note that each plaquette of S*(1) is a face of
at least one + cube. On the other hand all plaquettes in Hp(1) adjacent to AB
are faces only of cubes, by (4.17). Thus, any path in Hp(1) from a
plaquette in S*(1) to AB must at some time cross from a face of a + cube to
a face of a cube. At this place k must intersect an edge in Hp(x of a
plaquette in E. In other words, S*(1)in Hpo is separated from
by edges of plaquettes of E2*. This means that S*(1) is surrounded by curves
made up of edges of plaquettes of E’ in Hpo. There are at most
such edges. Now any planar area surrounded by a curve of length , has
diameter < X and hence area < X2. Consequently

and similarly

It follows that

IS*(1)l area of S*(1) < eZl

IS*(2)l eEl 2.

V(S*(1)) + V(S*(2)) < 2 max max V(S*),
O<p<m S*

where the second max runs over all sets S* of plaquettes in the rectangle
[- 1/2,K+ 1/2][- 1/2, L+ 1/2] {p+ 1/2} which are surrounded by curves
which contain in total at most d edges. The number of choices for p is at most
m, and for fixed p one can choose a number of curves which together have no
more than el edges in at most (8KL)et ways--since there are at most
2(K+2)(L+2)edgesof.Z’* in[- 1/2, K+ 1/2][- 1/2, L+ 1/2] (p+ 1/2).
Once the boundary curves are chosen, the value of any set surrounded by these
curves is at most the value of the set of all plaquettes inside at least one of
these curves. As argued above, there are at most e212 such plaquettes.
Therefore, if tx, t2,.., are independent random variables each with the distri-
bution function F, then for e0 small enough and -/as in (2.8)

(4.22) P(V(S*(1)) + V(S*(2)) > ekl}
< P{max V(S*) >_

p, S*

< m(8KL)dP(tx + +t2,2 > 1/2ekl}
< m(8KL)texp( 1/2ekl)(E exp 3,tl)
< m (8KL) texp( ekl)
< mD6exp( DTkl).
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(4.22) guarantees us that with overwhelming probability

+

will be negligible, if we can find Hp(0, 1, 2, which satisfy (4.16) and (4.17).
Recall that we want a cut set of height at most D3K for (4.12), and we
therefore want Ip(1) -p(2)l < D3K for some D3. To guarantee this we must
now look somewhat closer at tgE’. Assume that E2* has the properties
described in (4.15). Then OE2* in ABx can be decomposed into circuits
x*, 2",..-, * with the properties (3.11)-(3.15). The circuits *,..., *are the ones of class II, and they are ordered such that .* lies "below" i* if
j > i. Now set D9 2e-lC5 + 2D8 + 1 and call * and * linked ifi+1

d(Ci*, ci*+l) := rain(Ix yl x *, y i*+1) < D9k.

For < j, call i* and * linked if t* and ’t$1 are linked for < < j.
Then ’*,..., * break up into blocks, such that all circuits in one block are
linked, but circuits in distinct blocks are not linked. Since z is odd (cf. (3.12)),
at least one of these groups contains an odd number of circuits, that is there
exist 1 < , < < such that

(4.23) d(Ct*, ct*+l) < D9k for h < < ,
(4.24) d(C_l, C) > D9k if X > 1,

(4.25) d(*, x) > D9k if < z,

and

(4.26) is even.

First consider the case I < h < < z. Since there are at most

2e-lC5k + 2Dak (D9 1)k

values of p for which U > el or V 0 we can choose p(i) such that (4.16)
holds and such that H,t). (H,2)) lies between ’t and * (’ff and ’’_)
and at a distance at most D9k from ’* (’). More precisely,

(4.27) %*cR2x(-oo,p(1)+ 1/2) for +l<j_<z,

%*cR2x(p(1)+ 1/2, p(2)+ 1/2) for X<j_<,

*cR2x(p(2)+ 1/2, oo) for j<h,

(see Fig. 12) and

(4.28) d(, Ht,(1)), d(*, H,(2)) < D9k.
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Hp(2)

Hp(1)

FIG. 12 3, 5 in this illustration. The dashed circuits are of class I.

If ’, then (4.25) does not hold, but if d(Cg*, A_)> D9k we can still
choose p(1) such that H( lies between cg, and A_ and such that H( is at
distance at most D9k from cg,. If d(C*, A_) < D9k then we take p(1) 1.
As remarked before, (4.19) will still hold for this choice of p(1) and S*(1) .
Similarly, if h 1 we can still choose p(2) such that H(2 is at distance at
most D9k from * and such that (4.19) holds. For simplicity we restrict
ourselves for the remainder of the proof to the case 1 < < < z and show
that (4.17), and hence (4.19), holds.
To prove (4.17) let qb be a path on f0 in B (with f0 as defined after

Lemma (3.4) with B for B) from the center o of a plaquette r* in AB to
A_ [- 1/2, K + 1/2] X [- 2

, L + 1/2] X {0}, where or* contains an edge of ’*and * cg,_. By definition of *_ we can choose qb so that it does not
intersect cg,. However, by (4.27) the initial point v of qb--which lies in the
plaquette or* adjacent to cg*--lies above H,(x) while the final point on A_ lies
below H(). Thus intersects H,(), for the first time in x, say. Denote the
piece of from v to x by k. k lies in cg,_ but above H,(x) and, again by
(4.27), does not intersect any .* with 1 < j < z. may intersect a circuit

* of class I (with j > ). However, none of these circuits intersect H,()



FIRST-PASSAGE PERCOLATION

(because Vp(1) 0) and hence each .* of class I lies entirely above or entirely
below H,I. Thus x .*(ext) for each .* of class I. Also, the initial point
of if, the center of r*, lies in .*(ex0 for each * of class I; this was shown
for any plaquette r* c AB which has an edge in common with some circuit
of class II fight after (3.16). Now let w be the last vertex of 0 on q; w is the
center of some plaquette rx* c AB which has an edge f* in common with
Hp(l. x f* and by the above, o, x and w lie in the same component of
AB \ cj, for each j. By (3.16), r* and ,q* are therefore both faces of a +
cube or both faces of a cube. Since #* c *_ we see from (3.15) that they
are both faces of a cube (+ cube) if is odd (even). Thus, if is odd, then
(4.17) holds for 1. By (4.26), is then also odd and the same argument
with p(1) and A_ replaced by p(2) and A+ will establish (4.17) also for 2.
If both , and are even we merely have to interchange the role of p(1) and
p(2). Thus, we can always choose p(i) such that (4.27), (4.28) and (4.19) hold.

