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Introduction

Let E be an oriented 2n-dimensional vector space over with inner
product ( ). The space of almost complex structures on E compatible
with the inner product and orientation is isomorphic to the rank one symmet-
ric space SO(2n)/U(n). On an oriented 2n-dimensional Riemannian manifold
M we thus obtain a bundle whose fiber over each point x of M consists of
all almost complex structures on the tangent space TxM compatible with the
metric and orientation. The bundle o is equipped with a natural almost
complex structure defined as follows. The connection on induced by the
Riemannian connection on M defines a splitting of the tangent space at each
point (x, J) into a direct sum of the vertical subspace and the horizontal
subspace. Along the vertical subspace the almost complex structure is defined
by the standard invariant complex structure on SO(2n)/U(n). On the hori-
zontal subspace (-- TxM) at TM the almost complex structure is defined
simply as J. We are interested in the following two problems concerning

Problem L Find necessary and sufficient conditions (on the curvature of
M) for the integrability of the canonical almost complex structure on .

Problem 11. If the canonical almost complex structure is not integrable on
all of , find necessary and sufficient conditions for the integrability of some
(if any) natural almost complex submanifolds of ,,.
The four dimension case (n 2) has been studied extensively. In this case

the almost complex structures are parametrized by the positive (resp. negative)
spinors. It was shown (cf. Atiyah-Hitchen-Singer [2]) that the canonical almost
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complex structure on (V+) (resp. #(V_)) the projective positive (resp.
negative) spinor bundle is integrable if and only if W+ (resp. W_) the
self-dual (resp. anti-self-dual) component of the Weyl tensor vanishes. Classifi-
cations of those twistor spaces which are compact .Kiihler are also known (this
happens iff M is compact Einstein with positive scalar curvature and W_ 0;
cf. Friedrich-Kurke [10], Friedrich [9] and Hitchen [13]). For further informa-
tion on twistors, its relationship with the Yang-Mills equation, stable vector
bundles etc., we refer the reader to A-H-S [2], Atiyah [1], Douady-Verdier [8],
Hartshorne [11], Trautmann [18], Donaldsons [22], [23], Taubes [25], [26] and
Kobayashi [24].

In this paper we study the six dimensional case (n 3). This is the first case
where Problem II is meaningful. The six dimensional case is still somewhat
special for the following reasons. First of all the Lie algebras so(6) and su(4)
are isomorphic via the positive (and negative) spinor representation. Secondly,
it is still possible to parametrize the almost complex structures by #(V+) (or
#(V_)). (This is not true if n > 4.) Our first result formally generalize the
integrability theorem of A-H-S for four manifolds. It is shown that (V+)
(resp. (V_)) is integrable if and only if W+ (resp. W_) vanishes where W+
(resp. W_) is the positive (resp. negative) spinor representation of the Weyl
tensor. Notice that in the four dimensional case the self-dual (resp. anti-self-
dual) component of W is the same as the positive (resp. negative) representa-
tion of W. However in the six dimensional case W+ 0 iff W_ 0 iff W 0
and the two spaces (V+) and (V_) are essentially the same space. We give
the proof for both as it requires essentially no extra effort and more im-
portantly the proof is designed so that it gives at the same time A-H-S’s
theorem for four manifolds.
Our second main result provides answers to Problem II assuming that M is

a complex 3-dimensional K.hler manifold. There is a natural almost complex
submanifold (F+/-) c (V+/-) which is integrable if and only if M is Kahler
Einstein with vanishing Bochner tensor (cf. Theorem 9, {}4). The fiber
over a point x M is isomorphic to CP2 (note that (V+/-)x = SO(6)/U(3)-- Cp3).
The paper is organized as follows. In 1 we describe explicitly the parame-

trization of almost complex structures by spinors (unlike the 4-dimensional
case, this now requires proof). This is used in {}2 to construct local basis of
(1, O)-forms on (V+/-). By differentiating this basis we show that the Frobenius
integrability condition is equivalent to the condition that the curvature R +/- of
the spinor bundle be of a very special form. Section 3 begins with a review of
the decomposition of a Riemannian curvature into invariam (under the action
of the orthogonal group) components one of which is, the Weyl tensor (cf.
Kulkarni [14], Polombo [15]). From this we obtain a decomposition of R+/-
which is readily seen to be of the special form of 2 iff the component W+/-
corresponding to the Weyl tensor vanishes. In {}4 we decompose (locally) V+/-
into a direct sum of subspaces F+/- G +/-. The crucial observation here is that
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the connection (hence also the curvature) of V+ splits according to the
splitting F+ G+/- provided that M is Kahler. Upon examination of the
integrability condition of (F+/-), it is discovered that the F+/- components of
R+/- must assume a special form. The Kahlerian curvature admits also a
decomposition into invariant (under the action of the unitary group) compo-
nents, one of which is the Bochner tensor (cf. Sitaramaya [17],
Tricerri-Vanhecke [19]). We get from this a decomposition of the F+/- compo-
nent of R+/- and that it assumes the special form mentioned above iff the
components corresponding to the Bochner tensor vanishes. In [}5 we give some
examples, in particular it is pointed out that the twistor space over S6 is the
complex 6-dimensional hyperquadric Q6 and the submanifold (F_) of the
twistor (V_) over CP is the complex homogeneous manifold U(4)/U(1)
U(1) U(2).
The author would like to express his gratitude to Professor Sakane for many

valuable discussions during the preparation of this article, and to Professor AI
Vitter for showing me his proof (cf. [20]) of the theorem of A-H-S for four
manifolds.

