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GROUPS AND CENTRAL ALGEBRAS

BY

AWAD A. ISKANDER

If K is a field and A is a finite dimensional central simple K-algebra, then
the Brauer class of A contains a crossed product (cf. [4, page 379], [10, page
474]). The algebra of real quaternions is a twisted group algebra of the
Klein-4-group over the field of real numbers R; it is also the algebra obtained
from the group algebra R[G], where G is the group of quaternions, by
identifying the center of G with { 1, 1 ) of R. The similar construction for the
dihedral group of order 8 gives the algebra of 2 2-matrices over R. It turns
out that twisted group algebras are the algebras obtained from group algebras
by identifying a central subgroup with a subgroup of the field’s multiplicative
group. We also determine when the algebras obtained from group algebras by
such identifications are central.
A group G is called completely central if for every non-central g G with

only finitely many conjugates, there is a central 1 n G such that g is a
conjugate of ng. The class of completely central groups contains all free
groups, all nilpotent class 2-groups, all torsion free nilpotent groups and all
groups of central type. However, there are nilpotent class 3-groups that are not
completely central groups (e.g., the dihedral group of order 16) and there are
nilpotent class 2-groups that are not of central type (e.g., one of the groups of
order 64). We characterize groups of central type in the class of finite
completely central groups.
K will always denote a non-trivial commutative ring with 1. Let Kx denote

the group of units of K. The center of a group G will be denoted by ’(G) and
the center of an algebra A will be denoted by ’(A). The conjugacy class of
g G will be denoted by Cl(g).
The author thanks Professor John D. Dixon and the referee for their

valuable comments.

1. Suppose K is a commutative ring with 1, G is a group, N is a central
subgroup of G and a is a homomorphism of N into Kx. The algebra obtained
from the group algebra K[G] by identifying n with a(n) for every n N will
be denoted by KGa. The ideal of K[G] generated by { n a(n)l In N } will
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be denoted by I(a). Thus KGa K[G]/I(a). Since N is central in K[G],

I(a) E((n a(n)l)K[G]ln N).

If N is generated by A, then I(a) E((1 a(a-1)a)K[G]la A}. In
particular, if N (a) is cyclic, then I(a) is a principal ideal;

l(a) (1 a(a-)a)K[G].
The following two theorems describe KGa as .a twisted group algebra"

THEOREM 1. Suppose K is a commutative ring with 1, G is a group, N is a
central subgroup of G and a is a homomorphism of N into K. Then KGa is a
twisted group algebra of G/N over K. Furthermore, if B is a transversal of G
modulo N, then every element of K[G] is uniquely writable as a K-linear
combination in B plus an element of I(a).

Proof Let B be a transversal of G modulo N. Define

/" G/N G/N K

as follows: If b, b’, b" B, n N and bb’ nb", then "t(Nb, Nb’) a(n). It
is routine to check that

"t(xy, z),l(x, y) "t(x, yz)’t(y, z) for all x, y, z G/N;

i.e., "t is a KX-factor set for G/N (cf. [5, page 182], [9, page 174], [11, page
13]). So, we can form the twisted group algebra Kt[G/N] the additive group
of Kt[G/N] is a free K-module with basis G/N. Multiplication is defined by
kx xk, x y "t(x, y)(xy) for all k K, x, y G/N. If a B 3 N, then
a(a-)N is the identity element of Kt[G/N ]. Thus if 1 B, N is the identity
element of Kt[G/N ].

Let tt be the K-module homomorphism determined by tt (nb) a(n)(Nb),
n N, b B. The mapping tt is also an algebra homomorphism, indeed, let
n, n’, n" N, b, b’, b" B and bb’ n"b". Then

g((nb)(n’b’)) g(nn’bb’) tt(nn’n"b") a(nn’n")Nb",
(nb) (n’b’) ot(n)(Nb) ot(n’)(Nb’)

a(n)a(n’)(Ub). (Nb’) ot(n)ot(n’)ot(n")Nb".

Thus/ is a homomorphism of K[G] onto Kt[G/N]. Let a B N, n N.
Then

/x(n a(n)l) (na-a ot(n)a-a) a(na-)N- ot(n)ot(a

in Kt[G/N]. Thus I(a) is contained in the kernel of it.