It remains to show that Ip(2) p(1)l is not too large if the p(i) are chosen
as above. This, however, is easy, since by (4.27), (4.28) and the definition of
linked circuits,

-1
Ip(2) -p(1)l < 2D9k + d(.* (*j+l) + (length of .*)

j=X j=X

_< (’r + 2)D9k + IOEI.

Moreover, any circuit of class II must contain at least 2(K + L) > 2K edges
of OE (since it must go all the way "around ABe") so that

(4.29) 2K, < aE’I < Dsk.

Thus, for e < 1/2 and D10 (D8 + 3)D9

(4.30) IP(2) -p(1)l -< ( + 3)D9k < (D8 + 3)D9k Dlok.

Thus, we have shown that if E2* with the properties in (4.15) exists, then we
can find a cut E3* which separates the bottom from the top of

[o, zl [min(p(1), p(2)),max(p(1), p(2))+ 11
for some p(1), p(2) satisfying (4.30). In addition E3* satisfies (4.20) and (4.21).
Thus, if we discard a set of probability at most mD6epx- DTkl (cf. (4.22)),
then outside this set

V(E’) < V(E) + ekl < (v 4e) kl < ( 3e) KL,
13E*I < 13E*I < Dsk < 298K.
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If qk < min(p(1), p(2)) < (q + 1)k, and hence

max(p(1), p(2)) < (q + Do + 1)k,

then any such cut E3* also separates bottom from top in

[0, K] [0, L] [qk,(q + Dlo + 1)k].

Thus, if we choose D6 > C1, D7 < C2 and D 2D10 + 2, then by virtue of
(4.15) and (4.22), for large k and ! we have

P ( there exist 1 < q < m/k and a cut-set of plaquettes E3* which

separates bottom from top in [0, K] [0, L] X [qk, qk + D3K
with V(E*) < (v 3e)KL and IOEI < 2Bag}
> 1/2 { f 6mD6exp( D7kl ) ).

(4.12) follows immediately if we take into account that there are at most
k-lm + 2 possible values for q, and use translation invariance to take a cut

E3* in [0, K [0, L] qk, qk + D3K to a cut Ex* in B(K, L, D K). m

(4.31) LEMMA. Let 0 < e, < v/20 and m >_ k > 1 >_ 1 be such that

f( k, l, m, e) < 8/v

(cf. (4.3) for f). There exist constants 2 < C6 < oo, 0 < C7 < oo (which depend
only on F) such that for k, > C6-, k-r > C61 -x and l-Xr2 > C6- one
has

(4.32) rlr2 )f(rx, r2, m, (e + 8)) < exp C7-7-
Also, for k > C6-1, k-trl >_ C6-t one has

(4.33) ( rl )f(r, 1, m, (e +/)) < exp C7---8
Proof.

such that
We prove (4.32); the proof of (4.33) is similar. Let Pi, 1, 2, be

p(k + 1) < r < (Px + 1)(k + 1),
P2(l + a) < r2 < (P2 + 1)(1 + 1).

Then [0, rx] x [0, r2] contains the disjoint squares

S(i, j):= [i(k + 1), i(k + 1) + k] [j(1 + 1), j(l + 1) + 1],
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0 _< < Pl, 0 < j < P2. If E* separates the bottom from the top in

[0, r] x [0, r2] X [0, m],

then E* contains cuts E*(i, j) which separate the bottom from the top in
S(i, j) [0, m], 0 < < pl, 0 < j < P2. Thus, if we write

q’(i, j) min { V(D*)" D* is a cut which separates the bottom

from the top in S(i, j) [0, rn ]),

then for any (Fo, Fm)’CUt E* in [0, rl] [0, r2] [0, m l,

V(E*) >_ E (i, j),
O<i<p
O<j<pz

and the I’(i, j) are i.i.d. (since the S(i, j) are disjoint). Consequently, for any
)k > 0, the left hand side of (4.32) is bounded by

as soon as

(p + 1)(p2 + 1)(k + 1)(1 + 1)(,- 5e 5) < pxp2kl(g- 5e 4).

The lemma now follows by taking h > 0 such that

evhkl 4e-4hkl-/.

(4.34) PROPOSITION. Let 0 < e < e0/4 and rn > k > > D4(4e). Assume
further that there exist some

C6E-1 s Ek(2C6) -1, C61-1 _< s2 /(2C6) -1
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for which

(4.35) f(s1, s2, D3(4e)k, e) _< /v.

Then

9m kl(4.36) f(k, 1, m, 4e) < exp Caew ] + 6mD6(4e)exp(-DT(ae)kl).

Proof. Obviously f(k, 1, m, e) is decreasing in e. Moreover, any (F0, F,,)-cut
in [0, K] [0, L] [0, m] of value < (, 3e)KL contains a cut which
separates the bottom from the top in

[0, K’] [0, L’] [0, m]

with value < (r 3e)KL < (v 3e)KL(K’L’)-IK’L’, whenever K’ < K, L’
< L. In particular, in view of (4.11), the left hand side of (4.12) is at most

f((1 e2)k, (I e2)/, D3K, 1/2e)

provided (u- 3e)(1- e2)-2 (/1- 2e). The latter inequality may be as-
sumed without loss of generality (if necessary, reduce e0). Finally it is easy to
see that f(k, l, m, e) is increasing in m. Thus, the left hand side of (4.12) is
bounded above by

f((1 e2)k, (1 e2)l, D3k, 1/2e).

Now replace e by 4e and write r for (1 16e2)k and rE for (1 16e2)1. This
yields

(4.37) 9mf(k, 1, m, 4e) < ---f(rt, r2, Da(4e)k,2e)
+ 6mD6 (4e)exp(-D7 (4e)kl).

Finally, estimate f(rx, r2, D3k, 2e) by means of (4.32) with e and m D3k
to obtain (4.36). (Note that (4.35) is precisely the condition needed in Lemma
4.31 when 6 e, m D3k.) m

This completes Step (ii) and we next carry out Step (iii). The aim is to
patch together p2 translates of cuts with the properties listed in (4.12) to
produce a cut in

[0, p(K + 1)] [0, p(L + 1)] X [0, D3K]

with a value not larger than (u e)p2KL. To do this consider the problem of
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combining two cuts6 E* and E*, separating the bottom from the top in

[0, K] x [0, L] x [0, D3K and [K+I,2K+I] x [0, L] [0, D3K ],

respectively. If

OE’ n {x(1)=K+1/2}

agrees with

OE’ n {x(1)= K + 1/2},

then it is easy to combine Ex* and E* since they match at their common
boundary. However, this is usually not the case and one must add plaquettes
to E* E’ to obtain a cut in

[0,2K + 11 [0, L] [0, D3K ].