1. Almost complex structures and spinors

Let E be a 2n-dimensional real vector space with inner product < >.
Let ex,..., e2, be an oriented orthonormal basis for E. The complexification
E (R) splits into a direct sum E’ E" where E’ (resp. E") is spanned by

(e ie2)/2,...,n= (e2n-x ie2n)/2 (resp.,...,n).
Denote by C2, the complex Clifford algebra generated by e,..., eEn with
respect to the inner product - ). Let , (resp. (-,) be the complex
vector subspace generated by e.lements of the form ex,..., e with p even
(resp. odd). The subalgebra of C2, generated by E’ is called the spinor algebra
and is denoted by V. Elements of the complex vector subspace V + V
are called the positive (resp. negative) spinors. Note that V is isomorphic to
the exterior algebra AE’, hence dimcV 2" and

V+= ( AgE V-= ( AgE
k even k odd

so that dimcV+ dimcV.- 2"-t.
It is well known that C2, is isomorphic to the matrix algebra EndcV. The

isomorphism p is defined as follows. For e E’ c C2,, multiplication_by on
the left, o o, is an_ endorm_orphism of V. On the other hand, for e E",
interior product by , o t()o, also defines_ an en_dormorphism of V. Now
every element x e E is of the form + or i(- ) with e E’. Thus p is
defined on E and satisfies p(x)2 -x, x.)l. This is precisely the condition
that p can be extended uniquely to all of C2, (cf. Dieudonne [7], p. 148).
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If we fix 0, V+ then the map x p(x) is an isomorphism over R
of E onto a subspace_of V_. From now on we will write x. for p(x). .
Similarly an element of V_ defines an isomorphism (over R) of E onto a
subspace of V+. For n 2, dimaE dimaV+ dimaV_ 4, so that each
of V+ (resp. V_) gives rise to an isomorphism between E and V_ (resp. V+)
and we endow E with the complex structure of V_ (resp. V/). Furthermore
any two elements of V+ give rise to the same complex structure if and only if
they differ by a non-zero multiple , C *.
We now examine the case n 3 in detail. For n 3,

E (el, ez, e3, e4, e5, e6) R 11.6

V+ (12, 13, 31,1)c C4

g- (, , 3, 3)c = C4

where . (e2a_ ie2.)/2"
Here is the multiplication table for V+:

el

e2

e3

e4

e5

e6

2

2

3

Remark. The upper left comer (double-lined) of the above table is the
multiplication table for V/ for the case n 2.

For any V+ with a + b12 + 23 + d31, a, b, c, d C, we
obtain from the table above,
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With respect to the basis e1, e2, e3, e4, e5, e6 for E and 1, i1, 2, i2, 3,
i3, t23 and i123 for V_, the matrix v representing the real isomor-
phism of E into V_ defined by V+ is given by

a --a 2 -b -b2 d d2
a2 al -b2 b dE -d

bl b2 al a2 1 2
bE -bt a2 al -2 1

-d -dE c c2 al -a2

--dE dl 2 --Cl a2
c -c2 d -d2 b -b2

c2 c d2 dl bE bl

where a1, a 2 are the real and imaginary parts of a etc.
It can be verified directly that the image ,(E) is a complex vector subspace

of V_. The corresponding complex structure J on E is defined so that the
following diagram commutes:

Observe that tv, o v, (]al 2 + Ibl 2 + Icl 2 + Idl2) Ide (this can be vedfied
directly from the matrix representation of vf). Thus Jf v o o vf. The
complex structure on V_ relative to the basis 1, i1, 2, i2, 3, i3, 4, i4
is given by the matrix

0 -1
1 0

0 -1
1 0

0 -1
1 0

0 -1
1 0
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By a direct calculation we have the following matrix representation of J,:

0 ,4.12 .,4.1. A14
A2t 0 A23 2424
A31 A32 0 A34
A4x A42 A43 0

Ast A52 A53 As,,
A61 A62 A63 .,464

J=

At5 A16
A25 A26
A35 A36
A45 A46
0 A56

./165 O

(lal 2 + Ibl 2 + Icl 2 + Idl 2)

The matrix above is skew symmetric and the entries are given by

A12 --lal2+ Ibl 2- Icl2+ Idl 2,

A13-- 2[(alb2 a2bl) (Cld2 C2dl)],
A14 -2[(atb + a2b2) + (Cldl + c2d2)],
At5 -2[(aid2 a2dl) (blC2 b2Cl)],
At6 2[(aid1 + a2d2) (blC + b2c2)],
A23 -2[(atb + a2b2) (ctd + c2d2)],
A24 2[(alb2 a2bl) + (Cld2 c2d)],
A25 2[(aldl + a2d2) + (bxc + b2c2)

A26 2[(aid2 a2dl) + (blC2- b2ct)],
A34-- _la12+ Ibl2+ Icl 2- Idl 2,

A. 2[(bxd._- b:d) + (ac:- c:a)].
a, -2[(bdx + bd:) + (axcx + a:c:)].
A., 2[(bxd + b:d:) (ac + ac:)].
a.6 2[(b.d- b:dx) (ac:- a:c)].
A56= _lal2- Ibl2+ Icl2+ Idl 2.

Remark. (1) By setting c d 0 in the upper left hand comer (double-
lined) above we obtain the almost complex structure J for n 2, V/.

(2) If M is a complex manifold with complex structure J and basis
et, e2 Jet, e3, e4 Je3, e5, e6 Je5; then J J with 1 V/, i.e., a
1, b=c=d=O.

Observe that , ’ in V/ defines the same almost complex structure iff
,’ with , C*. Furthermore J SO(6), that is J is compatible with
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the metric ( ) and the orientation on E. The space of almost complex
structures on compatible with the metric and orientation is SO(6)/U(3) -=
CP 3. Since dimcV+ 4 we see that (V+) parametrizes all such complex
structures.
The case of V_ is similar. The multiplication table for V_ is given below:

el

e2

e3

e4

-i

e5 --13
e6 --i13

Remark. The upper left corner is the multiplication table for n 2.
For a + b2 + c3 + dx2 V_ we have

ex. a + b12 + 13 + d23,
e2 -ia + ibl2 + ic13- id23
e3 b- ax2 + c23 di3,
e4 -ib- ia2 + ic23 + idx3
e5 c + dx2 b23 a3x,

e6 --ic- idl2 ib23 ia3x.

