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Introduction

Let E be an oriented 2n-dimensional vector space over # with inner
product {( , ). The space of almost complex structures on E compatible
with the inner product and orientation is isomorphic to the rank one symmet-
ric space SO(2n)/U(n). On an oriented 2n-dimensional Riemannian manifold
M we thus obtain a bundle # whose fiber over each point x of M consists of
all almost complex structures on the tangent space T, M compatible with the
metric and orientation. The bundle # is equipped with a natural almost
complex structure defined as follows. The connection on £ induced by the
Riemannian connection on M defines a splitting of the tangent space at each
point (x, J) €_¢ into a direct sum of the vertical subspace and the horizontal
subspace. Along the vertical subspace the almost complex structure is defined
by the standard invariant complex structure on SO(2n)/U(n). On the hori-
zontal subspace (= T,M) at T, M the almost complex structure is defined
simply as J. We are interested in the following two problems concerning 2.

Problem 1. Find necessary and sufficient conditions (on the curvature of
M) for the integrability of the canonical almost complex structure on 7.

Problem I1. 1f the canonical almost complex structure is not integrable on
all of #, find necessary and sufficient conditions for the integrability of some
(if any) natural almost complex submanifolds of #.

The four dimension case (n = 2) has been studied extensively. In this case
the almost complex structures are parametrized by the positive (resp. negative)
spinors. It was shown (cf. Atiyah-Hitchen-Singer [2]) that the canonical almost
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complex structure on P(V,) (resp. #(V_)) the projective positive (resp.
negative) spinor bundle is integrable if and only if W_ (resp. W_) the
self-dual (resp. anti-self-dual) component of the Weyl tensor vanishes. Classifi-
cations of those twistor spaces which are compact Kéhler are also known (this
happens iff M is compact Einstein with positive scalar curvature and W_ = 0;
cf. Friedrich-Kurke [10], Friedrich [9] and Hitchen [13]). For further informa-
tion on twistors, its relationship with the Yang-Mills equation, stable vector
bundles etc., we refer the reader to A-H-S [2], Atiyah [1], Douady-Verdier [8],
Hartshorne [11], Trautmann [18], Donaldsons [22], [23], Taubes [25], [26] and
Kobayashi [24].

In this paper we study the six dimensional case (n = 3). This is the first case
where Problem II is meaningful. The six dimensional case is still somewhat
special for the following reasons. First of all the Lie algebras so(6) and su(4)
are isomorphic via the positive (and negative) spinor representation. Secondly,
it is still possible to parametrize the almost complex structures by (V) (or
P(V_)). (This is not true if n > 4.) Our first result formally generalize the
integrability theorem of A-H-S for four manifolds. It is shown that (V)
(resp. #(V_)) is integrable if and only if W, (resp. W_) vanishes where W,
(resp. W_) is the positive (resp. negative) spinor representation of the Weyl
tensor. Notice that in the four dimensional case the self-dual (resp. anti-self-
dual) component of W is the same as the positive (resp. negative) representa-
tion of W. However in the six dimensional case W, =0if W_=0iff W =0
and the two spaces #(V,) and P (V_) are essentially the same space. We give
the proof for both as it requires essentially no extra effort and more im-
portantly the proof is designed so that it gives at the same time A-H-S’s
theorem for four manifolds.

Our second main result provides answers to Problem II assuming that M is
a complex 3-dimensional K#hler manifold. There is a natural almost complex
submanifold #(F,) c #(V,) which is integrable if and only if M is Kahler
Einstein with vanishing Bochner tensor (cf. Theorem 9, §4). The fiber #(F ),
over a point x € M is isomorphic to CP? (note that Z(V ), = SO(6)/U(3)
= CP?).

The paper is organized as follows. In §1 we describe explicitly the parame-
trization of almost complex structures by spinors (unlike the 4-dimensional
case, this now requires proof). This is used in §2 to construct local basis of
(1, 0)-forms on #(V ,). By differentiating this basis we show that the Frobenius
integrability condition is equivalent to the condition that the curvature R , of
the spinor bundle be of a very special form. Section 3 begins with a review of
the decomposition of a Riemannian curvature into invariant (under the action
of the orthogonal group) components one of which is. the Weyl tensor (cf.
Kulkarni [14], Polombo [15]). From this we obtain a decomposition of R .
which is readily seen to be of the special form of §2 iff the component W,
corresponding to the Weyl tensor vanishes. In §4 we decompose (locally) V',
into a direct sum of subspaces F, @ G ,. The crucial observation here is that
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the connection (hence also the curvature) of V', splits according to the
splitting F, ® G, provided that M is Kihler. Upon examination of the
integrability condition of #(F ), it is discovered that the F, components of
R, must assume a special form. The Kihlerian curvature admits also a
decomposition into invariant (under the action of the unitary group) compo-
nents, one of which is the Bochner tensor (cf. Sitaramaya [17],
Tricerri-Vanhecke [19]). We get from this a decomposition of the F, compo-
nent of R, and that it assumes the special form mentioned above iff the
components corresponding to the Bochner tensor vanishes. In §5 we give some
examples, in particular it is pointed out that the twistor space over S® is the
complex 6-dimensional hyperquadric Q° and the submanifold #(F_) of the
twistor Z(V'_) over CP? is the complex homogeneous manifold U(4)/U(1) X
UQ@) x U2).

The author would like to express his gratitude to Professor Sakane for many
valuable discussions during the preparation of this article, and to Professor Al

Vitter for showing me his proof (cf. [20]) of the theorem of A-H-S for four
manifolds.

1. Almost complex structures and spinors

Let E be a 2n-dimensional real vector space with inner product ( , ).

Let ey,..., e,, be an oriented orthonormal basis for E. The complexification
E ® ¥ splits into a direct sum E’ ® E” where E’ (resp. E”’) is spanned by
= (el - iez)/z eoe = (ezn__ - iezn)/2 (l'esp. El,...,gn).

Denote by Cz,, the complex Clifford algebra generated by ey,..., e,, with
respect to the inner product —( , ). Let C;, (resp. C;,) be the complex
vector subspace generated by elements of the form e,,...,e; with p even
(resp. odd). The subalgebra of C2,, generated by E’ is called the spinor algebra
and is denoted by V. Elements of the complex vector subspace VE=Vn C2,,
are called the positive (resp. negative) spinors. Note that V' is isomorphic to
the exterior algebra AE’, hence dimcV = 2" and

@D ANE, V"= D AE’
k even k odd

so that dim V™" = dimV ™ = 2"~

It is well known that Cz,, is 1somorph1¢ to the matrix algebra End cV. The
isomorphism p is defined as follows. For ¢ € E’ ¢ C,,,, multiplication byéon
the left, v — §v, is an endormorphism of V. On the other hand, for (e E”,
interior product by £, v = «(£)v, also defines an endormorphism of V. Now
every element x € E is of the form £ + £ or i(§ — §) with £ € E’. Thus p is
defined on E and satisfies p(x)? = —(x, x)1. This is precisely the condition
that p can be extended uniquely to all of C,, (cf. Dieudonne [7], p. 148).
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If we fix 0 + £ € V. then the map x — p(x) - § is an isomorphism over R
of E onto a subspace of ¥_. From now on we will write x - § for p(x) - §.
Similarly an element § of V_ defines an isomorphism (over R) of E onto a
subspace of V. For n = 2, dimgE = dimglV, = dimgl/ _ = 4, so that each §
of V, (resp. V_) gives rise to an isomorphism between E and V' _ (resp. V)
and we endow E with the complex structure of V_ (resp. V). Furthermore
any two elements of V' give rise to the same complex structure if and only if

they differ by a non-zero multiple A € C*.
We now examine the case n = 3 in detail. For n = 3,
E = (e, e;,e;5,€4,€5,€)p = R®
V= (¢, 45, 68,1 = C*
V_= <$1a 52, 53, §1£2£3>c =C*

Whel'e ga = (eza_l - ieza)/2.
Here is the multiplication table for V' :

1 &€, 465 §:6
€1 3 & §16:¢5 -§;
€ i§ —ié; i£,6,8, ié;
€3 £ -§ §& 6,65
€4 i§, i§ —ié; i£,§,¢;
€s £ £:62¢, ) 3
€s i i£1§,¢5 i§, —if;

Remark. The upper left corner (double-lined) of the above table is the
multiplication table for ¥ for the case n = 2.