In order not to have to add too many plaquettes we want

OE’n (x(1)=K+ 1/2} and OEn {x(1)=K+ 1/2}

to be "close together" with a reasonable probability. We do this by approxi-
mating the "long" circuits in OE7 by a bounded number of sets, and by
covering up the interiors of the remaining "short" circuits. The details follow.

Let E* be a cut which separates bottom from top in

s ,= [o, K x [0, L] x [0, DK]

with V(E’) < (v 3e)KL and IOE’I <- DsK. Let 1 rl(e, F) be a small
number which satisfies

(4.38) 0 < rl < 1, 2b/1/2Ds(e, F) < e2,

and subdivide the vertical boundary ABi of

[-1/2, K+ 1/2] [-1/2, L+ 1/2] [0, D3K

into rectangles approximately of size rlK by rK. For simplicity assume that
K is an integer which divides (K + 1), (L + 1) and D3K, so that the above

6The subscripts of the B’s and the cuts E* here are unrelated to the previous subscripts.
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rectangles can be taken as squares with perimeter on the family of lines

(a) R (i,lK), (a) (j,IK-1/2) R,
R (b) (i,lK)and (h,lK-1/2) (b) R,

a=-1/2 or K+1/2, b=-1/2 or L+1/2
and

O < < rl-XD3, O <j < (rlK)-X(L + l), O < h < (K)-X(K+ l).

Let OE’ be decomposed into circuits cgt*,..., ego* as in Lemma 3.10.
cg,,..., cg,, are the circuits of class II, as before. Number the remaining
circuits in such a way that cg,,+ ,-.., ego, are all the ci:reuits of class I which
contain at least ra/2K edges of OE’. Exactly as in (4.29) one sees that

DsK(4.39) o < r/-3/2D5.rl3/2K

We next define the type of Ex*. The type of E* specifies , o, and for each of
the above r/K r/K squares S, and j < , whether * intersects S, or if not,
whether S belongs to ’.* or * Furthermore the type specifies how many of

j- j+.
the circuits *, with < j < o, S intersects, and for how many < j < e,
S c .*(int). Thus, we can think of the type as a large vector (with a variable
number of components). The first two components are and e, respectively;
then there is a component corresponding to each IK rlK square S and each
j _< , and finally for each such S two integer components. The component
corresponding to S and j < can take the values -1, 0, + 1; these values
indicate that S c %*_, S intersects * or S c ._, respectively. The last two
integer components corresponding to S give the number of j, < j o, for
which S intersects * and S c *(int), respectively.
We need a few simple estimates. The first gives an upper bound for the

number of possible different types. It is immediate from (4.39) and the fact
that there are at most

(r/K)-E(2K + 2L + 4)D3K

squares, that for L < 2K the number of types is bounded by some Du
Dlx(, e, F). The second estimate is for the number of plaquettes in -*(int)
for some j > o. Denote by F* the collection of plaquettes in AB which lie in
.*(int) for some j* which contains fewer than rl3/2K edges. If F*I denotes
the number of plaquettes in F*, and [j*l denotes the number of edges in
*, then

(4.40) IFx*l -< I*12 -< 13/2K , I%*1 -< 3/2KIOE’I <- rla/2D5K2.
j>o j>o
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FIo. 13 S is the small square at the center, T the large square. The dashed lines delineate the
squares surrounding S.

We need a similar estimate for [G 1, the number of plaquettes in G’, where
G is the union of the squares S in ABx which intersect some * with j < o.
We claim that

(4.41) IGI 20x/2D5K2.

To see this, let S be one of the r/K IK squares in ABt, and assume that for
a given j, .* contains a point in S. S is surrounded by at most 8 of the
K r/K squares (see Fig. 13). Let T be the union of S and its 8 surrounding
squares. It takes at least IK edges of .* to connect a point in S with the
boundary or exterior of T. Thus once * enters S it cannot enter any but the
nine squares of T with the next K- 1 edges, so that ci* intersects at most
1 + 9(r/K 1)- x[ *l of the r/K r/K squares, each of vhich contains /2K 2

plaquettes. Thus, for large K,

IGrl < ZK2E (1 + 9(BK- 1)-1.’1)
j<o

( 18 )_< r2r2 o + -1 ae?l

.< ,112(-3/2 - 1--8)DsKB
(see (4.39)). This proves (4.41).

Finally, let H* F* u G’. Note that Hx* consists of plaquettes in ABt,
and that their values are independent of all the plaquettes with interior in
(- 1/2, K + 1/2) (- 1/2, L + 1/2) [1/2, D3K- 1/2]. In particular, given E*, and
hence H*, the conditional distribution of V(H{’) is just that of

V + -I..VlH,
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where vx, 02,-.. are i.i.d, with distribution F. By (4.40), (4.41) and (4.38),

(4.42) In?l (3/2 + 20x/2)DK2 e2g 2.

By the usual argument, for sufficiently small e and any E* with lOEb’ < DsK,
we then have

(4.43)

(4.44) LEMMA. Let E’ (E) be a cut which separates bottom from top in

sx [0, K] x [0, L] x [0, D3K]
(Bz [K + 1,2K + 11 x [o, LI x [0, ZhK]).

Let H{’ be as above, and let H’ be the corresponding set ofplaquettes for E in
the vertical boundary of

[K+ ,2K+ ] [-1/2, L+ 1/2] [0, D3K 1.
Finally, assume that the reflection ofE in the plane ( x(1) K + 1/2 } has the
same type as E’. Then E’ U E t.) H{’ H’ separates the bottom from the
top in [0,2K + 1] [0, L] [0, D3K ].

Proof
neeting

and

Let be any path on Z3 in [0, 2K + 1] [0, L] [0, D3K] con-

Fo ,= [0,2K + 11 [0, L] (0)

F(D3K ) := [0,2K + 11 x [0, L] x {D3K }.