With respect to the basis ex, e2, e3, e4, e5, e6 for E and 1, i, 2, i12,
23, i23, 31, i31 for V+, the matrix , representing the real isomor-
phism of E into V+ defined by V_ is given by

a a 2 bx b2 c1 2
a 2 -ax b2 -bx c2 -cx
bx -b2 -ax a 2 dx d2

b2 b --a 2 -a d2 -d1

C --C2 -d -dE -a a 2

c2 Cl -d2 d -a2 -a

dl d2 1 -2 -bl b2
dE -dl 2 Cl --bE -bl
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(lal / Ibl / Icl / Idl)
The matrix is skew symmetric with

A--lal- Ibl- Icl/ Idl ,
+ +

a6 2[(ac + a2c2) + (bxd1 + bzd2)],
A23 -2[(aib + a2b) + (Cld + c2d2)],
A24 -2[(alb2 a2bl) + (cld2 c2dx)],
A25 -2[(alCl + a2c2) (bldl + bzd2)],
A26 -2[(alc2- a2cl) (bid2- b2dl)],
A34 --la12+ Ibl 2- Icl2+ Idl 2,

as 2[(axd2- a2d)- (bxc2- b2c)],
a -2[(axdx + a2d2) (bxc + b2c2)],
A4s -2[(adx + a2d2) + (bxc + b2c2)],
a -2[(axd2- a2d) + (bxc2- b2c)],
as -lal2- Ib12+ Icl2+ Idl 2.

Remark. (1) The upper left-hd comer th c d 0 is the aost
complex stcture Jt for a + b2 when n 2, V_.

(2) If M is a complex mfold th mplex structure d basis e, e2
Jel, e3, e4 Je3, es d e Jes, then J, th 23 V_ (i.e., th
a b c 0, d 1) is the conjugate of J. at is J,e2_ -e2,.

In 2 we have to compu the cuature of the spinor bundles, for that
puose we need the exploit isomoMsm between the Lie Mgebras 6) d
su(4). Given an element (a) 6) the coesponding element su(4)
obted fia the positive spinor representation is #ven in Fig. A whereas the
one obtMned fia the negative spinor representation is #ven Fig. B.
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Remark. Setting a 0 in the upper left-hand comer of the above matrices
we obtain the corresponding + spinor representations for so(4) = su(2)
su(2).

Since these formulas will be used quite a few times in later sections, we
digress a little here to explain how these formulas were derived. The Lie
algebra so(2n) is spanned by {e ^ e:1 < a < < 2n } where e ^ e is
identified with the matrix E whose entries are all zero except the (, a) and
(a,/) entries which are + and -1 respectively. The exterior products
e ^ e is identified with e .e in the Clifford algebra whose elements are
identified with endormorphisms of spinors. In fact ee takes +spinors to
+ spinors. For instance, take the element

then

e

Thus with respect to the basis 1, x2, 23, 3x, the endomorphism on V+
corresponding to ex.e2 is given by

-i

-i

The corresponding endomorphisms are listed in Figs. 1-3.

2. Integrability of the spinor bundles

Let M be an oriented Riemannian manifold of dimension 6. At each point
x M, Ex TxM is an even dimensional oriented real vector space with
inner product given by the Riemannian metric. As explained in 1, there
associates to Ex the spaces of positive and negative spinors Vx+. In general
there is no consistent way of defining V +/- globally over M, unless M is spin
(i.e., the second Whitney class w2(M)= 0). However #(V +/-) the projective
spinor bundles are globally defined and we denote the projection by
,r (V +/-) --, M. There is a canonical almost complex structure on (V +/-),
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e e2

e e

e e4

e e

e e6

End(V+)

-i

1

-i

-1

-i
-i

-1

-i-

-1

-i
-i

FIG. 1

defined as follows. The Riemannian connection on TM induces a connection
on (V +/-) via the spinor representations. At a point (V +/-), the tangent
space of (V +/-) at decomposes into the direct sum of the vertical space and
horizontal space. The vertical subspace is tangent to the fiber (V +/-) -- CP3

with canonical complex structure whereas the horizontal subspace H is
isomorphic to TM where x r(), and has a natural complex structure J
defined by the spinor (el. 1).
The problem we are interested in is to derive a necessarily and sufficient

condition for the integrability of the canonical almost complex structure
defined above. Later we will also study the integrability of certain submani-
folds of (V +/-).

Since the integrability is a local problem, we will work directly with V +/-.
Now locally,

(2.1) V_----- { Zll "[" Z22 "]- Z33 q" Z4123" Za . (}

where , (e2a_ ie2a)/2 and et,..., e6 is an oriented orthonormal frame
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e2 e

e2 e4

e2 e

e2 e6

e e4

e e

End(V+

-i

-1

-1
1

Z.d<V_)

i

-1

_1

FIG. 2

for TM with dual coframes 0t,..., 0 6. To check integrability we first describe
a basis of (1, 0) forms on V_ and by explicit calculation of their derivatives we
will show that the Frobenius conditions reduce to conditions on the curvature
of the spinor bundle.
The following is a basis of vertical (1, 0)-forms:

4
" 234(2.2) Vz"= dz" + . z’(w_)O, a= l,

B--1

where (w_) are the connection 1-forms of the negative spinor bundle induced
by the Riemannian connection on TM via the negative spinor representation.
Notice that the horizontal tangent space is given by {Vz" 0, a 1, 2, 3, 4}
and along the fibers Vz" dz".
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e e6

e4 e

e4 e6

e e6

End(V+) End(V_)

-i

-i

-1

-i-

4"

--1

-i

-i

FIO. 3

There are many ways to choose the horizontal (1, O)-forms, we make the
following seemingly complicated choice but it turns out to be easier to
differentiate than the more obvious choices.

z b + ibm, z 3 4Let zt=a + iaz, =cx + ic2, z =dt + id2 where a.,
b=, c., d. are real and let

vx axex + a2eg_ + bte3 + b2e4 + cte + c2e6,
v2 bxex b2e2- axe3 + a2e + dte + d2e6,
v3 cxex c9_e9_- dxe3 d2e4- ate + a2e6,

v4 dtex + d2e2 + cxe3 c2e4 bte + b2e6.
Recall that the complex structure J defined by