-1)N= 0
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Conversely, if tz(,(t,,bnbln N, b B ) 0 in Kt[G/N], then

(t,,ba(n)(Nb)l n N, b B) 0

in Kt[G/N]. Hence ,{tn, ba(n)ln N} 0 in K for every b B. Hence

Y(t,,bnbln N,b B} Y,(t,,b(n a(n)l)bln N,b B) 1().

Thus l(a) Ker/z and Kt[G/N] =- K[G]/I(a)= KGa.
Since nb a(n)b + (n a(n)l)b a(n)b + l(et), the set of all K-linear

combinations in B is a transversal of the additive group of K[G} modulo
I(a).
The following tr eorem is a modification of Lemma 2.3 of [11, pa e 161

esta tisr es the converse of Tr eorem 1:

THEOREM 2. Suppose K is a commutative ring with 1, H is a group and
A Kt[H] is a twisted group algebra. Then there is a group G with a central
subgroup N such that G/N =- H and there is an injective homomorphism a ofN
into K such that KGa = A.

Proof Let G { axla Kx, x H }. Then G is a multiplicative sub-
group of the group of units of A. Furthermore, the mapping ax x is a
homomorphism of G onto H with kernel N KXl (al a K }. Obvi-
ously, N is central in G and G/N -- H. Furthermore, the embedding of G into
A extends to a K-linear mapping/3 of K[G] onto A Kt[H] since G contains
a basis for A. Let J denote the kernel of/3 and let a be the homomorphism of
N into Kx defined by a(n) k if n kl. It is clear that a is an isomorphism.
The set H, as a subset of G, is a transversal of G modulo N. Thus, if C J,

then we can write C { t,,xnXln N, x H } and then

0 fl(C) ,{tn,xa(n)xln. N,x H}.
Hence, for every x H, ,{t,,xa(n)ln N} 0, and so

C ,{ t,,(n- a(n)l)xln N, x H};

i.e., J
___

l(ct). Conversely, fl(n a(n)l) et(n)l a(n)l 0. Thus I(a)
J and so A =- K[G]/I(a) KGa.

PROPOSITION 3. Suppose K, G, N and a are as in Theorem 1. If L is the
kernel of a and a’ is the injective homomorphism ofN/L into K induced by a,
then KGa -- K(G/L)a’.

Proof Let B be a transversal of G modulo N. Then B’ { Lb b B } is a
transversal of G/L modulo N/L. Proposition 3 follows from Theorem 1. The
mapping b --, Lb induces an isomorphism of KGa onto K(G/L)a’.
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COROLLARY 4. If K, G, N and are as in Theorem 1 and N is a direct

factor of G, then KGa --- K[G/N].

Proof. Let G be the internal direct product of N and B. Then B is a
transversal of G modulo N and y(x, y) 1 for all x, y G/N since bb’ B
for all b, b’ B.

The converse of Corollary 4 is not true in general. For the field of complex
numbers C, and for any finite abelian group G of order n, C[G] -= Cn If N is a
subgroup of G and a is a homomorphism of N into C x, then C[G] --- C n -=
C[N G/N]. Thus CGa -- C(G/N N)a -- C[G/N].

COROLLARY 5. Let K be a commutative ring with 1, in which 2 =# O. Then
every negacyclic code of odd length over K is equivalent to a cyclic code. Over the
field of complex numbers every negacyclic code is equivalent to a cyclic code.

Proof. A negacyclic code of length n over K can be defined as a submod-
ule M of the K-module K such that

(Co, Cl,’", cn- 1) M

implies

( c_l, Co,..., Cn_2) m.

Rewriting (c0, cl,..., c_1) as co + clx + + cn_ lx-1, negacyclic codes
turn out to be the ideals of KCa, where C is the cyclic group

{1, x,..., X2n-1 }

of order 2n, N (1, x"} and a(1) 1, a(x") -1. If n is odd, C N B,
where B {1, x2,..., x 9(-1) ) is a cyclic group of order n. Since cyclic codes
are identified with the ideals of K[B] (cf. [1, page 129], [2, page 41]) every
negacyclic code of odd length is equivalent to a cyclic code (by Corollary 4).
The equivalence is achieved by Xtix Xti(-x)i.
Over the complex numbers CCa =- C[C/N] and every negacyclic code over

C is equivalent to a cyclic code.

THEOREM 6 (Maschke). Suppose K is a field, G is a group and N is a central
subgroup of G. If G" N] is finite, G" N] ,b 0 in K and a is a homomorphism
ofN into Kx, then KGa is semisimple.