For any £ € V, with § = a + b§,§, + c§,&, + dé3¢,, a, b, ¢, d€ C, we
obtain from the table above,

e, - §=af, + b&, — dé; + c§,6,¢,,

e, § =ia§; — ib§, + idk; + ic§§,8;5,

e;- &= —bf, + af, + c&; + d§€,4,,

e, &= 1ib§ + ia, — ick,y + id§,§,¢,,

es- §=d§ — c&, + aé; + b§ 6,6,

eg - &= —idé, + ick, + iak,y + ibé,€,¢,.
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With respect to the basis e,, e,, e;, e,, es, es for E and §,, i§,, §,, i§,, &,
i§;, §,6,6; and i§,£,§; for V_, the matrix »; representing the real isomor-
phism of E into V_ defined by £ € V', is given by

b, b, a, -—a, -—c¢ —¢

) = b, -b a a; —6 G
¢ -d, -—d, 51 ¢ a —a
—-d, d € Tq a, a

G TC d, —d, by -b,
¢ 51 d, d b, b,

where a,, a, are the real and imaginary parts of a etc.

It can be verified directly that the image »,(E) is a complex vector subspace
of V_. The corresponding complex structure J; on E is defined so that the
following diagram commutes:

-

I[_
vV

&~
 —Mx

-
3

Observe that ‘v, o v, = (|a|? + |b|> + |c|* + |d|?) - Id g (this can be verified
directly from the matrix representation of »;). Thus J, =’y ciow. The
complex structure i on V_ relative to the basis §,, i§,, §,, i&,, &, i&5, &4, i€,
is given by the matrix

0 -1 i
1 0
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By a direct calculation we have the following matrix representation of J;:

0 A12 A13 A14 Als A16
A21 0 A23 A 24 A25 A26
A3l A32 0 A 34 A35 A36
A41 A42 A43 0 A45 A46
A5y A As; Agy| 0 Ay
A61 A62 A63 A64 A65 0

(lal* + 1B)* + |c|* + |d|?)

J$=

The matrix above is skew symmetric and the entries are given by

A = —lal* + |b|* = |c|* + |d|?,

Ayy = 2[(arb, — a3b,) — (c1d, — c,dy)],
Ay = —2[(a1b, + ayby) + (c1dy + c,d,)],
Ais = —2[(ayd, — ayd,) = (bic, — byey)],
Ay =2[(a,d; + ayd;) — (bie; + byey)],
Ay = —2[(ab; + a,b,) = (c1dy + c,d,)],
Ay = —2[(a1b, — ayby) + (cyd, — ¢,dy)],
Ays = 2[(ayd; + ayd,) + (byey + byey)],
Az = 2[(a1d; = a,d1) + (bye; — byey)],
—lal*+ |b]? + |c|* — |d]?,

Ays = 2[(byd; = bydy) + (aye; = cpa1)],
Aze = _2[(131‘11 + byd,) + (alcl + 0262)]’
Ay = 2[(b1d1 + byd,) = (aye, + azcz)],
A4 =2[(byd, — bydy) — (ayc, — ayey)],
A= —lal* = |BI* + |¢|* + |d|%.

AN
by
]

Remark. (1) By setting ¢ = d = 0 in the upper left hand corner (double-
lined) above we obtain the almost complex structure J; forn =2, § € V,.

(2) If M is a complex manifold with complex structure J and basis
e, e, =Je,e;,e,=Jes, e5,e=Jes;then J=J,withé=1€V,  ie,a=
1, b=c=d=0.

Observe that £ ¢’ in V', defines the same almost complex structure iff
§ = A\¢’ with A € C*. Furthermore J; € SO(6), that is J; is compatible with



280 PIT-MANN WONG

the metric ( , ) and the orientation on E. The space of almost complex
structures on E compatible with the metric and orientation is SO(6)/U(3) =
CP3. Since dimcV, = 4 we see that #(V,) parametrizes all such complex
structures.

The case of V_ is similar. The multiplication table for V'_ is given below:

31 £, §; §:6:65
€ 1 §.€, ) ¢,
e, —i i£,¢, i§,€; —i§,€;
€; g3t 1 §265 &€
€4 -6, =i i§,€3 i&,€5
€s —§ié3 —§2§5 1 §.6,
s —i&iés —i6§; —i — i€,

Remark. The upper left corner is the multiplication table for n = 2.
For £ = a§, + b§, + c&; + d§§,6, € V_ we have

e, - §=a+ b§§, + ckié; + dEyEs,
e, &= —ia+ ib§ &, + ick &, — idE,é,,
ey §=b— afi§, + c§,§; — d§i§;,
e, &= —ib —ia§§, + ick,&, + idé s,
es- £ =c+d§i§, — b6 — adiéy,
eg &= —ic— id§,§, — ib&,&, — iak,é,.
With respect to the basis ey, e,, e, e,, e, e for E and 1, i, §,&,, i§,§,,

§,63, 16,565, §3&,, i£,3€, for V., the matrix v, representing the real isomor-
phism of E into V', defined by § € V_ is given by

a a, b, b, 41 CJ
a, —a b, -b ¢ —G
by -b, -a a, d d,

V€=
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and J; =‘w 0 io; is given by

0 A12 A13 A14 AlS A16

Je =
¢ (1a) + 1b]2 + |e|? + |d|?)°

The matrix is skew symmetric with
Ay = |a)? = [B]* = [e]? + |dP?,
Ayy = =2[(a;5, — a3b,) = (c1d, — c2dy)],
Ay = +2[(a1by + ayb,) — (cydy + c,d))],
A5 = —2[(a1c, — ay0,) + (b1d, = bydy)],
A =2[(ayc;, + ayc,) + (bydy + byd,)],
Ay = —2[(a.b; + a,b,) + (c1dy + ¢,d,)],
Ay = —2[(a1b, — ayby) + (c1d, — cpdy)],
Ay = —2[(aye; + ayc,) — (byd, + byd,)],
Ay = —2[(a1c2 - azcl) - (b1d2 - b2d1)],
—lal> + [b* = |c|* + |dI?,
Ass = 2[(a,d, — ayd,) = (b1e; = byey)],
Az = —2[(a1d, + a,d;) = (bic, + byey)],
Ay = —2[(ayd; + ayd;) + (bycy + byc,y)],
= —2[(a,d; — ady) + (bie, — byey)],
= lal* = [b? + |c|* + |4,

N
b
]

L
&
]

N
&
I

Remark. (1) The upper left-hand corner with ¢ = d =0 is the almost
complex structure J; for § = a§; + b{, whenn=2,¢(€V_.

(2) If M is a complex manifold with complex structure and basis e,, e, =
Je,, e;, e, =Je,, es and eg = Jes, then J; with § = §,§,6, € V_ (ie, with
a=>b=c=0, d=1)is the conjugate of J. That is Jie,,_; = —e,,.