Z1,1 -I- Z-2,2 -I- Z33 "- Z4,1,2,3 V_

is given explicitly in 1.
By a straightforward calculation,

J.v a_e atez + be3 bte4 + cg_es cte6,

J.v bex + be- ae3 ate, + des- de6,

J/iv3 c2e + cle2 d2e3 + die4 a2e5 ate6,

Jv4 d2e die2 + c2e3 + cle4 b2e5 be6,
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The vector fields (oa iJoa)/2, a 1, 2, 3, 4 are of type (1, 0). Their dual
are then forms of type (1, 0). Explicitly they are given by

alO1 + a202 + blO 3 + b20 4 + C105 + c90 6

+ i(a2O1 aO 2 + b203 blO4 -I- c25

(a1 + ia2)(01- i0 2) + (bl + ib2)(03-

zl1 -]- Z22 q- Z33

106 )
ion) + (Cl + ic )(o 

and similarly,

’112--- --ZlO 2 -t- Z201 -- Z43

113 __ZlO3 ._ Z301 Z42
114__.__ _.Z203 .. Z302 "1" Z4

Remark. For n 2, we need only two horizontal forms, 111 and 112 given
as above with z3 z4 0.

It is convenient to express these forms as a matrix:

(2.3)

111 1 2
112 --0 2 O
113 O 3 0

14 0 -03

3 0 Z

0 3 Z2
01 ._2 Z3
02 1 Z4

where @" 02a-1 + iO 2a, a 1,2,3. The horizontal forms 111, 112, 113, 114 are
not linearly independent but at any point, three of them form a basis for
(1, 0)-forms on the horizontal tangent space. (For example, if z 4 O then 111,
112 arid 113 form a basis whereas if z O then 112, 113 and 114 form a basis.) We
now compute their derivatives:

d111 dzI A "1 .. dz 2 A "2 .. dz 3 A "3 -Jr- zI d’1 + z 2 d’2 + z 3 d’3

where

dg A @a__. Vga A @a_
4

E ^-1

Denoting by (to) the Riemannian connection forms on M which takes
values in so(6) and by the explicit isomorphism between so(6) and su(4) via the
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negative spinor representation (cf. 1) we have

dz 2 A 2

We also have

z d’ z(dO idO2) z( .0fl A ( to8 iron) },
z 2d2 z2{ _,0’ (to iron)},

Summing up all the above expressions we get d. To see what the result is
we look at all the terms involving zt:
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where (0+) are the connection forms for the positive spinor bundle. Simi-
larly, terms involving z 2 and respectively z 3, z 4 are given by

Z3(--(0+)13 A O1 (0+)14 A 02- (0+)11 A B3},
Z4(--(0+) A 1 "l-(0+)X3 A 2_ (0+)2 A }.

The above calculations show that d is given by

4 3

(2.4) d/x-- E (0+)A/a- EAVz.
Analogously, we get

4

(2.5) dl3= E ((o+) ^ ,IO + 03

^ Vzx- 0x
^ Vz3 + z ^ Vz4

/I1

4

-1

Remark. For n 2, we need only the first two equations with /3 74
VZ3 VZ4 O.
We abbreviate these formulas simply by

d/= -0+A-OAVz
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where O is the matrix

(2.7) ,02. 0 0

0 ) I0 -2"

As for the vertical forms, we get

d dza + Ez#(t_)#

E ^ +

where

(R_) d(ca_)- E(’-) A

is the curvature forms of the negative spinor bundle. Again we abbreviate
these equations as

(2.8) dvz -_ A Vz + R_z.

We thus arrived at the following integrabi!ity conditions:

Tn.OmM 1. The canonical almost complex structure on the negative spinor
bundle (V_) is integrable if and only if its curvature satisfies R_z A A
i.e.,

4 4, (R-)zfl= E A A rl’ forl < a < 4
#--1

where R_ is the curvature of the negative spinor bundle and the l#’s are
horizontal forms of type (1, 0) given by (2.3).

Remark. The conditions above is equivalent to

(2.9) (R_); EA ^ J
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for 1 < a, fl < 4, where OJ are the components of the matrix of 1-forms 0
given as in (2.7). We abbreviate by writing

(2.10) R_ A A O.

We shall examine the meaning of these conditions in the next section.
As for the positive spinor bundle V+, we choose

01 ale a2e2 ble3 b2e4 cle5 c2e6,

v2 hie + b2e + ale a2e4 dies d2e,
v cle1 + c2e + die + d2e4 + ales a2e,,

v4 die d2e2 cle + c2e4 + hies b2%
and applying the almost complex structure J defined by the positive spinor ,
we get

J,.o a2e + axe2- b2e3 + bxe4 c2es +.cxe6,
J,v: b2ex ble2 + a2e3 + ale4- d2es + die6,

Jo3 c2e cxe2 + d2e3 dxe + a2es + axe6,
Jo4 d2e + dxe2- c2e3 cle4 + b2es + bxe6,

and the horizontal form " of type (1, O) dual to v.

(2.11)

We also have a basis for vertical (1, O) forms:

4

vz + E

Calculating as in the case of V_, we get

(2.12)
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and

(2.13)

We abbreviate these formulas as follows:

(2.14) drl a A A Tz dTz R+z a+ A ’z

where tO is the matrix

(2.15)

01

0
0

0
0

--0 2 01

THEOREM 2. The integrability condition for the positive spinor bundle (V+)
is given by R+z A A , i.e., for 1 a < 4,

4 4

where R+ is the curvature of the positive spinor bundle and 1 are horizontal
forms of type (1, 0) given by (2.11).

Remark. From (2.11) the forms are given by
integrability condition above is equivalent to

tog SO that the

4

(2.16) (R+)--- EB^’, 1<a,/34,
#--1

where ff’ are the components of the matrix of 1-forms I,
by writing

(2.17) R+ B Ate.

O. We abbreviate

3. Curvature of the spinor bundles

We begin by reviewing the decomposition of the Riemannian curvature
tensor under the action of the orthogonal group. We then apply the spinor
representation to get a decomposition of the curvature of the spinor bundle.

Let E be a real vector space of dimension n with inner product (,A2E)Denote by 5aA2E the vector space of symmetric endomorphisms on
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Under the action of the orthogonal group 5OA2E decomposes into direct sums
of four irreducible invariant subspaces:

5aA2E A4E E E2 E3.