We call a cube v + U with v B B2 a + cube (- cube) if v can be
connected by a path on Z3 from v to F(D3K)(Fo) which lies entirely in one B
but does not intersect the corresponding Ei*, 1, 2. Then q starts in a
cube and ends in a + cube, and therefore contains an edge e which connects
the center 01 of a cube to the center v2 of a + cube. If 01 and v2 lie in the
same Bi, then e intersects E*, since E* separates the bottom from the top in
B. Next consider the case in which v and 02 lie in different B. For the sake
of argument, let 01 B and v2 B2. Then Vl(1) K, o2(1) K + 1 and e
is associated to a plaquette or* in (x(1) K + 1/2 }. r* is the common face of
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vt + U and/32 + U. 1"* C S for some rlK x IK square S. It suffices to show
that S c Hi* U H2*, for then any path from F0 to F(D3K) intersects
Et* U E2* t2 Ht* t2 H2*. Equivalently, it suffices to prove that S Ht* t2 H2*
implies that /31 + U and /32 + U are both + cubes or both cubes. In turn
we shall prove this by showing that if S Hx, then we can read off from the
type of Et* whether vl + U is a + cube or a cube. If also S H2, then the
parity of/32 + U can be read off from the type of E2*, and as will be clear from
the next paragraph, the fact that the reflection of E2* has the same type as Et*
forces/31 + U and/32 + U to have the same parity.

Suppose then that S Ht*, and a fortiori S G. Then S does not
intersect any of the circuits .* in the decomposition of OEt*, with I*l >-
rla/2K. The type of Et* determines for how many j < z we have S c ._, and
for how many z < j < o we have S c *(int). Say these numbers are v and
v2. Let 0 be the graph defined after (3.4) (with B B now) and let p be a
path on fo from a point on [- 1/2, K + 1/2] X [- 1/2, L + 1/2] x (0} to the center
of r*. As we saw just before (3.16), whenever k crosses one of the *, then p
goes from a face of a + cube of B to the face of a cube, or vice versa. p
starts in %*_ for each j < , but ends in j for v values of j < . Each %*
with j <, for which the endpoint of lies in j*_ (j_) has been crossed an
even (odd) number of times by . Similarly starts in .*(ext) for each j > ,
and thus crosses each such j* an even (odd) number of times if the
endpoint of 6 lies in j*(ext) (j*(int)). But if r* FI* then the endpoint of

lies in j*(ext) for each j > 0 and lies in j*(int) for exactly v2 values of
< j < o. Thus, crosses the j* ’s (v + v2 + even integer) many times and

,r* is the face of a (-1)+2 cube of B1. Thus /31 + U is a (-1)x+2 cube.
Exactly the same argument works for the mirror image of E2* in
(x(1) K + 1/2 ), which is also a cut in B1. Since this mirror image has by
assumption the same type as E*, we find that if S H2*, then r* is also the
face of a (-1) +2 cube (with the same v1, v2 as before) for

B [K + 1,2K + 11 X [0, K] X [0, D3K].

(Note that r* lies in (x(1) K + 1/2 ), and therefore does not change under
the reflection.)

(4.45) PROPOSITION. Let e0 and D4 be as in (4.10). For 0 < e < eo there
exist constants 0 < D < oo, which depend on e and F only, such that for
p > D12 m > k > 34 and (p + 1)k < r < (p + 2)k

(4.46) P{ v((r, r)) < r2(v )}

> 9Dllm {f(k,k m, e) 6mD6exp(- DTk2)}
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Proof Take rn > 1 k in Lemma 4.10 and choose K, L such that (4.11)
and (4.12) hold. If e0 1/2 we then have K/2 < L < 2K, and as we saw before
the number of possible types of cuts Et* which separate the bottom from the
top in

B. [0, K] X [0, L] X [0, D3K]

with OE?I < DsK is then bounded by Dn. Thus, we can find a fixed type T
such that

(4.47)
P(there exists an (F0, F(D3K))-cut E in B with V(E’) < ( 3e)KL,

OEI < DsK and type of Et* is T }
k

> 9Dttm { f(k, k, m, e) 6mD6exp(- D7k2) }.

Write F(i, j) for the box

[i(K + 1), i(K + 1) + K] X [j(L + 1), j(L + 1) + L] X [0, D3K ],
O<i,j<p.

Let E*(i, j) be a cut which separates the bottom from the top in F(i, j) with
IOE*(i, J)l < D5K and such that a "suitable" reflection and translate of E.*.

l,J

has type T. How we should reflect and translate Ei,*j depends on the parity of
and j. If is odd we reflect in the plane (x(1)= i(K + 1) 1/2 } and if j is
odd in the plane (x(2) j(L + 1) 1/2 }; if and j are odd we perform both
reflections, but we do not carry out reflections for even and/or j. The
reflection E*(i, j) of.E*(i, j) is a cut which separate.s the bottom from the
top in the reflection F(i, j) of I’(i, j). We translate F(i, j) and E*(./, j) so
that F(i, j) coincides with F(0,0)= Bt, and it is this translate of E*(i, j)
which should have type T. Now let H*(i, j) correspond to E*(i, j) in exactly
the same way as H* to E* (cf. lines preceding (4.42)). Then a repetition of the
proof of Lemma 4.44 shows that

O<i,j<p
{e*(i, j) t.) H*(i, j)}

is a set of plaquettes in.

[-1/2, p(K + 1) 1/2] X [-1/2, p(L + 1) 1/2] X [0, D3K

which separates the bottom from the top in

Bo:= [O,p(K+l)-l] [O,p(L+l)-l] [O, D3K ].



FIRST-PASSAGE PERCOLATION 151

Now consider the set of plaquettes I* u J *, where J* consists of all plaquettes
in the vertical boundary A0 of

[-1/2, p(K + 1) 1/2] X [-1/2, p(L + 1)- 1/2] [0, D3K],

plus all plaquettes of the form

(4.48) [a- 1/2, a+ 1/2] x [b- 1/2, b+ 1/2] (1/2}
with

(4.49) (a -1 or a [p(K + 1), r 11) and -1 < b < r 1

or with

(4.50) (b -1 or b [p(L + 1), r- ll) and -1 < a < r- 1.

These are the plaquettes between the square

[-,r- 1/2]x {1/2}
and the rectangle

[-1/2, p(K + 1) 1/2] X [-1/2, p(L + 1) 1/2] X {1/2}.

(See Fig. 14.) It is easy to see that I* U J* separates the bottom from the top
in

B .’= [-1, r- 112X [0, D3K].