In §2 we will have to compute the curvature of the spinor bundles, for that
purpose we need the explicit isomorphism between the Lie algebras so(6) and
su(4). Given an element (ag) € so(6) the corresponding element in su(4)
obtained via the positive spinor representation is given in Fig. A whereas the
one obtained via the negative spinor representation is given in Fig. B.
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Aou +U0 4 ~av~l
A D+ vQVN + Ave — mevl

(0 1oy + (0= 10) | (2o 01 - (0 0)-
(o-tri) | (Go-to)=Goso)-

(v + )1+ (3v - §o)
Ane - ouvu -(3v+ Mcv -

(fr+9p)1 - (30 - %)
Awm + maf + Awu - mavl

Aeu -t — uavw

Ana - .SY -~ Amu + mev

Awaloufl Awn+wnv Aoa+mul-nv‘~
(o 00- (o v to) | (- o) (20 0)

= JY — Amc + muvl

(2010~ )i

(jp+2)1+ (3» - i)
(52 +32)1+ (3v - $2)

(50— )1+ (o4 )~
o+ o)1+ (o~ 10)-

(50— 0y - (o4 ) | (o-t0)s (04 %0)
(=)= | Go-)- (o bo)-
Amalonle Awn+mav Amalma+mav.~|

A D+ onY + Aen . muv — Amn + “avN + Qa - mnvl

(b + %)+ (b2 - 1)
(p+to+%)

q oI

[5)

-

Vv oi{

[5)
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Remark. Setting a; = 0 in the upper left-hand corner of the above matrices
we obtain the corresponding + spinor representations for so(4) = su(2) &
su(2).

Since these formulas will be used quite a few times in later sections, we
digress a little here to explain how these formulas were derived. The Lie
algebra so(2n) is spanned by {e, A eg:1 < a < B < 2n} where e, A ¢g is
identified with the matrix E,; whose entries are all zero except the (8, a) and
(a, B) entries which are +1 and —1 respectively. The exterior products
e, A ep is identified with e, - eg in the Clifford algebra whose elements are
identified with endormorphisms of spinors. In fact e,ep takes +spinors to
+ spinors. For instance, take the element

€ €= (fl + 51) : i(*fl - gl) = i(f1 + 5.1)(& = 51);
then

e, e, 1=i(¢ +£)¢ (because (£,)1 = 0)
=i (because ¢, - ¢, = 0),
e;- ey §§,= i(§1 + 5_1)(‘52) = —i§§,,
ey ey €= i(‘fl + gl)(£1$2£3) = i§,§s,
er- ey b3k = i(& + £)(&) = —iksty.

Thus with respect to the basis 1, £,£,, §,£;, £;¢,, the endomorphism on V',
corresponding to e, - e, is given by

i

—i

The corresponding endomorphisms are listed in Figs. 1-3.

2. Integrability of the spinor bundles

Let M be an oriented Riemannian manifold of dimension 6. At each point
x €M, E,=T.M is an even dimensional oriented real vector space with
inner product given by the Riemannian metric. As explained in §1, there
associates to E, the spaces of positive and negative spinors V,*. In general
there is no consistent way of defining V' * globally over M, unless M is spin
(i.e., the second Whitney class w,(M) = 0). However #(V *) the projective
spinor bundles are globally defined and we denote the projection by
7 : P(V ) > M. There is a canonical almost complex structure on #(V %),
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End(V,,) End(V_)
i [ —i
e e _! ' ' l
[ -1 [ 1
e *ée3 1 1 -1 I
L -1 L 1
[ [ —i
¢ - ey i —i
i i
L i L i
[ 1 [ 1
o - e -1 1
1 -1
L -1 L -1
[ —i [ -
e - e i d - —!
—i
| R

F1G6.1

defined as follows. The Riemannian connection on TM induces a connection
on #(V *) via the spinor representations. At a point £ € #(V *), the tangent
space of #(V %) at ¢ decomposes into the direct sum of the vertical space and
horizontal space. The vertical subspace is tangent to the fiber = #(V *) = CP3
with canonical complex structure whereas the horizontal subspace H; is
isomorphic to TM, where x = 7(§), and has a natural complex structure J;
defined by the spinor £ (cf. §1).

The problem we are interested in is to derive a necessarily and sufficient
condition for the integrability of the canonical almost complex structure
defined above. Later we will also study the integrability of certain submani-
folds of 2#(V ).

Since the integrability is a local problem, we will work directly with V' %,
Now locally,

(2.1) V_={z'% + 2%, + 2%, + 2%,£,¢,: 2 € €)

where £, = (e,,_, — ie,,)/2 and ey, ..., 4 is an oriented orthonormal frame
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End(V,) End(V_)

[ [
ey e i ‘ i

—-i
- —i - i
[ 1
-1

€ €, 1

L -1

B —i ~
[N 7 - —i - —i

—i i

L —j L —q

_ 1 _
e, e . -1 . -1

L1 L 1

i [ i
es - eq —i ‘ —i

-

L i L —i

€3 €

F1G.2

285

for TM with dual coframes 8%, ..., 6. To check integrability we first describe
a basis of (1,0) forms on ¥ _ and by explicit calculation of their derivatives we
will show that the Frobenius conditions reduce to conditions on the curvature

of the spinor bundle.

The following is a basis of vertical (1,0)-forms:

(22)

4
vzt =:dz*+ ), zP(w ), a=1,2,3,4,
B=1

where (w_)g are the connection 1-forms of the negative spinor bundle induced
by the Riemannian connection on TM via the negative spinor representation.
Notice that the horizontal tangent space is given by {vVz* =0, a = 1,2, 3,4}
and along the fibers vz* = dz°.
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End(V,) End(V_)

€3 €

€4 €5

€4 €

€s * €

F16.3

There are many ways to choose the horizontal (1,0)-forms, we make the
following seemingly complicated choice but it turns out to be easier to
differentiate than the more obvious choices.

Let 2! = a, + ia,, 2> = b, + iby, 23 = ¢| + icy, z* = d, + id, where a,,
b,, c,, d, are real and let
v, = a,e; + a,e, + bies + bye, + cres + cyeq,
Uy = blel - b2€2 — a,é3 + a,é, + d1e5 + d236,
Uy = Ci8; — C,e, — diey — dyey — ajes + aeg,
04 = dlel + d2e2 + c1e3 - 6284 - b1e5 + b2e6-
Recall that the complex structure J; defined by
§=12% + 2%, + 2%, + 2% 68, €V

is given explicitly in §1.
By a straightforward calculation,
Jevl = a,ey; — a,e,y + b283 - b1e4 + Cy€5 — €166,
Jiv, = bye; + bie, — aje; — aje, + dyes — dieg,
J€U3 = 0281 + clez - d283 + dle4 - azes - ales,

J€U4 = dzel - dlez + Cy€5 + C1€4 — b285 - b1e6,
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The vector fields (v, — Jv,)/2, a = 1,2,3,4 are of type (1,0). Their dual
are then forms of type (1,0). Explicitly they are given by
7 = a,0' + a,0% + b0 + b,0* + c,0° + c,0°
+i(a201 - alaz + b203 - b104 + 0205 - C106)
= (a1 + iaz)(al - i02) + (bl + lb2)(03 - i04) + (Cl + i62)(05 - i06)
= 710! + 2202 + 7°0°
and similarly,
n? = —z'0% + 720! + z*@3
7= —2'0° + 30! — 2482
7= —2%0% + 7202 + 740!
Remark. For n = 2, we need only two horizontal forms, 7, and 7, given

as above with z; =z, = 0.
It is convenient to express these forms as a matrix:

7 o! §2| e3 0 z1
2 2 1 a3
1 -0 0] o C] 2
(23) 3|7 3 1 02 23
LJ -0 0|6 -6z
7 0 -e°|le* e

where ©% = 221 + j§2% a = 1,2, 3. The horizontal forms 7', %%, #°, n* are
not linearly independent but at any point, three of them form a basis for
(1,0)-forms on the horizontal tangent space. (For example, if z* = 0 then 7!,
7% and %’ form a basis whereas if z! = 0 then 7%, n° and 5* form a basis.) We
now compute their derivatives:

dnt =dz' A O + dz2 A ©% + dz® A ©% + 21dB! + 22d02 + 22 d83
where
— — 4 —
dz* AN O*=vz* A O - ) zF(w_)g A B°
B=1

Denoting by (wg) the Riemannian connection forms on M which takes
values in so(6) and by the explicit isomorphism between so(6) and su(4) via the
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negative spinor representation (cf. §1) we have

dr A8 = vzt A B+ 3 (i)} — o — 0f) - 22(ah + a2)
+iz2(«>4 - w}) — 2 (e} + ) + iz?(oh - w?)
+2%( 0} — f) — iz*(wd + w?)}) A (6! - i8?),
dz2 A B = vz2 A B + 3 {26 + 02) + irt(ah - ud)
—iz}(wh — W) + @) — 23 (0} + ©f) + iz (wd — w?)
—z4(h — 0f) + iz*(wp + w2)} A (63 - i0%),
a2 A8 = v A B+ 2 {2} + 6F) + iz} — o) + 22(6d + uf)
+iz}(wf — wf) — iz*( b + W] — w})
+24(w} — wf) — iz*(wh + 0})} A (0° - i6).
We also have
21 d®" = 21(d6* - id6%) = 2{ L 08 A (wh - ie})},
22d0% = 22 L8 A (o — ief) ),
22d0° = 22{ L 0P A (wf — iwf)}.

Summing up all the above expressions we get dn'. To see what the result is
we look at all the terms involving z':

3 (dh— wd - o) A 82+ 3(ah + ad) A 8°
Fa(eh— oF) A0+ 2 (e +a2) A B3
+%(w6-w5)/\06—w ANO2— W5 A0° — Wl AB%— Wi A B — W A BS
+-12-(w12—w2—w§)/\01+-;-(w4—w3)A03—-—(w3+w)/\04
+%(w6—w5)/\05 (w§+w§)/\0‘+i(w§/\01+w§/\o3

+w§/\0‘+w§/\05+w2/\06)}
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= 2{ (b + ad+ ) AO2— (o} — @) AO>— (o} +w?)A6*
—(h — @) A 05— (wh+wd) A0S —i(wh+ )+ wf) A8
+i(oh+wd) A0 —i(eh— @) A0+ i(wl+ w})AB°
—i(wh — w?) A 6%}
= —%{i(wﬁ + o + ) A (6" - i6?)
+ [(w13 - w}) =i} + w?)] A (6° +i6%)
+[(h — @) —i(wh+ )] A (8% + i6°%)}
== (0,)] A B + (0,); A O+ (w,); A 0%}

where (w,)g are the connectlon forms for the posmve spinor bundle. Simi-
larly, terms mvolvmg z? and respectively z3, z* are given by

2 (0,1 A 6 = (0,)} A B2+ (0,)} A ©7),

2{~(0.): A 0 = (0,); A 87 = (0,); A 87},

24{_(w+): AB + (0, s A 8% = (w,); A @3}.
The above calculations show that dn' is given by

4 3
(2.4) dft = — ¥ (0 )pAnf— ¥ 8 A w2k
B=1

p=1

Analogously, we get

4
dn=- Y (w+);/\nﬁ+92/\Vzl—@)l/\sz—OB/\Vz“,
B=1
4 , _
(25)d=—- Y (0)p AP+ 0> A vz - O A V2 + 0% A vz,
B=1
4 . _
dn*=— Y (0,)g AP+ 0 A vz? - 0% A vz — 8! A vz,
B=1

Remark. For n =2, we need only the first two equations with n* = n* =
vzi=vwvz4=0.
We abbreviate these formulas simply by

(2.6) dn=-w, AnN—0 AVz
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where © is the matrix

o 02| e° 0
—@2 1
2.7) o __ 8 :
-8 o0 |e -@
0 -6’|e* et

As for the vertical forms, we get

dvz® = d{dz“ + Zzp(w_);;}
B

= %{dzﬂ A(w_)g+ zﬁd(w_);}

Z{(‘”B - 2:2’(“’—)'3) A (e )g+ zﬂd(w_)g}
B @
== %(w_)s Avzf 4+ %(R_);zp

where

(R)p=d(w_)p— L(w)g A (0))

Y

is the curvature forms of the negative spinor bundle. Again we abbreviate
these equations as

(2.8) dvz=—-w_AVz+R_z.

We thus arrived at the following integrability conditions:

THEOREM 1. The canonical almost complex structure on the negative spinor
bundle P(V'_) is integrable if and only if its curvature satisfies R_z = A A 1,
ie.,

4 4
Y (R)gzP= Y AzAnP forl<a<4
B=1 b=1

where R_ is the curvature of the negative spinor bundle and the nF’s are
horizontal forms of type (1,0) given by (2.3).

Remark. The conditions above is equivalent to

(2.9) (RL)g=2A2A 6



TWISTOR SPACES 291

for 1 < a, B < 4, where ©F are the components of the matrix of 1-forms ©
given as in (2.7). We abbreviate by writing

(2.10) R_=AA®.

We shall examine the meaning of these conditions in the next section.
As for the positive spinor bundle V., we choose

vy = aje, — aze; — biey — bye, — cres — coeg,
v, = bie, + bye, + a,e; — a,e, — dies — dyeq,
Uy = cieq + Cye, + diey + dye, + ajes — aseg,
vy = de, — dye, — cie; + cye4 + bres — byeg,

and applying the almost complex structure J; defined by the positive spinor §,
we get

Jev, = aje; + ae; — byey + biey — cres + .creq,
Jev, = byey — bie, + aze; + aje, — dyes + dyeg,
Jevy = crey — 1oy + dye; — diey + ajes + ageg,
Jev, = dey + die, — cre; — cre, + byes + byeg,
and the horizontal form n* of type (1,0) dual to v, — iJ;v, are given by
= 20! — 2282 - £%8?,

2 = 192 4 20! — 2493
(2.11) 3,193 gl 4—2’
7" =20 + 2°0' + 40?2,
7= +220°% - 0%+ 40l

We also have a basis for vertical (1,0) forms:
4
vzt =dz*+ Y zP(w,)}
B=1
Calculating as in the case of V_, we get

dift = =Y (0 )h AnP— 0 A vzl + 82 A vz2 + 8% A V2P,
B

dnt= - Y (0 )5 Anf— 02 A vz — 8 A vz?+ 8 A vzt
B

2.12) . B _
AP = - Y (0 )p AP — 03 A vzl — 8 A vz - 02A V24,
B

dn*=—-Y (0 )gAnf - 03 A vzl + 82 A vzl - O A vzt
B
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and

(2.13) dvz® =Y (R,)pz? — Y (w0 )p A VA,
B B

We abbreviate these formulas as follows:
(2.14) dn=—-w_An—-YAVz, dvi=R,z—w,AVz

where ¥ =0 is the matrix

e —§2| -9 0
2 ol Qo3
(2.15) &_©o1 0 98
e 0 l 8 @2
0 | -e2 @t

THEOREM 2. The integrability condition for the positive spinor bundle #(V .)
isgivenby R,z=AAn,ie., forl<acx<4,

4 4
2(R+)§Az‘8= ZA;/\"]B
B=1 B=1

where R, is the curvature of the positive spinor bundle and n* are horizontal
forms of type (1,0) given by (2.11).