An endomorphism R of A2E is in E E2 E3 if and only if it satisfies
the Bianchi identity, i.e., R is a curvature tensor. The subspace E is spanned
by the endomorphism I A I where I is the identity on E, i.e.,

(3.1) 1
I A I(x A y) -(Ix A Iy-- Iy A Ix) x A y.

Note that

(I A I(x A y), u A v) (x, u)(y, v) (x, v)(y, u);

hence we may identify I A I with the (1, 3) tensor

L(x, y)z (y, z)x (x, z)y

which is characterized by the property that its sectional curvature is iden-
tically 1.
The subspace E2 consists of curvature tensors of the form R0 ^ I where

Ro oE {symmetric endomorphisms on E with zero trace). The sub-
space E3 is the orthogonal complement in A2E of the other subspaces. The
dements of E3 are called Weyl tensors.
The dimensions of the various subspaces are

dimaSa(A2E) n(n- 1)(n:- n + 2),
1

dimaAE ..n(n- 1)(n- 2)(n- 3),

dimaE 1,
1

dimaE2 -n(n + 1) 1,

dimnE 1-(n 3)n(n + 1)(n + 2),

where dimnE n > 4.
Let R be a curvature tensor and Rt, R2, W its projections into the

invariant subspaces E, E2 and E3 respectively, then R R1 + R2 + W with

(3.2) Rx
o

n(n_l) IAI’

2 20(3.3) R2--- n 2 S A I n(n 2) I A I,
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and
2 o(3.4) W-- R n----2 S A I + "n 1)(n 2)I A 1.

Here S is the Ricci tensor of R and o is the scalar curvature. Note that
W -= 0 * conformally flat and R2 0 Einstein.
For more details concerning the decomposition of curvature tensors, we

refer the reader to Kulkami [14], Polombo [15].
For our purpose we prefer to think of the curvature as matrix of two forms.

Let L be the curvature matrix corresponding to I A I; then

(3.5) L 0’ A 0

where 0x,..., O" is an othnormal coframe. Let T be the (1, 3) tensor corre-
sponding to S A I, i.e.

(T(x, y)o, u) (S A I(x ^ y), u ^ o)
1/2(Sx A y + x A Sy, u A o)
1/2 ((Sx, u)(y, o) (Sx, o)(y,u)
+ (x, u)(Sy, o) (x, o)(Sy, u)).

In other words

(3.6) T(x, y)v 1/2{(Sy, o)x (Sx, o)y + (y, v)Sx (x, v)Sy).

The components of T,

are two forms which can be expressed as follows"

Tff(x, y) 1/2 { (Sy, e,)(x, e#) (Sx, e,)(y,

+ (y, e,,)(Sx, e#) (x, e,)(Sy, e#) }
1/2{S,(y)Ot(x).- S’(x)OO(y) + O’(y)SO(x) O’(x)S#(y)},

that is

(3.7) Tf 1/2(S A 0 + 0# A S)

where S/ is the one form defined by S#(x) (Sx, e#) where S is the Ricci
tensor. In terms of the orthonormal frames e and its dual 0,



Thus Sx

Thus
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.__,5"it h a.R.O The following identity will be useful later"

(3.8) Esx
^ ox= o.

From the spinor representations we get

10X 2 0 4 5 6)---( ^0-0 ^ -0 ^0

1 Ox x 2 2 O3

where 02-x + i02 d its conjugate; silarly we get

10(_1 -(t_)= ( + -(t- t)}

1
1{_ N

_
}+

1(
1

L 4 1 2

295
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Thus we may represent (I A I)_ in the following form:

o(R)_-- (n"’- 1)(I A I)_

4n(n- 1)
02

03 0
0 0

0
__3

2
O

A

1 2

-03 0
0 --0 3

3 0
0 3

02 1

Analogously, we have

r,3_

Sl 02 01 S2 S3 4-{ ^ + ^ ^0

"--03 A S4- S5 A 06 05 A S6}
1 yt S 0 S2 02={

1=f A + A@ +
where Sa S2,- + iS2* and S* its conjugate. We have also use equation
(3.8). Proceeding in a similar way, we get



TWISTOR SPACES 297

Thus we may express (R 2)- as follows:

2 2o(R2)-= n 2 (S A I)-- n(n 2) (I A I)-

2n(n 2)
02 O

0

0
__3

O

z 2
-02 0

--0 0
0 -0

3 0
0 3
0 _02

02

THEOREM 3.
position

where

The curvature of the negative spinor bundle admits the decom-

R_ +(R:)_ + w_

4n(n- 1) tOAO,

2(n- 2)
O t^ 0- 2n(n-2) ^O,

1
2(n 2) 6a^ O + 4(n- 1)(n 2) tOAO.
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Remark. Theorem 3 applies to the case n 2 as well. The computations are
indicated by the 2 x 2 submatrices (double-lined) in the upper left-hand
coiner.

Computing as above but using the positive spinor representation, we get the
corresponding decomposition for the positive spinor bundle:

THEOREM 4.
position

The curoature of the positioe spinor bundle admits the decom-

s+ + w/

where

(R)+ 4n(n- 1)O A tO,

(R2)+ 2(n 2)
Lq’A

2n(n 2) 19 Ate,

W+ R+- 2(n 2) aA + 4(n 1)(n 2) 19 Ate.

In the above formulas, 5a and 19 represents the following matrice of
1-forms:

,3 0
0 6a3

_if3 0
0 -53

52

3 0
0 3
0 -2
02

From Theorems I and 2 of [}2, the integrability conditions for the canonical
almost complex structures on the negative and positive spinor bundles are
given respectively by

R_=A A19, R+=BAtO

Now from the decomposition of R_ and R +, it is straightforward to show
that the above conditions are equivalent to W_ 0, W+ 0 respectively. We
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summarize these results in the following:

TrlEOREM 5. The negative (resp. positive) spinor bundles Y(V_) (resp.
#(V+)) over a 2n-dimensional (n 2 or 3) oriented Riemannian manifold M,
with the canonical almost complex structure is a complex manifold if and only if
W_ 0 (resp. W+ O) where W is the Weft conformal tensor of M.