Proof. By Theorem 1, KGa --- Kt[G/N]. Thus, Theorem 6 follows from
the similar theorem for twisted group algebras (cf. [7], [14]). However, due to
Theorems 1 and 2, the proof of Maschke’s Theorem for group algebras can
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easily be adapted to twisted group algebras by averaging over a transversal B
of G modulo N (el., [5, page 43], [9, page 5], [13, page 210]).

2. By Theorem 2, twisted group algebras are KGa for appropriate G and a.
This simplifies the description of the center. Before we describe the center we
need some preliminaries.

Suppose G is a group, N is a central subgroup of G and g G. Let
T(g) [g, G] N. Then T(g) is the set of all n N such that ng is a
conjugate of g. Also, T(g) is a subgroup of N. Furthermore, if g is a
conjugate of g’, then T(g) T(g’).

Indeed, let m, n T(g). Then there are h, k G such that h-lgh mg,
k-lgk ng. Hence (k-h)-Xg(k-lh)= h-l(kgk-1)h h-Xn-lgh mn-lg.
Thus T(g) is a subgroup of N. Now, if g is a conjugate of g’ and m T(g),
there are h, k G such that h-gh mg and k-gk g’. Thus k-(mg)k
mg’. Hence g, g’, mg, mg’ are all conjugates; i.e., g’ is a conjugate of mg’.
Thus T(g)c T(g’). By symmetry, T(g)= T(g’).
The following theorem describes the center of KGa:

THEOM 7. Suppose K & an integral domain, G is a group, N is a central
subgroup of G and t is an injective homomorphism ofN into Kx. Suppose D c_ G
and { Ndl d D } is a transversalfor the conjugacy classes of GIN. Then the set

(l(a) + YCl(d)ld D, CI(d) isfinite and [d, G] N {1}}

is a basis for the center of KGa as a K-module.

Proof. First, we construct a transversal B of G modulo N such that

For every d D, let B(d)c_ Cl(d) be a transversal of N Cl(d) modulo N
such that d B(d). Then B U{ B(d) d D } is a transversal of G modulo
N. Indeed, let b B(d), b’ B(d’) and Nb Nb’. As B(d)

___
Cl(d),

B(d’) c_ Cl(d’), b is a conjugate of d and b’ is a conjugate of d’. Thus Nb is
a conjugate of Nd and Nb’ is a conjugate of Nd’ in G/N. Hence Nd is a
conjugate of Nd’ and so d-- d’. Thus b, b’ B(d) and Nb Nb’. By the
choice of B(d), b b’. Finally, let g G. Then Ng is a conjugate of Nd in
G/N for some d D. Hene ng Cl(d) for some n N. Hence, there is
b B(d) such that Nb Nng Ng.
The set B’ of all b B such that T(b) [b, G] N N {1 } is closed under

conjugates. Indeed, let b B, T(b) {1 } and b B(d) __. Cl(d). Thus
Cl(b) Cl(d). Hence T(d) {1 } by the preliminaries before Theorem 7. If
c Cl(b) Cl(d), there is b’ B(d) such that Nc Nb’; i.e., c nb’ for
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some n N. But b, c, b’ are all conjugates since they belong to Cl(d). Thus
n T(b’) T(d) (1}; i.e., n 1 and c b’ B(d). Thus B(d) Cl(d)

Cl(b). Thus the mapping b g-lbg is a permutation of B’ for every
gG.

Suppose b, c B, m, n N, g G and g-lbg mb, g-lcg nb. Then
b c. Indeed g-lm-lnbg m-lng-lbg m-lnmb =nb g-lcg. Thus
g-lm-lnbg g-lcg and so m-lnb c. Hence b c.
Now, we are ready to show that if A (KGa), then A can be uniquely

written as

I( a) + X { tbblb B’ }

with only finitely many b K different from 0. Indeed, by Theorem 1, A is
uniquely writable as l(a) + {tbblb B } with only finitely many b O. If
A (KGa), then A--g-lAg for every g G. Let c B and n T(c).
Then there is g G such that g-lcg nc. By the above observation,

A g-lAg l(a) + to(1 a(n))c + (Ubblb B, b 4: c}.

Since A (KGa), A g-lAg I(a). By Theorem 1, tc(1 a(n)) 0 in
K. As K is an integral domain, c 0 or a(n) 1. Since a is injective 0
or n 1. Thus every element of (KGa) can be uniquely written as

I(a) + (tbblb B’} I(a) + X(tbblb B,T(b) (1}}
with only finitely many b 4: O.