Remark. From (2.11) the forms %* are given by n =‘®z so that the
integrability condition above is equivalent to

4
(2.16) (R)p= XL B:AY, 1<a,B<4,
B=1

where ¥;' are the components of the matrix of 1-forms ¥ =* ©. We abbreviate
by writing
(2.17) R,=BA'®.

3. Curvature of the spinor bundles

We begin by reviewing the decomposition of the Riemannian curvature
tensor under the action of the orthogonal group. We then apply the spinor
representation to get a decomposition of the curvature of the spinor bundle.

Let E be a real vector space of dimension » with inner product ( , ).
Denote by SA%E the vector space of symmetric endomorphisms on AZE.
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Under the action of the orthogonal group $A?E decomposes into direct sums
of four irreducible invariant subspaces:

yA2E=A4E®E1®E2®E3.
An endomorphism R of A’E is in E, ® E, ® E, if and only if it satisfies

the Bianchi identity, i.e., R is a curvature tensor. The subspace E; is spanned
by the endomorphism I A I where I is the identity on E, i.e.,

(3.1) I/\I(x/\y)=%(IxAIy—Iy/\Ix)=x/\y.
Note that

IANI(xAy),urv)={x,u)y,v) = {(x,0)y,u);
hence we may identify I A I with the (1, 3) tensor

L(x, y)z =y, z)x = (x,2)y

vyhich is characterized by the property that its sectional curvature is iden-
tlc’?‘lllli 1s.ubspace E, consists of curvature tensors of the form R, A I where
R, € % E = {symmetric endomorphisms on E with zero trace}. The sub-
space E, is the orthogonal complement in &A’E of the other subspaces. The

elements of E, are called Weyl tensors.
The dimensions of the various subspaces are

dimg (AE) = gn(n - 1)(n? = n +2),

dimgAE = grn(n = 1)(n - 2)(n - 3),
dimgE, =1,
dimgE, = %n(n +1) -1,
dimgE; = 15 (n = )n(n + 1)(n +2),
where dimgE =n > 4.

Let R be a curvature tensor and R,, R,, W its projections into the
invariant subspaces E;, E, and E, respectively, then R = R, + R, + W with

o
(3.2) Ry= sogy I AL
20

2
(3.3) R2=;:—2S/\I—mll\[,
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and
(3.4) WeRe —2eSAT+ —O— I AT
) n-2 (n-1)(n-2) :
Here S is the Ricci tensor of R and o is the scalar curvature. Note that
W = 0 & conformally flat and R, = 0 < Einstein.
For more details concerning the decomposition of curvature tensors, we

refer the reader to Kulkarni [14], Polombo [15].

For our purpose we prefer to think of the curvature as matrix of two forms.
Let L be the curvature matrix corresponding to I A I; then

(3.5) Lg=0°A06"

where 8,...,0" is an othnormal coframe. Let T be the (1, 3) tensor corre-
sponding to S A I, i.e.

(T(x, y)o,u)y =(S AI(x Ay),uAv)
=4(SxAy+xASy,ulv)
= 3{(Sx, u)(y,v) = (Sx,v)(y,u)
+(x, u)(Sy,v) = (x,v)(Sy, u)}.
In other words
(3.6) T(x,y)v=34{{Sy,v)x — (Sx,v)y + {y,v)Sx — (x,v)Sy}.
The components of T,
TE = (Te,, ez,
are two forms which can be expressed as follows:
T,f(x, ,V) = %{(Sy’ ea><x’ eB) - <Sx’ ea><y’ eB)
+(y,e,)(Sx, e5) — (X, €,)(Sy, eg)}
= 3{5°(»)6P(x) — S*(x)8%(y) + 6°(y)SP(x) — 6%(x)SP(»)},
that is
(3.7) TZ = 3(SP A0+ 6P A S%)

where S# is the one form defined by S#(x) = (Sx, eg) where S is the Ricci
tensor. In terms of the orthonormal frames e, and its dual 8¢,

SMx) = (Sx,e,) = <ER(x, e,)e,, e>‘> = 2 Rg,,x"
B B a
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Thus $* = £, ,R},,0° The following identity will be useful later:
YS*A 0= Y R 6°A6 = ) R%0°A6
Y

a A
’l:,ﬂ,)\ e u,a,}\ Haw
= - Z)‘R;’j}\,ﬂ" A 8°
B, &,
=- Y RL0°n06*
psa, A
= -2 S AN
A
Thus
(3.8) Y SAA6r=0.
A

From the spinor representations we get
1 i
(L), = - f(le -Li- Lg)

—1(6' A 62— 6% A 6% — 6% A 6°)

- {8 7B - 0782 - 0 A B
where ©* = #2%~1 + j#2* and @* its conjugate; similarly we get
(L= —(L)i=4{Ls+ L3~ i(L4 - L})} = 70! A 8,
(L) = —(L)i= 70" A 8,
(L= -(T0)i= - 781 &,

(L.);= %{—®1A61+92A§2—®3 A 8%)
1

(L2);= —(L.),= 5(82 A 87)

(L) = —(L)i=2(8 A8

(L) = %{—@1/\ 8'-0°A8%+0°A8%)

(L)} = -(L0)i= -8 A 8

(L)i=1{01 A8 +02182+6° 7 8°).
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Thus we may represent (I A I')_ in the following form:
o
(R)-= s (IAD-

e! —62“ -8 0

o e @' 0 -0°

" 4n(n-1) 03 0 o! 92
0 0’| -2 el
e 62" 8 0
-0? el o o3
-0 o |e -82f
0 -03| .2 !

Analogously, we have

(T = - 5(1 - T2 - 17)

= —%{S1A02+01/\S2—S3/\04
—03AS*—S>A0°-0°A S°)

=%{.5’1A@)—1—S1/\01—82/\02

+PIAOr - S A0S A0
+P3A 0% - S5 65— 86 A5}

=:1‘-{.9’1/\61+.572/\(")2+.57’3/\63}

where &% = §2%-1 + iS22 and £* its conjugate. We have also use equation
(3.8). Proceeding in a similar way, we get

SR T
- Mo A - a0

(T3 = ~(T)i= 3(#' A & - F n 0}

(T_)s= —(T2){ = %{—9_’2/\ 0%+ 7% A 62)

(T_); = %{.5’2/\ 02+ 1 A 0 + 7% A 0%)
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(T_);= - (T); = %{9’2/\ 8% - 7% A 82)
(1= ~(T)i= (P A8 -5 1 8"
(T} = 2 {F* A8+ 7 01+ 52 7 02)

— 1
(T_)i= —(T)3= 7 {-F' A 8> + P2 A 8')
(T_):=%{y3A@'3+y2A'@2+5P1A@1},

Thus we may express (R,)_ as follows:

2 20
(Ry))_= == (SAT)_— n(TT)(I AT)_
1 -2 -3 0
_ 1 LA 0 -3
2(n—-2)| o3 0 g1 F?
0 F3| -2 P!
et -92| -e° 0
_ o 0? 0! 0o -e°
2n(n-2)| @3 0 o' 92
0 03| -2 o!
e! §2| 03 0
-2 e o 8’
-0 o0 |e -ef
0 -03| e o'

THEOREM 3. The curvature of the negative spinor bundle admits the decom-
position
R_=(R))_+(R,)_+ W_
where

=—2 i
(Ry)-= 4n(n —1) one,

-1 ___9° g
(R)-= 3P O~ =2 0" ®

1

=R — i o)
W_=R_ 2(n_2)y/\9+4(n_1)(n_2)®/\®.
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Remark. Theorem 3 applies to the case n = 2 as well. The computations are
indicated by the 2 X 2 submatrices (double-lined) in the upper left-hand
corner.