Note that since so(6) is isomorphic to su(4) via the positive as well as the
negative spinor representations. Thus for n 3 the conditions W+ 0, W_
0 and W 0 are equivalent. However for n 2, so(4) su(2) su(2) and
W+/- are respectively the self-dual and anti-self dual part of the Weyl tensor W.
If M is a Kihler surface then W+ 0 is equivalent to the vanishing of the
scalar curvature whereas W_ 0 is equivalent to the vanishing of the Bochner
tensor.

4. Integrability of submanifolds of the spinor bundle

The negative spinor bundle V_ contains natural subspaces F_ spanned by
!1, !2 and I3 and G_ spanned by I12!3 whereas V+ contains F+ spanned by
i112, t2 and 11 and G+ spanned by 1. To study these subspaces we must
restrict ourselves to the case where the base M is a complex 3-dimensional
Ktler manifold with Kiihler metric h and almost complex structure J. Let
and f respectively be the hermitian connection and curvature of h. These are
forms with values in u(3), the Lie algebra of the unitary group U(3). Let
1 _< a _< 6, with e2. Je2._ be an oriented orthonormal basis with respect
to the Riemannian metric g Re h for the real tangent bundle, then

f,=(e2._1-ie2.)/2, 1<a<3,

is a unitary frame for the holomorpbic tangent bundle of M. With respect to
these frames the hermitian connection v of h and the Riemannian connection
o are related by the formulas

(4.1)  022 -I 20 0 20-1 0-,o o

where vt and vii are respectively the real and imaginary parts of v.
Similarly for the curvatures we also have the relations

(4.2)

where ft and fn are the real and imaginary parts of ft. We remark here that
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in the literature the basis are often chosen so that

Je, e+ and f=e-ie,,+,,l <_ a < n.

In that case the connections and curvatures are related by

--fill

(cf. [27], p. 271).
With the help of formulas (4.1) and (4.2) we see that the spinor representa-

tions of the Khlerian connections and curvatures assume the following
special forms:

(f,o_)l "-((,0 043 (065 )
2- (-(,,,) + (,’,i) +

2 1

<60_)2 (w3 + 24) i(w- w)))

1

--{(v,)3 -(v,),- i(-(vn) + (v. 0.

(_o

(_o,
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In other words,

(4.3)

1

0 0 0

0

0

0

+ 22 + 3

Similarly,

(4.4)

1

a 222 a 22 22
2x2 2 + f22 33 232
23 2a32 2 + f33
0 0 0

o
o
o

+ +

Thus the connection and curvature of V_ splits into direct sums compatible
with the decomposition V_ C(, 2, 3) C(x23) F_ $ G_.
As for the integrability conditions, we choose the horizontal forms

1 < a < 4, as in (2.3) with z 4 0 since F_ { z4 0}. For vertical forms we
now only need three: X7z1, Vz 2 and Vz 3. At any rate observe that from (2.2)
and (4.3) we have Vz4 dz4 + Y’.za(o_) =- 0 on F_. With this in mind, we
see immediately from equations (2.4) and (2.5) that the integrability conditions
are still satisfied by the horizontal forms. Similarly we can read off the
integrability conditions for the vertical forms Vz, Vz 2 and Vz from (2.8) by
setting z4 0 and using (4.3). Summarizing, we have:

TI-IEOEM 6. Let M be a Kiihler manifoM of complex dimension 3. The
submanifold (F_) with the induced almost complex structure is integrable iff

4

(R_)= E AOv ^ O forl < a,B < 3

where Ov are the components of O as defined in (2.7).

Analogously, by setting z z 2 z 0 we also obtain the integrability
conditions for x, ,/2, ,13, 4 and Vz4 on G_.

TI-IEORE 7. Let M be a complex 3-dimensional Kiihler manifold which is a
spin manifoM. Then the negative spinor bundle V_ (hence also G_) is globally
defined and the integrability of G_ is given by (R_)44 ,4v_ A4v ^ O.



302 PIT-MANN WONG

The corresponding formulas for the connection and curvature of the positive
spinor bundles are given by

Let F/ be the subspace of V+ spanned by 12, 23 and 31 and G/
spanned by 1, then we have the following integrability conditions"

TI-IEOdM 8. Let M be a Kiihler manifold of complex dimension 3. Then the
submanifold (F+) c (V+) with the induced almost complex structure is
integrable iff (R+) 4E.xB. A for 2 < a, fl < 4, where ’g are the
components of the matrix of 1-form __t 19. Furthermore, ifM is spin then the
integrability conditions for G+ is given by (R +

To understand the integrability conditions obtained above we begin by
reviewing the decomposition of a Kthlerian curvature tensor under the action
of the unitary group. As before, let E be a real vector space of dimension 2n
with an almost complex structure J and a hermitian inner product ( ).
The complexification E (R) 12 decomposes into E’ and E" where E’ consists
of vectors of type (1, 0) and E"---E’. Denote by E’. E’ the symmetric
product of E’ with E’ and q/(E’ E’) the unitary endomorphisms on
E’ E’. The elements of q/(E’ E’) are referred to as KNtlerian curvature
tensors. In contrast to the Riemannian case, elements of all(E’. E’) satisfies
automatically the Bianchi identity. The space q/(E’. E’) decomposes under
the action of the unitary group into three invariant subspaces F Fg_ .
The subspace F is spanned (over ) by I. I where I is the identity on E’.
Denote by ( ) the hermitian inner product on E’, i.e., (Z, W) 2(Z, W)
for, Z, 14: E’. Then we have

(4.5) 1(I. I(Z. W), U. V) .(Z. W + W. Z, U. V)

--(z.w,v.v)
(z, v)(w, v) + (z, v)(w, v).
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Hence I. I is identified with the tensor

L(Z, )W- (Z, V)W + (w, v)z

which is characterized by the property that the holomorphic sectional curva-
ture

k(Z A ) (R(Z, )Z, )/]ZI 4 1.