Indeed, any path on Z from the bottom to the top of B which goes
upwards from a point (a, b, 0) with a, b as in (4.49) or (4.50) must cross J*

(O,D3K)

d*

(-l ,0)(0,0)

Id*

(p(K+l)-I ,0) ((r-l),O)

FIO. 14
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immediately. Also, if contains a point in B0, then cannot leave B0 without
hitting A0 c J*. Finally cannot go from the bottom to the top of B0, while
staying in Bo, without hitting I*. Thus I* t3 J* indeed separates the bottom
from the top of B.
To complete the proof we select a minimal cut E* from 1" t3 J* which

separates the bottom from the top in B. Since 1" t3 J* intersects the boundary
of this box only in plaquettes of the form (4.48) with a or b equal to -1 or
r- 1, it follows that OE* consists only of edges in the perimeter of
[- -, r 1/2]2 (2 } (cf. (3.6a)). Since E* separates the bottom from the top
of B one easily sees that E* must contain all the plaquettes in (4.48)-(4.50)
so that BE* consists of all the edges in the perimeter of [- 2, r 1/212 (1/2 }.
Thus, apart from a translation by the vector (- 1, 1, 0) E* is one of the cuts
in the inf in (1.11) (with k l r). Thus

P(,r(r,r) < rZ(v- e)} > P(V(E*) < r2(v- e)}.
To estimate V(E*) observe that

V(E*) < V(I*) t3 V(J*)

<_

_
(V(E*(i, j)) + V(H*(i, j))} + V(J*\ [.JH*(i, j)).

O<i,j<p i,j

This will be at most r2(v e) provided

V(E*(i, j)) < KL(v- 3e)

V(U H*(i, j)) < epZK 2

V(J* \ H*(i, j)) < er E.

for 0 < i, j < p,

Conditionally on all E*(i, j), V( t3H*( i, j)) has the distribution of v
+ +v with t= td H*(i, J)l < P2e2K2 (by (4.42)). Exactly as in (4.43)
this implies

P(V(Un*(i, j) > ep2K2le*(i, j) with IOE*(i, J)l
< DsK, 0 < i, j < p} < exp(-1/2"tep2K2).

Also, for p >_ D12 := 8e-2(D3 + 2), J* \ LI H*(i, j) contains at most

2p(K + L + 2)D3K + 2(r + 1)(r- p(K + 1) + r- p(L + 1) + 2)
8

< -D3r2 + 8r{(p + 2)k- p(X e2)k} < 20e2r 2

plaquettes, and all these plaquettes are outside I*. Thus by an estimate similar



FIRST-PASSAGE PERCOLATION 153

to (4.43),

P{V(J*\ H*(i, j)) < erlE*(i, j),H*(i, j),O < i, j <p} > 1/2.

Combining all these estimates we find

P( ((r, r)) < r-( e)} > P{there exists a cut E* which separates

bottom from top in B with OE* consisting of the edges

in the perimeter of {, r 1/212 X { 1/2 } and V(E*) < r 2 (1, -e) }
> 1/2P { For 0 < i, j < p, there exists a cut E *(i, j) which separates the

bottom from the top in I’(i, j) with V(E*(i, j)) < (v 3e)KL,
and such that the proper reflection and translate of

E*(i, j) is of type T, and v(un*(i, j)) < epZK 2 }
>_ 1/2 { g(k, m, e)} { 1 exp(- 1/2"epZK 2) },

where g(k, m, e) stands for the probability in the left hand side of (4.47). The
lemma now follows from (4.47). m

The reader will be relieved to know that this completes Step (iii) and that
Step (iv) is short. To begin Step (iv) we establish (4.5) in the next lemma.

(4.51) LEMMA. For e > 0 there exists a constant D13 D13(e F) < o such
that for all M > 4 there exists an r [M1/2, M] with

(4.52) 913P{,((r,r)) < r2(v- e)) < logr

Proof. We already saw in the proof of Lemma 4.7 (cf. (4.8)) that

([0,2k+) X [0,2k+l)) < ,([0,2k) X [0,2k))+ ,([2k,2k+l) X [0,2k))
+([0,2k) X [2k,2k+l))
+ ,r([2k, 2k+ l) X [2k, 2k+ 1)).

Moreover, the four terms in the right hand side are independent, and each has
the distribution of ,([0,2*) [0,2’)) (2*- 1,2*- 1). Exactly as in [15],
Section 2.4, it follows that

Z 2-o2((2k- 1, 2k- 1))= Z 21-o2(([0, 2k) X [0,2k)))
k-0 k-0

< E(’r2([0,1) X [0,1))}
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and

E(2- 1,2- 1) Ez([0,2) [0,2)) > v22.

Thus, for all M,

2-4ko2(’r(2k
Mx/2 < 2k <M

1,2k- 1)) < Cs,

and hence for some M1/2 + 1 < 2k < M,

02((2k 12k 1)) <24k C9 (log M_logM1/2 1)-1’10g’

Take r 2k 1 and apply Chcbyshev’s inequality to obtain the lemma.

Proof of Theorems 2.7 and 2.10. L convergence is trivial once one has
convergence w.p.1. Theorem 2.10 plus Lemma 4.7 and the fact that 8(n 1, n2)
has the same distribution as 8(n 2, nl) will imply (2.9). Thus, it suffices to
prove 2.11. In turn, in Theorem 2.10 we may restrict ourselves to 8 fl
because

fl(k, l) ,(k, l), z(k, l), a(k, l).

The inequalities fl(k, l) < o(k,/), z(k, l) are obvious because the cuts in the
definitions of o and z must be connected (cf. (3.17)). To see that also
fl(k, l)< a(k, l) we show that in (1.12) we may also restrict the inf to
connected sets E*. Indeed, if OE* consists of the edges on the perimeter of

[-1/2, k+ 21 X [-1/2,1+ 1/2] (1/2},
then OE* is connected and therefore belongs to a single component, Eo* say,
of E*. One easily sees that OEo* OE*. Thus by (3.1a), Eo* already separates

oo from + oo over R. Thus we may replace E * by Eo*, and fl(k, 1) < a(k, 1).
From now on we restrict ourselves to =/3. For the time being we restrict

ourselves to k 1. Fix 0 < e < eo/4 and then p p(e) > Dt2(e). Then for
rn > k > D4 and (p + 1)k r < (p + 2)k (4.46) applies. If r also satisfies
(4.52) then we obtain

9Dtlm{4D13)
p-

(4.53) f(k, k, m, e) k log r + 6mD6exp(- D7k2 )"

In view of (4.51), for all sufficiently large M we can find an r [M1/2, M]
and a k in the interval

(4.54) [(P + 2)-1M1/2,(p + 1)-1M]
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such that (4.53) holds for all m >_ k (first choose r, then k). This is the
"moderately good" estimate which we now improve by several iterations of
(4.34). We start with any M and a ko in the interval (4.54) such that (4.53)
holds for this ko and m > ko. We set

k ko(log ko)x/2’2 and m mo D3(4e)k.
Then for some Mx(e), M > M and ko > (p + 2)-XM/2 will imply D3(4e)k
>_ ko, so that (4.53) gives

f(ko, ko, D3(4e)kx, e)
-2

-< 9DxD3(4e)(lg M)1/2’2 log M

+ 6D3 (4e) D6ko(log ko)X/E2exp(_ Dyke)

(For the last inequality we may have to raise Ml(e).) We therefore have (4.35)
for s s2 k0, k k. From (4.36) with k l k we conclude that

9mf(kx, kx, m, 4e) < -x exp(-Cse(log ko)’-2)
+ 6mD6 (4e)exp( DT(4e)k2).