Computing as above but using the positive spinor representation, we get the
corresponding decomposition for the positive spinor bundle:

THEOREM 4. The curvature of the positive spinor bundle admits the decom-
position

R,=(R),+(Ry),+ W,

where
(R,), = ZF,GL-T)@ A'D,
(R,), = ﬁm B - =z MO
W,=R, - —2(—'1-1_—2)'57/\'@+ 4(n_1‘;(n_2)®/\'6.

In the above formulas, % and © represents the following matrice of
1-forms:

s -7 -3 0
o ¥ Pt 0 -3

&3 0 R TN

| 0 P3|~y P

[ & @zn 8 o0
o-|=90__©jo @&

-0} 0|0 -8

| 0 -0} @2 !

From Theorems 1 and 2 of §2, the integrability conditions for the canonical
almost complex structures on the negative and positive spinor bundles are
given respectively by

R_=4A©, R,=BA'®

Now from the decomposition of R_ and R _, it is straightforward to show
that the above conditions are equivalent to W_ = 0, W, = 0 respectively. We
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summarize these results in the following:

THEOREM 5. The negative (resp. positive) spinor bundles P(V_) (resp.
P(V,)) over a 2n-dimensional (n = 2 or 3) oriented Riemannian manifold M,
with the canonical almost complex structure is a complex manifold if and only if
W_ =0 (resp. W, = 0) where W is the Weyl conformal tensor of M.

Note that since so(6) is isomorphic to su(4) via the positive as well as the
negative spinor representations. Thus for n = 3 the conditions W, =0, W_ =
0 and W = 0 are equivalent. However for n = 2, so(4) = su(2) & su(2) and
W, are respectively the self-dual and anti-self dual part of the Weyl tensor W.
If M is a Kdhler surface then W, = 0 is equivalent to the vanishing of the
scalar curvature whereas W_ = 0 is equivalent to the vanishing of the Bochner
tensor.

4. Integrability of submanifolds of the spinor bundle

The negative spinor bundle ¥ _ contains natural subspaces F_ spanned by
£, £, and £, and G_ spanned by §,£,¢, whereas V', contains F, spanned by
£.£,, £,6, and £,;4, and G, spanned by 1. To study these subspaces we must
restrict ourselves to the case where the base M is a complex 3-dimensional
Kihler manifold with Kéhler metric # and almost complex structure J. Let »
and  respectively be the hermitian connection and curvature of 4. These are
forms with values in u(3), the Lie algebra of the unitary group U(3). Let e,
1 < a <6, with e,, = Je,,_, be an oriented orthonormal basis with respect
to the Riemannian metric g = Re & for the real tangent bundle, then

ftx = (e2a—1 - ieZa)/z’ l<acx 3,

is a unitary frame for the holomorphic tangent bundle of M. With respect to
these frames the hermitian connection » of 4 and the Riemannian connection
w are related by the formulas

(4.1) Wl =wif = (VI)I:’ Wi = —wifl= (VII)i

where »; and »;; are respectively the real and imaginary parts of ».
Similarly for the curvatures we also have the relations

(4.2) R/ =RE, = (Ql)ﬁ’ R} _ = -R}¥E 1= (911)/;

where @, and ©,; are the real and imaginary parts of £. We remark here that
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in the literature the basis are often chosen so that
Je,=e,,, and f,=e,—ie,.,,1 <a<n.

In that case the connections and curvatures are related by
© = [ Vr VH] _ 8  Q
v V) -Q; @

(ctf. [27], p. 271).

With the help of formulas (4.1) and (4.2) we see that the spinor representa-
tions of the Kihlerian connections and curvatures assume the following
special forms:

(@) = = 5 (wh = o} - o})

= — 2 {~ O+ )i+ ()3

= L = )i = )3} = 30 =92 = 92),
(0.3 = 5 (b + ) = i(wh - o))

= 5{Dh+ Gh = i(= 0w} - Gu)}))

=(); + i(v,)s =9}

(w_); =7,
(0)h = — 3 (wd — uf) — i(} + o))

D= 6= (= G+ G} =0
(@03 = = 7 {0 = Gl + Gu)3) = = (0 = v +93)
(w_); =9}

(w_);=0
(0 )= =2 {~ 0 + ()i~ ()3} = (s + 2 = 93),
(w)i=0,

()i = =5 (=i + G+ ()} = (4 + 3 + 13).
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In other words,

(4.3)
v —v2 -} 24} 20} 0
1 20} -+ -} 20?2 0
©-72 203 2v3 e 0
0 0 0 v+ 02+ 03
Similarly,
(4.4)
Q1 -0} -0} 20 29} 0
r =1 207 -+ Q2 - Q3 202 0
-2 203 203 -9 -0+ 9} 0
0 0 0 | ol + 02+

Thus the connection and curvature of V_ splits into direct sums compatible
with the decomposition V_ = C(£,, §,, &) ® C(£,6,6;,)=F_o& G_.

As for the integrability conditions, we choose the horizontal forms 7°,
1 < a < 4, as in (2.3) with z* = 0 since F_ = {z, = 0}. For vertical forms we
now only need three: vz}, vz2 and vz3. At any rate observe that from (2.2)
and (4.3) we have vz* = dz* + £zA(w_)4 = 0 on F_. With this in mind, we
see immediately from equations (2.4) and (2.5) that the integrability conditions
are still satisfied by the horizontal forms. Similarly we can read off the
integrability conditions for the vertical forms vz!, vz?2 and vz? from (2.8) by
setting z* = 0 and using (4.3). Summarizing, we have:

THEOREM 6. Let M be a Kdihler manifold of complex dimension 3. The
submanifold P(F_) with the induced almost complex structure is integrable iff

4
(R.)E2=Y 48A0©; forl<a,B<3

y=1
where ©Y are the components of © as defined in (2.7).

Analogously, by setting z! = z2 = z3 = 0 we also obtain the integrability
conditions for 7!, %%, %°, #* and vz*on G _.

THEOREM 7. Let M be a complex 3-dimensional Kihler manifold which is a
spin manifold. Then the negative spinor bundle V_ (hence also G_) is globally
defined and the integrability of G _ is given by (R_)§ = £3_,45 A ©).
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The corresponding formulas for the connection and curvature of the positive
spinor bundles are given by

-t —v2 -} 0 0 0
o 21 0 v+ v} -3 20?2 -2
T2 0 203 v —v2+ 3 20} ’
| 0 —2»3} 202 vl +v2+03
-l -Q2-Q3 0 0 0
X 1 0 Ql+@2-9 202 ~201
o2 0 203 Q- Q2 + Q3 20}
i 0 -203 202 -0+ Q2+ Q}

Let F, be the subspace of V, spanned by £,£,, £,§; and £;, and G,
spanned by 1, then we have the following integrability conditions:

THEOREM 8. Let M be a Kihler manifold of complex dimension 3. Then the
submanifold #(F.) C .@(V+) with the induced almost complex structure is
integrable iff (R,)g= 1B"‘ A for 2 <a,B <4, where ‘I’,} are the
components of the matrix of 1 form ¥ ='©. Furthermore, if M is spin then the
integrability conditions for G, is given by (R,)} = Li_,B; A V7.