The subspace F2 consists of endomorphisms of the form fo" I where
fo qloE’, the set of unitary endomorphisms on E’ with zero trace. The
subspace is the orthogonal complements of F F2 in q/(E’. E’). Ele-
ments of are called Bochner tensors. The dimensions of the various
subspaces are

dimRq/(E’, e’) nZ(n + 1)2,

dimRF 1,

dimRF n2- 1,

ln2 3)dimR=$ (n-1)(n+

where dimcE’ n > 2.
Let M be a complex n-dimensional Kihler manifold with Kihler metric

and the associated curvature, t, f2 and B the projections into the
respective invariant subspace, then fl fix + fl + B with

I. I,n(n + 1)
2 20

(4.6) 2 n + 2 K" I- n(n + 2) I" I,

2 o
B R z+-----K.n I + (n + 1)(n + 2)I. I

where K is the Ricci tensor and o is the scalar curvature.
Components of the curvature matrix of I. I w.r.t, unitary frames 0=
2- + iO2 are given by

z oe A -+ nEo A .
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By a straightforward calculation we obtain the negative spinor representa-
tion of I. 1:

202 A 03 -20 ^ 03 20 ^ 02

where A 2E_tO" ^ ".Denoting respectively by (I- I)2 and (I. I)’; the F_ and G_ components
of (I. I)_, we have

(4.7) (I. I)’_ ..W^ O’,

(4.8) (I. I)" v ^ O"

where

with v 0, 12 "--203, v3 --202, r4 201. We also denote by O’ the
(4 3)-matrix consisting of the first three columns of the matrix O and O"
the 4-th column of O.
For the curvature tensor K. I we have

(4.8) (K.Iz.w),u.v)
1g(Kz. w + Kw.z,u. v)
1- ((rz, u)(w, o) + (r, o)(w, u)

+(rw, u)(, o) + (rw, o)(, u)};
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hence it is identified with the (1, 3) tensor

1r(,, )w {(w, o)K, + (,, o)w + (, o)Kw + (Kw, o)z).

Relative to the unitary frame 1/2(e2a_ ie2a), the components of T are
given by

(4.9) Tff (Ta, a)

and =E Ka-O/.where K9 (K, ) Y’.R,a9 O ,
Applying the negative spinor representation we obtain

+ (Kx-K:-K)E0’ ^ ’- },
I(K1 2 O1 +K2i(r_),_ (r_) ^ + ^ Eo’ ’

(r_)x -(r_) K ^ + ^ EO’ ’
(r_)i -(T_)’ o,

(T_) I(K1 1 r2- ^ ^
+ K ^ 3+O1A ’f_ 02 A -_ 03 ^-
+ (rx r +K)EO’ ^ ’ + ),

1((r_)] -(r_) K2

^ 3 + 02 A - + K3Ov ^
(T_) (T_) O,
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1 {
_

(r_)=- K^ +K ^ -K ^
+ O A K 03 A K

(T_)34 -(T_) 0,

Since the cci tensor is heretic, we may choose uNta frames so that K
is in diagonal form th real eigenvalues X, X and X. e formulas above
reduce to

1 { 2XO 2X30 3

1 ol i h3)02 2

(T_)2 -(T_) =I(X + X210 A 2,

(T_)3 -(T_) O

(r_11 -(r_ (r_ -(r_l (r_ll -(r_l 0,

1(r_ {(-4X + X- X)e + (-X + X- Xle g

+ (-Xl + X- Xle

(r_l (x + x)e

(r_l ((-x- x + xle g + (-x- 4x + xl
+ (-x- x + xle g),

(r_) ((x + x + xle + (x + x + x)e

+ (x + x + xe a ).
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From these expressions we observe that T_ can be expressed as

(4.10) T_
1 t2 t3 4 ""

where

and

gl 0, g2 (’1 "]- 2 -]- 6k3)O3,
g3 --(1 -I- 6k 2 + 3)O2,
g4-- (6Xt + 2 4" 3)O1,
v (2)k + 7)k 2 + 73)O2 A 03,
1’2 --(7)k + 22k 2 + 7)k3)O A {93

r3 (7h + 7h 2 + 2h3)O ^ 02

x-- (-2xx + 5x + 5x3) ^ 3,
2 -(5- 22 + 5,3) ^ 3

1//3 (5X + 5. 2 2X3) A 2.
The two matrices t’ and H are given by

(4.11)
(2h h2 X3)O (X 4h X3) (X X 4X3)
(_hi + 2h2 h3)O2 (4hl h2 + h3)1 0

(-h X2 + 2X3)O 0 (4h + h X3)
(4.12)

0

0 1(--X + )k 4h3)
(hi + 4h 23)

0 (X --)2)O A 2 (X --)k3)O A 3
n (x_- xx)o x 0 (x- x)o

(X 3 Xl)O3 A 1 (X X2)O3 A 2 0

Denoting by TL and TL’ the F_ and G_ components of T_, we have

1(4.13) TL ]( A O’+ H),

1 1 4

=1

where O’ is the first tee colus of O and O" is the 4-th colu of O.
Notice that the cuature TL satisfies the inteabity condition of Theorem 6
iff H 0 iff hx 2 3 0 iff the cci tensor is a multiple of the metric
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tensor, i.e., the metric is Einstein. On the other hand we see that T’_’ satisfies
automatically the integrability condition of Theorem 7.
From the decomposition (4.6) of the curvature tensor fl we obtain the

following decomposition of the F_ and G_ components of the curvature fl_:

(4.15) a,_ +(a, + a,, (a,)" +(a,)"+

with

(4.16) .(. + 1)(1.I n(n + 1)

(4.17) (a2)’-= n +2 2 (K. I)’_- n(n20+ 1) (I. I)’_

1 o ] 1
2(n+2)’- L Aft)’+ H,n(n + 1) 2(n + 2)

[ 1 o ](4.18) B’__ a;-
2(n + 2)

vg-
(n + 1)(n + 2) *

1
Aft)’-

2(n + 2) H,

(4.19) (f),. o

n(n + 1) AO’’,

1 20(4.20)

(4.21) B’_’ trace of B 0.