If A I(a) + X(tbblb B’} (KGa) and c, c’ B’ are conjugate then
t t,. Indeed, let g-lcg c’. We have

l(a) A g-lAg I(a) + (tc, t)c’ + ,(Sbbib B’, b 4: c’ ).

Again by Theorem 1, tc, to. It follows that if c B’ has an infinite
conjugacy class, then c --0 since only finitely many b 4= O. Thus every
element of (KGa) is uniquely writable as

I(a) + Z(tbblb B’,CI(b)is finite)

where tb 4:0 only for a finite number of b B’ and b c if b is a conjugate
of c. Conversely, every element of this form belongs to (KGa) since the
subset of B’ of all elements with finitely many conjugates is invariant under
conjugation. Thus (KGa) is spanned, as a K-module, by

{ I(a) + Cl(b)lb B, Cl(b) is finite and T(b) {1 } }.
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Actually, the center of KGa is spanned, as a K-module, by

{I(a) + ZCl(d)ld D, CI(d)is finite and T(d) {1}).

This is true since if b B, b B(d) and T(b) {1}, then B(d) Cl(d)
Cl(b). As Cl(d) and Cl(d’) are disjoint subsets of B if d d’ and T(d)
T(d’) { 1 }, the set

(I(a) + Y Cl(d)ld D, CI(d)is finite and T(d) (1}}

is K-linearly independent, and so, it is a basis for (KGa) as a K-module.

Remarks. From the proof of Theorem 7, it is clear that the conclusions of
the theorem remain valid if K is a commutative ring with 1 such that 1 a(n)
is not a zero divisor in K for every 1 n N. Also ’(K[G]), as a K-module,
is the direct sum of l(a)N ’(K[G]) and the K-submodule of ’(K[G])
spanned by ( E Cl(d)ld D, Cl(d) is finite and T(d) {1 } }. Thus

(KGa) (K[G])/(I(a) ’(K[GI)).

The K-submodule I(a) ’(K[G]) is spanned by

(Z Cl(d)ld D, Cl(d)is finite and T(d) , (1}}.

If g G, Cl(g) is finite and T(g) (1}, then T(g) is a finite subgroup of N
and so T(g) is isomorphic to a finite subgroup of Kx. If K is an integral
domain, T(g) is cyclic. Let T(g) {1, a,..., a r- }, r > 1. Then

(1 ec(a))(1 + a(a) +... +a(a)-) 1 a(a)= O.

Hence 1 + a(a) + + a(a)r- 0 in K, since a 1. But

Y. CI(g) (,T(g))(gi +

where (gl,-.., g, } is a transversal for Cl(g) modulo N. Hence

ZCl(g) (YT(g) Y.(a(a)ilO < < r))(gl +... +g,)

(,((ai- a(a’))lO _<i < r})(gl + +g,) I(a).

3. An FC-group is a group in which every element has only finitely many
conjugates. If G is a group, then &(G) is the set of all dements ofG with only
finitely many conjugates. The set A(G) is a characteristic subgroup of G and is
called the FC-center of G (cf. [11, page 115], [12, page 121], [13, page 424]). A
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group G will be called completely central if for any g A(G) ’(G), there is
h G such that I [g, h] (G). In other words, for any g A(G) ’(G),
there is 1 n (G)such that g is a conjugate of ng.

THEOREM 8. Suppose K is an integral domain, G is a group, N is a central
subgroup of G and a is an injective homomorphism ofN into Kx. Then the center

of KGa is isomorphic to K iffN ;(G) and G is a completely central group.

Proof. Suppose N ’(G) and G is a completely central group and D c_ G
satisfies the conditions of Theorem 7. If T(d) (G) c [d, G] {1} and
Cl(d) is finite, then d ’(G). But D N D ’(G) is a singleton set. We
can assume that D N N {1}. By Theorem 7, l(a) + 1 is a basis for (KGa)
as a K-module. Thus (KGa) =- K.

Conversely, let (KGa)= K. Since K is an integral domain, (KGa) is a
free K-module with basis

{ I(a) + , Cl(d)ld D, d A(G), T(d) (1} }.
Over non-trivial commutative tings with 1, the dimension of a free module is
invariant (cf. [3, page 273]). Thus

I(dld D A(G),T(d) {1}} 1.