In order to iterate (4.34) we want to use the last inequality to obtain (4.35)
with sx s2 kx, and e replaced by 4e. The fight hand side should therefore
be no more than 4e/v. This allows us to take m of the order kx(log k0)-
kx(log kx). Indeed, substitution of m D3(16e)kxlog k for m gives

f(kx, k, D3(16e)kx(log kx), 4e)

< 9D3(16e)log kxexp(- Cse(log ko)-2)
+ 6D3(16e)D6(4e)klog kxexp(_DT(4e)k2 ) < 4e,

provided M > M2 for some M2 M2(e) > M(e). This gives (4.35) for s
s2 kx, k replaced by k2 .’= kx(log kx) and e replaced by 4e. Next, in (4.36),
we choose

m2 D3(64e)k2x+l
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for some 1 X 48-t. This yields

f(k2, k2, D3(64e)kX2 +I, 16e) < 9Da(64e)kX2 exp(- 4Cse(log kt)2)
+ 6D (64e) k2x+ 1D6 (16e)exp( D7 (16e) k22)
16e

provided k2 exp D14(e)k and M is greater than or equal to some M3(e, 5)
> M2(e). A final application of (4.36) with k n := k2TM, n2/(x+ < < n
and rn > n gives

f(n, 1, m, 64e)
9m

< ----exp(-a6CsekX -I) + 6mD6(64e)exp(-D7(64e)n’).

If we again replace 64e by e, we find that for 1/( + 1) < 8,

9m exp( Dis()nl- 9-1) n(4.55) f(n, 1, m, e) < -n- 2 <l<_n,m>_n.

Since we did not control k0, kl, k2 or n carefully we must go back to check
for which n’s (4.55) holds. We merely know that there will be a k0 in (4.54) to

nl/(X+l) >start the chain, provided M > Ml(e). Furthermore we need k2

exp D14(e)X, but 1 < X < 4-1 arbitrary. If we use k ko(log ko)1/0-2) and
k2 kllog k we see that k2 is some integer in

(4.56) M1/2 M (log M)2](p + 2)(logM), P + 1

The only restrictions on M, h are

nt/(x+ 1) > exp DI4 (e) XM>M3(e 8), k2

and

4a- > X > max(I, a -t 1).

Without loss of generality take iS < 1/2 so that we only need 48-1 > h > 8-1
1. Then for given n take M n/2. For n > nx(e, ) this M will be at least
Ma(e, ). Next, find k0, k, k2 corresponding to this M. Since k2 lies in (4.56)
we find that

(4.57) n/4 < k2 < n,
provided n n2(e, 8) as well. Finally, choose h + 1 (log k2)-llog n so that
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n k2x+ x. Then, by (4.57),

1-1 k -]- 1 4( -1

and

k2 > n8./4>_ exp(4Dx4(e)-x > expDx4(e)X,

provided n > n 3(e, 8). Thus, all requirements can be satisfied if

n > n0(e, 8 ) .’= max(ni(e, 8)’i= 1,2,3}.
In other words, (4.55) holds for all n > n0(e, 8).

(4.55) would be enough to estimate probabilities of cuts over squares. To
deal with cuts over rectangles we must estimate f(k, 1, m, e) for k > I. We
cannot use (4.36) for this, as was done above, because each application of
(4.36) raises e to 4e and, as we shall see, we need an unbounded number of
applications of an analogue of (4.36). The required analogue is

(4.58) f( k, l, m, ) < mCexp( Ckl) + + 1 f( k, l, Cokl, ),
fork>l>l,m>l.

(C, C and Co do not depend on e.) (4.58) is trivial to prove, since
f(k, l, m, ) mCxexp(-Ckl) is bounded in (4.13). Note that Cx and Ca in
(4.13) are the same as in (2.1) and C O-,; these constants depend on F
only. In the left hand side of (4.13) we may restrict ourselves to connected cuts
E* (by (3.17)), and any such cut must contain a point in one of the at most
(kl)-m + 1 segments

( 1/2} X { 1/2} X [jkl,(j+l)kl),O<j<(kl) -x

But if E* is connected and contains at most Cskl plaquettes, one of which
intersects (- 1/2 } (- 1/2} x [jkl, (j + 1)k/), then E* is contained between
the horizontal hyperplanes

{ x(3)

Thus, (4.13) and (4.3) yield

f(k, 1, m, e) mClexp( Czkl )
-< E

O<j<m/kl

and {x(3) (j + 1 + Cs)kl).

P (there exists a cut E* which separates bottom from top

in [0, k] [0, 1] [(j- Cs)kl, (j + 1 + Cs)kl] with

m
< ( + l)f(k,1, (2C5 + 1)kl, e).
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(Note how much easier it is to prove (4.58) than (4.12), even though they seem
to differ only in small details.)
Our starting point for the next step will be (4.55) with n equal to some large

l. Fixe_<eo,< 1/2andlet,lo=e,lo=1,

(4.59) 8i i-2e, rli e + E 8., > 1, 11 x/, 12 12/2
j=l

and7

for > 3.

It is not hard to see (by using induction on i) that--provided e0 is sufficiently
small--there exists an

L L(e, , F) >_ no(e, ) + C6e-x + Co,

such that for 1 lo > L, (4.59) implies that for > 1,

(4.60)

9Cxol2exp(- D5(e)l 3/2) <

li
li-1

> (i + 2)4(1 + Cee-x),
and

CoCxli+21exp(-C21il) + (Co + 1)exp(
<

(i + 1)2,

CTe li )2
i_

We now show by induction that for > 1, m > 1 one has

(4.61) f(n, 1, m, ,li) < mCxexp(-C2nl) + ’7 + 1 exp -C7 -_1
I < n < li+ 1.

To prove (4.61) observe first that (by virtue of (4.58)) (4.61) will hold for a
given if

f(n, I, Cxonl, ) < expl
. )C71--_18 < n < li+l.