To understand the integrability conditions obtained above we begin by
reviewing the decomposition of a K#hlerian curvature tensor under the action
of the unitary group. As before, let E be a real vector space of dimension 2n
with an almost complex structure J and a hermitian inner product ( , ).
The complexification E ® C decomposes into E’ and E’” where E’ consists
of vectors of type (1,0) and E” = E’. Denote by E’- E’ the symmetric
product of E’ with E’ and %(E’: E’) the unitary endomorphisms on
E’ - E’. The elements of #(E’ - E’) are referred to as Kihlerian curvature
tensors. In contrast to the Riemannian case, elements of #(E’ - E’) satisfies
automatically the Bianchi identity. The space #(E’ - E’) decomposes under
the action of the unitary group into three invariant subspaces FoF ®3%.
The subspace F) is spanned (over &) by I - I where I is the identity on E’.
Denote by ( , ) the hermitian inner product on E’, i.e., (Z, W) = 2(Z, W)
for, Z, W € E’. Then we have

(45 (I-I(z-W),U-V)= %(z- W+W-Z,U-V)
=(z-wW,U-V)
=(Z,U)W,V) + (Z,V)(W,U).
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Hence I - I is identified with the tensor
L(Z,VYW=(Z,V)W+ (W,V)Z

which is characterized by the property that the holomorphic sectional curva-
ture

k(ZAZ)=(R(Z,2)Z,Z)/|Z)*=1.

The subspace F, consists of endomorphisms of the form - where
Q, € %,E’, the set of unitary endomorphisms on E’ with zero trace. The
subspace # is the orthogonal complements of F; ® F, in #(E’ - E’). Ele-
ments of # are called Bochner tensors. The dimensions of the various
subspaces are

dimy(E’ - E') = xn*(n + 12,
dimgF, =1,
dimRFz = n2 - 1,
dim g% = %n2(n - 1)(n+3)

where dimcE’ =n > 2.

Let M be a complex n-dimensional Kihler manifold with Kihler metric
and Q the associated curvature, ;, £, and B the projections into the
respective invariant subspace, then @ = @, + Q, + B with

(4

i e AR
_ _ 2 _ 20 )
2 ]
B=0- K- I+ ol !

where K is the Ricci tensor and o is the scalar curvature.
Components of the curvature matrix of I -I w.r.t. unitary frames ¢ =
6%*~1 + i§2~ are given by

LE=0PAB*+8Y0"AO".
Y
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By a straightforward calculation we obtain the negative spinor representa-

tionof I-I:
-02A02-0*A0° ol A 82 o' A 8° 0
(1-1)= ®2A§1 —@1/\61—_63/\63 0_3/\'63 0
03 A 0! CENCE -O'AB® -B2A0% 0
| 0 0 0 A
0o -6 -@° 0 e 8 e 0
_{o ® 0 -8|,|-> e o0 e’
0 0 o! 02 -03 0 o' -0?
[0 20° -20%2 20! 0 -0 82 e!
-202A0°
+ 0 2§1 A @3
-20! A B2
202A 0% -20'A0° 20'A 02| 0

where 4 = 253 _ 0% A ©%

Denoting respectively by (I - I)”. and (I - I)” the F_ and G_ components
of (I - I)_, we have

4.7) (I-1)_=2n0,
(4.8) (I-I) =vA0"
where

0 8 B
P= 0 @l 2 _93 s
0 0 o! 02
V= (”1’ Va5 V3, vs)
with », =0, », =203 », = —202, », =20'. We also denote by O’ the

(4 X 3)-matrix consisting of the first three columns of the matrix ® and ©”
the 4-th column of ©.

For the curvature tensor K - I we have
(4.8) (K-I(z-w),u-v)
=—;—(Kz-w+Kw-z,u-v)
= 5 {(Kz, u)(w, 0) + (Kz,0)(w, u)
+(Kw, u)(z,0) + (Kw,v)(z,u)};
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hence it is identified with the (1, 3) tensor
T(z,0)w = %{(w, v)Kz + (Kz,v)w + (z,0)Kw + (Kw,v)z}.

Relative to the unitary frame £, = 4(e,,_; — ie,,), the components of T are
given by

49) T8 = (T'Sw fﬁ)

- %{sfp +K Y07 ABY + YK, 05 A B+ YK 0" A c?)a}
h Y Y

where K,z = (Ké,, &) = Z,R:,zand p = L, zK,z0% A OP.
Applying the negative spinor representation we obtain

(T—): = (Tll - T22 - T33)

{Kl/\@l—KzAéz—KM’@
+O'AKI-092AK2-0°AK?
+ (Kj—Ky —Ky35) 1O A O - P}>
Y
(T.);= - (T.): = %{K‘ AB2+ O AK2+K; Y0 A @7},
Y

(T); = —(T)); = %{Kl AB +O'AK + K3)Y 0T A 67},

Y

(T_)s= —(T);=0,
(T): = —-%{K‘ AB'—K2A B2
+K3A®*+O'AK' -0*AK* -0’ AK?
+ (K1 —Kz +K33) O A BT + P}’
Y
(T)2= —(T)}= %{K2 AB +O*AK>+ Ky3Y. 07 A @7},
Y

(T_)e= —(T_);=0,
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(T_)g: _%{K1A§1+K2/\62—K3/\63

+O'AK - @’ AK’
+ (K +K3 —K33) LOTA BT + P},
Y
(T)s=—(T_);=0,
(T.)t = %{ZK“ 7B+ L AR+ (K (ZOT 07+ 3p}.
a a a Y

Since the Ricci tensor is hermitian, we may choose unitary frames so that K
is in diagonal form with real eigenvalues A;, A, and A,. The formulas above
reduce to

(T) = {2>\1®1 A B = 21,82 A B2 - 21,0° A ©°

B

+(y =2, = 2;) 07 A Y~ TA,07 A BY)
b Y

= %{nl — A, = A3)O' A B + (A, — 47, - 1,)82 A 87

+(A, = A, — 47,} 0% A 87},

(T_)y = =(T_); =3 (A + 1,)0 A 82,

(T_) = —(TO) =3(A +1,)€" A 87,

(T)i= -(T0)i= (1)i = -(T)3= (1) = —=(T)i =0,

(T_)2 = 5 (=47, + 2, = 1,)8! A B + (=), + 21, — 1,)0% A 82
+ (A + A, - 4),)0° A 8%,

(T = (0 +1,)8% A B,

(T_) = H{(=80 = A, +1,)01 A BT + (=), — 41, +1,)07 A B2
+(A =2+ 20,)07 2 8,

(T4 = F{(6M + 2, +1,)81 A B + (A, + 61, +1,)02 A B
+ (AL + A, +6)X;)0° A B3},
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From these expressions we observe that T_ can be expressed as

¥
1 M 1 H (2)
(4.10) T_= Al p1 B2 By B nO+ 4 V3

v, ¥, v3| 0

where
pr =0, py = (A + Ay + 6);)0°,
p3 = —(Ap + 6A; + A;)02,
pa=(6A + X, +1A5)00
v, = (2N, + TA, + TA;) 0% A B3,
v, = —(TA; + 27, + TA,) 0! A B3,
vy = (TA{ + TA, + 2X,)0! A B2,
Y= (=2\, + 5\, + 5),)02 A 07,
Y= —(5A; — 2X, + 51,)0' A O3
and

¥y = (5A; + 50, — 2X,)0! A B2,
The two matrices # and H are given by
(4.11)
(A = A, —A3)8 (A —4X, = 1;)8% (A -, —4),)8° 0
M= (=N + 20, = 15)0% (4N, — A, +A;)E 0 (=M + A, —4),)8 |,
(A — A, +2),)€° 0 (AN + A, =28 (A +4X,-),)0?
(4.12)
0 (A, =A)0*A B2 (A, —1A,)0 A8
H=|(A,=1,)02A 0! 0 (A, —2,)0%2A 0% .
(A3 =2A)@>A 8 (A;—1,)0% A B2 0
Denoting by T’ and T” the F_ and G_ components of T_, we have

(4.13) T/ = X(HA O +H),

1 1 ¢
(4.14) T” = 7(B1s Bos B3 pg) AO” =7 3 ppg A O
B=1
where @’ is the first three columns of ® and ©” is the 4-th column of ©.
Notice that the curvature T’ satisfies the integrability condition of Theorem 6
iff H=0iff A, = A, =A; = 0iff the Ricci tensor is a multiple of the metric
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tensor, i.e., the metric is Einstein. On the other hand we see that T/ satisfies
automatically the integrability condition of Theorem 7.