Hence, if g G N and g A(G), T(g) {1}. Indeed, there is n N,
d D such that ng Cl(d). Thus T(ng) T(d) T(g). Since g N,
d N. Also, as g A(G) and Cl(ng) n Cl(g), d A(G). Hence T(d)
{1 }; otherwise, (KGa) would have a basis containing 2 elements: l(a) + 1
and l(a) + Y. Cl(d). Thus g ’(G); i.e., N ’(G), and also G is completely
central.

THeOrEM 9. Suppose K is a field, G is a group, N is a central subgroup of G
and a is an injective homomorphism of N into Kx. If [G:N] is finite and
[G N] 0 in K, then KGa is a central simple K-algebra iffN (G) and G is
a completely central group.

Proof By Theorem 6, KGa is semisimple. Then KGa is a central simple
K-algebra iff ’(KGa) =- K. Indeed, if KGa is not simple, then KGa A B,
A 0, B 0. Also (KGa) (A) ;(B) K. If KGa is simple, then
KGa = Mn(D) is the ring of n n-matrices over a division ring D and
(KGa) =- (D) --- K iff Mn(D) is a central simple K-algebra. Theorem 9 then
follows from Theorem 8.
For any positive integer n and any division ring D, the ring M,(D) of

all n n-matrices over D is additively spanned by the group of units of
Mn(D). For finite dimensional simple algebras we have a sort of converse to
Theorem 9.
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TH.OmM 10. Suppose K is a field and A is a central simple K-algebra. Let
G be a subgroup of the group of units of A spanning A as a K-space. If
[G: ’(G)] is finite and [G: ’(G)] 0 in K, then A is a direct sumand of KGa,
where a is the inclusion mapping of ;(G) into Kx. Furthermore, A =- KGa iff G
is completely central.

Proof As G spans A as a K-space, ’(G)__. ’(A)= K1. Thus a is an
injective homomorphism of ’(G) into Kx. By Theorem 6, KGa is semisimple.
Then KGa is the direct sum of its simple components. One of these compo-
nents is isomorphic to A. Indeed, the inclusion mapping of G into A extends
to a homomorphism of KGa onto A. Thus there is an ideal B of KGa such
that A = KGa/B. But KGa is semisimple. Hence there is an ideal A’ of KGa
such that KGa B A’. Hence A --- A’. Furthermore KGa -- A iff KGa is a
central simple K-algebra. By Theorem 9, this is the case precisely when G is
completely central.

4. If G is a finite group, its center is isomorphic to a subgroup of Kx for
some integral domain K ill" the center is cyclic. From Theorems 8 and 9, the
class of completely central groups is interesting. If G is the group of quatem-
ions {d:l, +i, +j, +k} and N={1,-1} =’(G) and K is any field of
characteristic not 2 and a(1)= 1, a(-1)= -1 is the injective homomor-
phism of N into Kx, then KGa is a central simple K-algebra; KGa is a
division ring iff K is formally real. Over fields K that are not formally real,
KGa = M2(K). The group of quatemions is a completely central group. The
dihedral group D of order 8 is also completely central. If ’(D) {1, a } and
K is a field of characteristic not 2 and a(1) 1, a(a) -1 is the injective
homomorphism of ’(D) into Kx, then KDa =- M2(K).
That all nonabelian groups of order 8 are completely central may be derived

from Theorem 10, directly, or from the following:

THEOREM 11.
group.

If G is a nilpotent class 2-group, then G is a completely central

Proof. Let g G- ’(G). Then there is h G such that [g, h] =/= 1. But
G/;(G) is abelian. Hence [g, hi (G) and so G is completely central.

If G is a group such that A(G) ’(G), then G is completely central. Thus
any torsion free nilpotent group is completely central since for torsion free
nilpotent groups, the center and the FC-center coincide (cf. [12, p. 130]). It is
not true that all nilpotent groups are completely central. The dihedral group of
order 16 is an example of a nilpotent class 3-group that is not completely
central. Indeed, this group can be presented as

D=({a,b};as=b2= 1, ba=a-lb).
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Since [a, b] a-tbab a-2b2 a-2 a6 and [a, D] (1, a 6} and a 6 is
not a central element in D, the group D is not completely central. The
dihedral group of order 16 is the nilpotent group of least order that is not
completely central.