7[aj denotes the largest integer < a.
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In turn, by (4.33), this will hold if

(4.62) and

f(li_ x, l, Conl, r/i_x) < -, < n < 1i+1,

For 1, (4.62) and hence (4.61) holds by virtue of (4.55) and (4.60). Now
assume that (4.61) holds for I > 1 and lz < n < lz+ x. In particular we may
then use (4.61) with Cxonl and lz substituted for rn and n, respectively. For
n < 1+ 2 this gives

f(ll, 1, Clonl, *li) < CloClnl exp(-C21fl)

+ ( Cto.n + 1

I+1. o
(by (4.60)). Therefore (4.62) holds with 1 + 1 and so does (4.61). This
completes the inductive proof of (4.61).
Theorem 2.10 is now immediate from (4.61) and the following observations:

r/ e 1 + i-2 < 3e,
1

(4.63) P( fl(n, 1) < (v 15e)nl) < f(n, 1, Cionl, rli) + Ctexp(-CEnl).

(4.63) holds because a connected set E* through (- 1/2, 1/2, 1/2) with V(E*) <
vnl will contain at most Csnl O-Xvnl plaquettes outside a set of probability
Cexp(-C2nl) (by (2.3)). If IE*I < C5nl and E* separates -o from + o0

over [0, n] [0, 1], then E* contains a cut separating the bottom from the top
of

[0, x [0, z] x

Thus, we can take Cx0 2C + 1. Compare with the arguments for (4.58) and
(4.13).

Finally, for fixed 0 < < 1 and > 1,

li )* li_ ) li_ li_ 2 1> >
1i-2 1i-3 101 li-1

(by (4.60)).
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Thus, for n > l one has l_ < n, and

(Ce)-i21i_ <_ 2(C7e)-( li- ) /2li_ <n2a

Consequently, by (4.61) and (4.63), for > 1 and l < n < li/ ,
(4.64) P( O((n, 1)) < (,- 15e)nl) < P( fl((n, 1)) < (,- 15e)nl}

(clo  + +

/ +

Short of replacing 15e by e and 3 by this proves (2.11) for n > It. For
l < n < l Ix/s we use (4.63) and (4.55), with replaced by//2, directly.

Proof of Theorem 2.12. This theorem also follows immediately from (4.61)
and (4.55), by means of (1.6). Indeed (1.6) shows that

(4.65) O(k, I, m) min(V(E*) E* is an (F0, Fro) cut of

[0, k] X [0, l] X [0, m]).

In particular, under the hypothesis (2.13), for k > 1, I < k < li+ and > 1
(1 and r/ as in the last proof) we have

P((k,l,m(k,l)) (- 15e)k/} f(k,l,m(k,l),li)
< exp( k1-a + o (kx-a))

(compare with (4.64) with replaced by//2). Thus, under (2.13),

x (k, 1, m(k, 1)) _> , w.p.1inf

For the upper bound we can copy the two-dimensional proof of [8],
Theorems 5.1 and 2.lb. Let

,rr(k, 1) {infV(E*) E* is an (Fo, F2r+)-cut of

B(k, 1, 2r + 1) whose boundary OE * consists of

the edges of Ae* on the perimeter of

[-1/2, k + /2] [-i2,1 + /2] X {r + i2}

(compare with (1.11)). By (4.65), (k, 1, m) < "rr(k, 1), whenever m > 2r + 1.
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Exactly as in (4.8) one shows that for each fixed r, "rr(k, 1) is subadditive in
k, l, so that there exists a constant v for which

1 1
limsup 7(k, 1, m) < limsup 7, (k, 1) v

k, 1, m--* oo k,

Standard subadditivity arguments as in [15], p. 88 show that pr
SO that

1
limsup 7(k, 1, m) < , w.p.1.

k, 1, rn--- oo

Proof of Theorem 2.18. We first prove (2.21) under the condition (2.22).
Call an edge e of Z open (closed) if t(e) 0 (t(e) > 0). Then

(4.66) P{ e is closed} 1 F(0) < pr(3).

Let W(o) be the collection of all edges and vertices which can be connected to
o by a closed path on Z3, i.e., a path all of whose edges are closed. Note that
we define v to be a point of IV(v) always. Next we define

U w(o)
v[O,k][O,l]

and F*(k, 1) as the collection of all plaquettes in

+ 1/2] x [-1/2, Z+ 1/2]

which are associated to some boundary edge e of S(k,/), i.e., to some edge e
with one endpoint in S(k, 1) and one endpoint outside S(k, 1). For later
purposes note that such a boundary edge e is necessarily open (otherwise it
should form part of S(k, l)). Thus, all plaquettes r* in F*(k, l) have
t(er*) 0 and

(4.67) V(F*(k, 1)) O.

If

(4.68) S(k,I) c R2 [-M+I,M-1],

then F*(k, l) separates the bottom from the top in [0, k] x [0, l] [0, M],
for any path from [0, k][0,1] (0} to [0, k][0,1] (M) starts in
S(k, l) and ends outside S(k, l), and hence contains a boundary edge of
S(k, l). In particular (4.68) implies that F*(k, l) contains an (Fo, F,)-cut
E*(k, l) of B(k, l, M) with V(E*(k, l)) 0 (by (4.67)) and hence

(4.69) t(k, l, m) < V(E*(k, I)) =0 for m>M.
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Now, by [12], Theorem 5.1 or [9], Theorem 2, (4.66) implies that for suitable
constants C, C2,

(4.70) P{ W(v) contains a point outside R: [-n,n ]}
< Cle-c:n n>0,

whenever 0(3) 0. Consequently, for C > 5C-1,

P{S(k, l) RE [-Clog(k + l), Clog(k +/)l}
> 1 (k + 1)(1 + 1)C1e-c:c’g(k+‘)

<I-C (k + 1)(1 + 1)
(k + l)s

By the Borel-Cantelli lemma this shows that w.p.1,

S(k, l) RE [-C log(k + l), C log(k +/)] for all large k and I.

Now, under the condition (2.22), (2.21) follows from (4.68), (4.69).
To prove (2.20) we take for G*(k, l) the collection of all plaquettes

[a- 1/2, a+ 1/2] X [b- 1/2, b+ 1/2] X {1/2}

witha= -l or k + l and -1 <b<l+l, orb= -lorl+land-1 <a
< k + 1. Further we take for H*(k, 1) all plaquettes r* in one of the four
vertical strips,

{a} X [-{,/+ 1/2] X [1/2, oo),
[-1/2, k + 1/2] x (b} x [1/2, oo),

a=-1/2 or a=k+1/2,

b=-1/2 or b=l+1/2,.

with the property that r* intersects an edge of S(k, l). We claim that

F*(k, l) U G*(k, 1) U H*(k, 1)

contains a cut over

[-1, k + 1] [-1,1+ 1].