From the decompositions above and Theorems 6 and 7, it is straightforward
to show:

THEOREM 9. Let M be a complex 3-dimensional Kiihler manifold then the
submanifoM (F_) c (V_) with the induced almost complex structure is a
complex manifold iff B 2 0 and that the metric is Einstein.

Remark. It is easily seen from (4.4) that B’__ 0 iff B 0 so that the
conditions in the above theorem means that M is Kahler-Einstein with
vanishing Bochner tensor. The fiber in (F_) over each point of M is CP2.

THEOREM 10. Let M be a complex 3-dimensional Kiihler manifold such that
M is spin. Then G_ c V_ with the induced almost complex structure is a
complex manifoM.

Remark. The fiber of G_ over each point x M is C. Note that the
projections of (F_) and of G_ onto M are not holomorphic.
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The corresponding decomposition and integrability for F+ and G/
entirely analogous and will be omitted here..

are

5. Examples

Example L The standard spheres S", the Euclidean spaces R" and the
hyperbolic space H"= SO0(1, n)/SO(n) are conformalty fiat; i.e., the Weyl
tensor W is 0 and so are their quotients. For non-Einstein examples, the
spaces R’ x Sq, S’ x Sq, Rt’ x Hq, H’ Hq with p, q > 1 and with the
standard product metric are conformally fiat iff p 1 or q-- 1; the space
H’ X Sq, p, q > 1 with the product metric is conformally flat iff p q. It is
also known that every orientable, locally irreducible, locally symmetric 4-
manifold is half conformally fiat, i.e. W_ 0 (cf. Derdzifiski [6]).

Example 1I. The complex projective spaces CP" with Fubini-Study metric,
the complex Euclidean spaces C" and the complex hyperbolic spaces D" (i.e.
unit ball in C" with Bergmann metric) are Kihler-Einstein with vanishing
Bochner tensor and, so are their quotients. For non-Einstein examples, the
space D’ CPq, p, q > 1 with product metric has vanishing Bochner tensor
iff p q. For Khler surfaces, CPE, C E, DE and D CP exhaust the list of
simply connected surfaces with vanishing Bochner tensor (el. Chen [5]). For
K.hler surfaces, W_ 0 ** vanishing Bochner tensor; whereas W/ 0 **
scalar curvature vanishes (cf. Tricerri-Vanhecke [19], Derdzifiski [6]). Kihler
surfaces with vanishing scalar curvature are classified by Hitchen [12]; they are
either glat or a K-3 surface, an Enriques-surface or the orbit space of an
Enriques-surface by an anti-holomorphic involution.

Example 111. The twistor space #(V_) over S4 is p3 and that of S6 is
the complex hyperquadric Q6. In fact the twistor space of SE" is SO(2n +
1)/U(n) with the unique (up to conjugation) invariant almost complex struc-
ture. We remark here that the uniqueness of the invariant almost complex
structure corresponds to the fact that the center of U(n) is one dimension.
Also the 2-nd Betti number of such manifold is 1. The oriented orthonormal
frame bundle of SE" is SO(2n + 1) and the twistor space is the associate fiber
bundle

SO(2n + 1) SO(2n)SO(2n)/U(n) SO(2n + 1)/U(n).
For S4 and S6, it is straightforward to show that canonical almost complex
structure defined on (V_) is invadant by (and commutes with) the action of
SO(7). Thus (V_) is identified with SO(5)/U(2) (resp. SO(7)/U(3)) as
complex homogeneous KRhler manifold. It is known the SO(2n + 1)/U(n) --SO(2n + 2)/U(n + 1) which are the hermitian symmetric spaces of type
Dn+ 1, which for n 2 and 3 are respectively CP and Q6. Actually for these
two cases we can check directly by computating the first chem number cl (we
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follow the notations of Bourbaki [4]). For SO(5)/U(2) the Dynkin diagram is
B2 o - ’ /_

C1 /,2 3
The roots of SO(5) are :k, +2, q’(l "q" 2), q-(l 2) and the roots for
U(2) are +/-(x 2). The positive roots are respectively a + a2, 2 2,

2 a, + 2 ax + 2a2 (and for U(2), 2). Thus the comple-
mentary positive roots are , 2 and x + 2. Then cx is given by

2(x + 2 + x + 2, 2)= 4(2, 2) 4 I + dimc SO(5)/U(2).

Analogously for SO(7)/U(3), the Dynkin diagram is B3"

(1 2
The positive roots for 80(7) are 1 --al + a2 + a3, 2 -a2 + a3, 3 -a3,

1 2 1’ 1 3 al + a2’ 2- 3 a2’ 1 + 2 al + 2a2 + 2a3’ 1
+ 3 al + a2 + a3, 2 + 3 a2 + 2a3 (and for U(3), t 2, t 3,
2 3). The complementa positive roots are 1, 2, 3, + 2, t + 3,
2 + 3 and so Cl is ven by

2( + 2 + + t + 2 + + + 2 + 3, 3)
2(3, 3) 6 dimc SO(7)/U(3).

It is a classical result that a projective mfold M with c 1 + dimcM is
the complex projtive space and if ct dimcM then M is the hyperquadfic.

Example IV. The tstor.space of CP2 is U(3)/T3 (T3 U(1) x U(1) x
U(1)), i.e., the flag mmfold F(1,2) of nes in CP2. It c be shown that
(F_) over CP is U(4)/U(2)x U(1)x U(1). It is a simply connected
homogeneous Kler manifold. The canocal aost complex structure on
(F_) corresponds to the vt flmost complex structure described
below. In ts case, the dimension of the center is larger th 1; thus there are
inequivalent invadant flmost complex structures (cf. Borel-Hirzebmch [3]).
The roots of U(4) are ven by (- y), 1 < j 4; those of U(2) x
U(1) x U(1) are (t 2) with x 2 the positive root. The complemen-
ta positive roots are 3, x 4, 2 3, 2 , 3 4. Ts is the
root system of an invt almost complex structure. The image in
HE(u(4)/T4, Z) of the first Chem class of the complex structure defined
above is ven by the sum of the positive roots 2 + 22 3 34-
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