Clearly a finite group with a trivial center is not completely central. Thus all
symmetric groups Sn, n > 3 and all alternating groups An, n >_ 4 are not
completely central groups. However, the following proposition will show that
many groups are completely central.

PROPOSITION 12. Let Gi, I be a family of groups and let H be a
subgroup of G for every I. Suppose [G H] > I for at least 3 different
indices or for some 4 j, [G H] > 1 and [Gj" H] > 2. Then the FC-center of
the free product of G, I with the amalgamated subgroup H is contained in H.

Proof Let 1 A be a right transversal of G,. modulo H, I. Let G be
the free product of G, I, with the amalgamated subgroup H. Then every
dement in G has a unique normal form (cf. [13, page 179]):
IfgG,gH, thenl(g)=0. IfgH, theng--haxa...a,,lag

A, I < k < n, ik ik+ x,1 < k < n, h H, l(g)= n.
If in, let c Aj, c 4: 1, j 4: il. Then

(cal)-mg(cal) m a{lc-1.., a{lc-lhal.., anCal ca

has length 4m + n. Thus Cl(g) is infinite.
Let i n. If there are three distinct groups G such that [Gi" H] > 1, let

c Aj, c 1, j x, j n. Again, (cal)-mg(cal)m has length 4m + n and
Cl(g) is infinite. If ix * in and one of Aix A has more than 2 elements say

IAI > 2, let c A, c, 1, c a n. Then c- q H, anc- q H and

(c-la)-mg(c-Xax)m= a{Xc a{Xcha (anc-)axc-1... axc-a
has length 4m + n 1 and Cl(g) is infinite. Thus A(G) H.
The restrictions of Proposition 12 are necessary. The free product of (1, a }

and (1, b} (two cyclic groups of order 2) has a trivial center. But the
FC-center is infinite cyclic; it is ((ab)klk Z}. Also, Cl((ab))
((ab)k,(ba)k}.
From Proposition 12 it follows that all free groups are completely central. It

also follows that the class of completely central groups is not dosed under
subgroups and is not dosed under homomorphic images. Under the conditions
of Proposition 12, if H is central in every G, I, then H ’(G) A(G)
and the free product of G, I with amalgamated central subgroup H is
completely central.



GROUPS AND CENTRAL ALGEBRAS

PROPOSITION 13. Let G, I, be a family of groups and let G Cr( Gi[i
I } be the Cartesian product of Gi, I, and let H Dr(Gili I) be the

direct sum of Gi, I. Then (G) is the Cartesian product of (Gi), I, and
A(G)/(G) is the direct sum of A(Gi)/(Gi), I, and A(H) is the direct sum
of A(Gi), I.

Proof CI((..., gi,-.-)) is the Cartesian product of Cl(gi), I (in G).
This is finite iff Cl(g) is finite for every I and only a finite number of
them is different from { g }; i.e., CI((..., gi,... )) is finite iff g ’(G) for all
but a finite number of I and gi A(G) for all I.
Thus the class of completely central groups is closed under Cartesian

products and direct sums. In fact, Cr(GIi I} is completely central iff
Dr{GIi I) is completely central iff every G, I, is completely central.
Thus the class of completely central groups is dosed under direct summands.

5. Let Gi, I, be a family of groups and let N be a central subgroup of
Gi for every I. The direct sum of G, I, with the amalgamated
subgroup N will be denoted by v { Gli I }. It is the quotient of the free
product of Gi, 1, with the amalgamated subgroup N by the normal
subgroup generated by the commutators [Gi, Gj], i, j I, j. If N ’(G)
for every I, Xv { GiI I } is called the central product of G, I (cf.
[13, page 141]).
We will need the following proposition whose proof is routine:

PROPOSITION 14. Let G, I, be a family of groups and let N be a central
subgroup of G for every I. Then

’( Xc(G, Ii I)) Xlv((Gi)li I)

and

A(XN(GiIi I}) )<N(A(Gi)Ii I}.

Furthermore, )<iv { Gili I} is completely central iff G is completely centralfor
every 1.

THEOREM 15. Suppose K is a commutative ring with 1, G, I, is a family
of groups and N is a central subgroup of G for every I. If a is a
homomorphism ofN into Kx, then

K( )<s(G,[i I})a -= (R)K(KGiali I}.
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Proof. Let 1 B be a transversal of G modulo N, L Then every
dement of (R)r { KGiali 1} is a K-linear combination of

(R) { Bill I ) { (R) ( bill I )lb 1 for only a finite number of I }

(cf. [4, page 56], [10, page 143]). The mapping (R) { bli 1} --, II { bli I)
extends to a K-module homomorphism of

(R)r ( KGali I }

onto

K( v ( Gili I ))a.