In fact it even separates

from

F0".= [-1, k + 1] X [-1, 1+ 1] X (0}

Fu.’= [-1, k + 1] X [-1,1 + 1] X {M}
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in

B .’--[-1, k + 1] [-1,/+ 11 [O,M]

whenever (4.68) holds. To see this consider any path on Z from F0 to FM in
B, which lies in [-1, k + 1] x [-1, + 1] (0, M) with the exception of its
endpoints in F0 and FM, respectively. must start with a vertical edge from
some v (v(1), v(2),0). If v(1)=-1 or k + 1 then the first edge in
already intersects one of the plaquettes in G*(k, 1). Similarly if v(2) -1 or
1 + 1. Thus, we may assume 0 < v(1) k, 0 < v(2) < 1, so that starts in
S(k, 1). If stays in [0, k] [0, 1] [0, M] and (4.68) holds, then must
contain a boundary edge of S(k, 1) in [0, k] x [0, 1] x [0, M] and hence cross
F*(k, 1). Finally, if leaves [0, k] [0, 1] [0, M] before it has crossed
F*(k, 1), and e is the first edge of not contained in [0, k] [0, l] [0, M],
then either e is a boundary edge of S(k, 1) and hence crosses F*(k, 1) or e is
an edge of S(k, 1) and crosses H*(k, 1). This proves our claim. As a corollary,

F*(k, 1) t.) G*(k, 1) t.) H*(k, 1)

contains a cut E*(k, 1) over

[-1, k+ II x [-1,1+ 1]

with

V( g*(k, l)) V(F*(k, l)) + V(G*(k, l)) + V(H*(k, 1))
V(G*(k, 1)) + V(H*(k, l)).

Moreover, the only plaquettes in F*(k, 1) u G*(k, 1) U H*(k, 1) which in-
tersect the vertical boundary of [- , k + z:] [_ , 1 + z:] R are those of
G*(k, 1). It follows from this and Lemma 3.6(a) (cf. the proof of Prop. 4.45)
that Off*(k, l) consists exactly of the edges in the perimeter of [- , k + ]

[- 1/2, 1 + ] { 1/2 }. Moreover/* is contained in[- , k + 1/2] [- , l +
1/2] R. Thus, except for a translation by (-1,1),/*(k, l) is one of the E*’s
which figure in the definitions (1.11), (1.12), (2.5) and (2.6) of

(k+2,1+2),a(k+2,1+2),o(k+2,1+2) and fl(k+2,1+2),

respectively. Therefore, for all x and 0 a, fl, o or ,
(4.71) V( O(k + 2, l+ 2) > x) < P( V(G*(k, 1) + V(H*(k, 1)) >_ x).

Now, G*(k, l) contains 2(k + + 6) plaquettes, and we need an estimate
for IH*(k, l)l, the number of plaquettes in H*(k, l).
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For any (i, j) let N(i, j) be the number of n > 0 such that (i, j, n) W(v)
for some v (v(1), v(2), v(3)) with v(3) 0.

The definition of H*(k, 1) shows that

(4.72) [H*(k, 1)[ < 2 EN(i, j).
k,l

where Y-,k,t is the sum over the pairs (a, j) with a 0 or k and 0 < j < and
the pairs (i, b) with b 0 or 1 and 0 < < k. To estimate (4.72) we need an
approximation Jq(i, j) to N(i, j). / is defined as follows.

Let ](i, j) be the number of n > 0 such that (i, j, n) is connected by a
dosed path to some (v(1), v(2), 0) with contained in

[i- C log(k + l), i+ C log(k +/)]
[j- C log(k + l), j + Clog(k +/)] R.

Clearly N(i, j) < N(i, j) and

(4.73) P( ](i, j) q: N(i, j))
< F_,,,,,P((i, j, n)is connected to some (v(1), v(2), 0) by a closed path)

--1+ F_,k__OP ((i, j, n ) is connected by a closed path to some point outside

[i- C log(k + 1), i+ Clog(k + 1)1
X [j- C log(k + 1), j + C log(k +/)]}.

If we take r 5C-qog(k + l), then we obtain from (4.70) that the fight hand
side of (4.73) is at most

Cxexp- C2n + rCxexp- C2C log(k + l) C3(k +/)-4.

Consequently

P( .(i, j) 4: _N(i, j)} 4C3(k + 1)-3
k,l k,l

and, for any a,

(4.74) P(IH*(k, 1)1 > 2a(k + 1)}

< 4C3(k +/)-3 + p( Elf(i, j) >_ a(k +/)}.
k,l
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Now, the estimate (4.70) also shows that

P{-(, j)
< P(N(i, j) x}
< _. P{(i, j, n)is connected to some (v(1), v(2),0) by a closed path}

rt> x

< Cx(1 e c=)-e-
so that 2 has all moments. Moreover, by definition, any family { (i, j)}
which satisfies

li,- i,l + [j-J,I > 2Clog(k + l) for all r 4= s

is independent. It is now easy to obtain

El E (10(i, j) E](i, j))l 6 < C4{(k +/)log(k + 1)}3
k,l

Together with (4.74) and the estimate on G*(k, 1)1 this shows that

(4.75) EP{IG*(k, 1)1 + IH*(k, 1)1 >- 3(EN(0,0) + 1)(k + 1)} < o.
k,l

Write C5 for 3(EN(0, 0) + 1). In view of (4.71) and (4.75) we will obtain (2.20)
if we show that

EP{V(G*(k, 1)) + V(H*(k, l)) > C6(k + 1)
k,l

(4.76) but

IG*(k,/)1 + IH*(k,/)1 < Cs(k +/)} < oo

for suitable C6 < 00. Finally note that the sets G*(k, l) and H*(k, l) depend
only on which edges are open or dosed, but not on the actual values of the
closed edges. Thus, conditional on G*(k, l) and H*(k, l), the values of the
plaquettes in these sets are still independent. The distribution function of
v(rr*) for ,r* in H*(k, 1) is the conditional distribution function of t(e),
given t(e) > 0, i.e.,

(1 F(0)) l(F(x) F(0)).

This distribution function of o(rr*) for r* G*(k, l) is simply F(x). The
summand in (4.76) is therefore bounded by

P{U(1) +... + U(C5(k + l)) + V(1)
+ .-[-V(C5(k + l)) >. C6(k + 1)},
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where all U(i), V(j) are independent and each U(V) has distribution function
(1- F(0))-I(F- F(0))(F). We leave it to the reader to derive (4.76) by
means of Chebyshev’s inequality (with sixth moments). As mentioned above
this completes the proof.
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