From the decomposition (4.6) of the curvature tensor @ we obtain the
following decomposition of the F_ and G_ components of the curvature @ _:

(415) Q. =(2)_+(Q,)_+B., Q7=(2)”+(2,)”+ B”

with
(4.16) (2,). = ZT;_J:TT(I A= < RS

(417) ()= 3 (K- 1)Y= orlegs (1 D)

1 g , 1

= [2(n ) Sy 1)’“] ANt i

, o 1 o
(4.18) B—‘“-‘[z(n+z)“”‘ (n+1)(n+2)'?}

) 1
Ay e 2)H

(4.19) (Ql = mﬂ A B,
(4.20) (2,)" = [2( 1+ e n(:j’r ) p] A©”,
(4.21) B” = trace of B = 0.

From the decompositions above and Theorems 6 and 7, it is straightforward
to show:

THEOREM 9. Let M be a complex 3-dimensional Kdihler manifold then the
submanifold P(F_) € P(V_) with the induced almost complex structure is a
complex manifold iff B’ = 0 and that the metric is Einstein.

Remark. 1t is easily seen from (4.4) that B’ = 0 iff B =0 so that the
conditions in the above theorem means that M is Kihler-Einstein with
vanishing Bochner tensor. The fiber in #(F_) over each point of M is CP2,

THEOREM 10. Let M be a complex 3-dimensional Kihler manifold such that
M is spin. Then G_ C V_ with the induced almost complex structure is a
complex manifold.

Remark. The fiber of G_ over each point x € M is C. Note that the
projections of #(F_) and of G_ onto M are not holomorphic.
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The corresponding decomposition and integrability for F, and G, are
entirely analogous and will be omitted here.

5. Examples

Example I. The standard spheres S”, the Euclidean spaces R” and the
hyperbolic space H" = SOy (1, n)/SO(n) are conformally flat; i.e., the Weyl
tensor W is 0 and so are their quotients. For non-Einstein examples, the
spaces R? X §9, S§? X S9, R? X HY, H? X H? with p,q >1 and with the
standard product metric are conformally flat iff p =1 or g = 1; the space
H? X §9 p,q > 1 with the product metric is conformally flat iff p = ¢. It is
also known that every orientable, locally irreducible, locally symmetric 4-
manifold is half conformally flat, i.e. W_ = 0 (cf. Derdzinski [6]).

Example II. The complex projective spaces CP" with Fubini-Study metric,
the complex Euclidean spaces C” and the complex hyperbolic spaces D" (i.e.
unit ball in C” with Bergmann metric) are Kihler-Einstein with vanishing
Bochner tensor and, so are their quotients. For non-Einstein examples, the
space D? X CP9, p,q > 1 with product metric has vanishing Bochner tensor
iff p = q. For Kihler surfaces, CP?, C?, D? and D' X CP! exhaust the list of
simply connected surfaces with vanishing Bochner tensor (cf. Chen [5]). For
Kihler surfaces, W_ = 0 « vanishing Bochner tensor; whereas W, =0 «
scalar curvature vanishes (cf. Tricerri-Vanhecke [19], Derdzinski [6]). K#hler
surfaces with vanishing scalar curvature are classified by Hitchen [12]; they are
either glat or a K-3 surface, an Enriques-surface or the orbit space of an
Enriques-surface by an anti-holomorphic involution.

Example III. The twistor space #(V_) over S* is ¥P* and that of S is
the complex hyperquadric QS. In fact the twistor space of S2” is SO(2n +
1)/U(n) with the unique (up to conjugation) invariant almost complex struc-
ture. We remark here that the uniqueness of the invariant almost complex
structure corresponds to the fact that the center of U(n) is one dimension.
Also the 2-nd Betti number of such manifold is 1. The oriented orthonormal

frame bundle of $?" is SO(2n + 1) and the twistor space is the associate fiber
bundle

SO(27 + 1) X 5o SO(21)/U(n) = SO(2n + 1)/U(n).

For S* and S¢, it is straightforward to show that canonical almost complex
structure defined on #(V_) is invariant by (and commutes with) the action of
SO(7). Thus L(V_) is identified with SO(5)/U(2) (resp. SO(7)/U(3)) as
complex homogeneous Kihler manifold. It is known the SO(2n + 1)/U(n) =
SO(@2n + 2)/U(n + 1) which are the hermitian symmetric spaces of type
D, ,, which for n = 2 and 3 are respectively CP* and QS. Actually for these
two cases we can check directly by computating the first chern number ¢; (we
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follow the notations of Bourbaki [4]). For SO(5)/U(2) the Dynkin diagram is

B2: [ e e —— ! \) D
7
o1 02 03

The roots of SO(5) are +§,, +£,, +(§; + &), £(§, — §,) and the roots for
U(2) are +(&; — &,). The positive roots are respectively §; = a;, + a5, §, = a,,
(-6 =ap, § + £, =a; + 2a, (and for UQ2), £, — §,). Thus the comple-
mentary positive roots are §,, §, and §, + £,. Then c, is given by

26, + & & +£,8) =4(4,,4,) =4 =1+ dim SO(5)/U(2).
Analogously for SO(7)/U(3), the Dynkin diagram is B,:

a > )

oy 0o
The positive roots for SO(7) are §; = a; + a, + a3, §, = a, + a3, §3 = a;,
Si—b=ap b —&ma oy -6 =ay G H 6 =0+ 20, + 203, §
+ &3 = al + az + aa, £2 + 53 = az + 2a3 (and fOI' U(3), gl - 22, gl - £3,
£, — £,). The complementary positive roots are &;, §,, &3, & + &, & + &5,
¢, + £, and so ¢, is given by

26+ +HEHEFEAEHETEE)
= 2(34;, §;) = 6 = dim¢ SO(7)/U(3).

It is a classical result that a projective manifold M with ¢; = 1 + dimcM is
the complex projective space and if ¢; = dim M then M is the hyperquadric.

Example IV. The twistor space of CP? is U(3)/T> (T* = U(1) x U(1) X
U(1)), i.e., the flag manifold F(1,2) of lines in CP2 It can be shown that
P(F_) over CP? is U@4)/U(2) x U(1) X U1). It is a simply connected
homogeneous Kihler manifold. The canonical almost complex structure on
P(F_) corresponds to the invariant almost complex structure described
below. In this case, the dimension of the center is larger than 1; thus there are
inequivalent invariant almost complex structures (cf. Borel-Hirzebruch [3]).
The roots of U(4) are given by +(§; — §;), 1 <i <j < 4; those of U(2) X
UQ) X UQ1) are +(§, — &,) with & — £, the positive root. The complemen-
tary positive roots are §; — &,, §; — &4, &5 — &3, §; — &4, &3 — £, This is the
root system of an invariant almost complex structure. The image in
H*(U(4)/T*, Z) of the first Chern class of the complex structure defined
above is given by the sum of the positive roots 2§, + 2§, — &, — 3¢,.
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