This mapping is also injective and preserves multiplication.

COROLLARY 16. Suppose K & a fieM, Gx, G2 are groups and N & a central
subgroup of G1 and of G2. If [Gi: N] is finite, [Gi: N 0 in K, i= 1,2 and
tx is an injectioe homomorphism of N into Kx, then K(GI )<v GE)t is a central
simple K-algebra iff KGia is a central simple K-algebra, 1, 2.

Proof. By Theorem 9, KGa is central simple iff N ’(G) and G is
completely central. The corollary then follows from Proposition 14 and
Theorem 15. It also follows from Theorem 15 and Azumaya and Nakayama’s
Theorem (el. [4, page 363], [10, page 219]).
The following theorem connects the centrality of KGa where a is a

homomorphism not necessarily injective with complete centrality of a quotient
of G.

TIORM 17. Let K be an integral domain and let G be a group. Then the
following conditions are equioalent:

(i) There is a homomorphism a of (G) into K such that (KGa) = K;
(ii) There is a central subgroup M of G such that (G/M)= (G)/M is

embeddable into Kx and G/M is completely central.

Proof. Suppose (i) holds and M is the kernel of a. Let a’ denote the
natural injective homomorphism of (G)/M into Kx induced by a. Then, by
Proposition 3, KGa =- K(G/M)a’. By Theorem 8, (G)/M (G/M) and
G/M is completely central.

Conversely, if 3’ is an embedding of (G)/M (G/M) into Kx, let a be
the composition of the natural homomorphism of ’(G) onto (G)/M and 3".
As (G)/M (G/M), by Theorem 8, K(G/M)3’ is a central K-algebra if
G/M is completely central. But, by Proposition 3 KGa =- K(G/M)3’. Hence
(KGa) =- K.
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6. We will discuss connections between completely central groups and
groups of central type. A finite group G is called of central type if it has an
irreducible complex representation of degree [G: ’(G)]t/2 (of. [6], [8]). If M is
a central subgroup of a group G, G will be called M-completely central if for
every g A(G) ’(G), there is h G such that [g, h] ’(G) M. Thus
complete centrality coincides with (1 }-complete centrality. Also, if L, M are
central subgroups of G and G is M-completely central and L c_. M, then G is
L-completely central.
The next theorem describes the relation between M-complete centrality and

complete centrality for FC-groups.

THEOREM 18. Let M be a central subgroup of an FC-group G. Then G is
M-completely central iff (G)/M (G/M) and G/M is completely central.

Proof Since G is an FC-group, G/M is also an FC-group. Let G be
M-completely central and g A(G) ’(G) G ’(G). Then there is h G
such that [g, h] ’(G) M. Hence Mg q (G/M); i.e., (G/M)

_
(G)/M,

and [Mg, Mh] (G/M) (M); i.e., G/M is completely central.
Conversely, let G/M be completely central and (G)/M (G/M). If

g G ’(G), then Mg
(G/M). Hence, there is h G such that [Mg, Mh] (G/M) (M)

(G)/M (M); i.e., [g, h] ’(G) M and G is M-completely central.
If G is a group, by GO we denote the opposite group; i.e., the group with the

same set of dements as G and x o y yx. The next theorem characterizes
groups of central type in the class of finite completely central groups.

THEOREM 19. Let G be a finite group. Then the following conditions on G are
equivalent:

(i) G is of central type.
(ii) There is a central subgroup M of G such that G is M-completely central

and (G)/M is cyclic.
(iii) For some integral domain K, there is a homomorphism a of (G) into

KX such that (KGa) =- K.
(iv) If K is a field such that GI :k 0 in K, then there is a finite field

extension L of K and a homomorphism a of (G) into Lx such that LGa is a
central simple L-algebra.

(v) IfK is a field such that GI 0 in K and there is a homomorphism a of
(G) into Kx, then K(G )< G)a =- M(K), where n [G" (G)].

Proof Let G be a group of central type and let T:G ---> Endc(V) be its
irreducible complex representation where V is a complex vector space of
dimension [G:(G)]x/2. Since T is an irreducible representation, T((G))

_
’(Endc(V)) --- C. Thus every z ’(G) acts as a scalar multiplication in V.
Thus T(z)o a(z)v for all v V, z ’(G), where a(z) C. Thus a is a
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homomorphism of ’(G) into C. Since T(z a(z)l)v 0 for all z ’(G),
v V, T can be viewed as a representation of C[G]/I(a) CGa. Thus T can
be considered as a homomorphism of CGa onto Endc(V). Since CGa is a
[G :’(G)] dimensional C-algebra and Endc(V) is of dimension [G: ’(G)],
CGa =- Endc(V); i.e., CGa is a central simple C-algebra. Thus (i) implies
(iii).

Suppose (iii) holds. Then, by Theorem 17, there is a central subgroup M of
G such that (G)/M (G/M) is embeddable into Kx and G/M is com-
pletely central. Since (G)/M is finite, (G)/M is cyclic. Thus (iii) implies
(ii).

Suppose (ii) holds and K is a field such that IGI 0 in K. Let (G)/M be
of order n. Then n 4:0 in K. Let L be the splitting extension of K for x n 1.
Then L has a subgroup of order n. Let a be the composition of the natural
mapping ’(G) (G)/M and an isomorphism of (G)/M with the cyclic
subgroup of Lx of order n. By Proposition 3 and Theorem 9, LGa is a central
simple L-algebra. Thus (ii) implies (iv).

Suppose (iv) holds. Then there is a homomorphism a of (G) into C such
that CGa is a central simple C-algebra since C is algebraically closed. Again,
since C is algebraically dosed, CGa --- EndcV where V is a complex vector
space of dimension equal to the square root of the dimension of CGa; i.e., V
is of dimension [G:(G)]1/2. Thus, G has a complex irreducible representa-
tion of degree [G: ’(G)]1/2; i.e., G is of central type. Thus (iv) implies (i).
We will be through if we show that (v) is equivalent to (ii). Suppose (v)

holds. Then K(G () G)a is a central simple K-algebra. By Proposition 3
and Theorem 9, (G X() G)/Ker a is completely central and

((G )<) G)/Kera) (G )<) G)/Kera (G)/Kera.

By Proposition 14, G/Ker a is completely central. Since

(G)/Kera ’((G X()G)/Kera)> (G/Kera),

G is (Ker c0-completely central. Also, since ’(G)/Ker a is isomorphic to a
subgroup of K, ’(G)/Ker a is cyclic. Thus (v) implies (ii).

Suppose (ii) holds, K is a field, GI 4:0 in K and a is a homomorphism of
’(G) into K. Then KGa is a central simple K-algebra by Proposition 3 and
Theorem 9. By Theorem 15,

GO ct.

Since KGa is the opposite of KGa, a central simple K-algebra, this implies
that K(G X(v) G)a --- KGa @r KGa --- Mn(K), the algebra of n n-
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matrices over K where n is the dimension of KGa over K [G: ’(G)]. Thus
(ii) implies (v).

There are completely central finite groups which are not of central type. The
nilpotent class 2-group G whose presentation in the variety of nilpotent class
2-groups is

G ( { a, b, c}; a E bE cE [a, b] E [b, c] E [c, a] 1}

is completely central by Theorem 11. G is not of central type. Indeed, G is of
order 64 and G/(G) = ZE x ZE x ZE. If G were of central type, then by
Lemma 2 of [6, page 150], G/(G) =- H H for some abelian group H since
G/(G) is abelian. However, Z2 X Z2 X Z2 H X H for any abelian
group H.

Every group of central type is solvable [8]. This can be generalized to groups
whose centers are of finite index.

THEOREM 20. Let G be a group such that [G: ’(G)] is finite. If there is a
central subgroup M of G such that G is M-completely central and (G)/M is
embeddable into C x, then G is soloable.

Proof. Let a be the composition of the natural homomorphism ’(G)
(G)/M and an embedding of (G)/M into C x. As G is an FC-group, by
Theorem 18, (G)/M (G/M) and G/M is completely central. Thus, CGa
is a central simple C-algebra by Proposition 3 and Theorem 9. By Theorem 1,
CGot -- Ct[G/(G)]. By Theorem 1 of [6, page 146], there is a group H of
central type such that H/(H) -- G/(G). Thus G/(G) is solvable, and so G
is solvable.
The conclusion of Theorem 20 remains valid if the field of complex numbers

is replaced by any field of characteristic 0.
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