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SHARP INEQUALITIES FOR
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1. Introduction

In a recent paper, Mateljevi¢ and Pavlovié¢ [6] gave new proofs for the
isoperimetric inequality by using the boundary behaviors of holomorphic
functions belonging to certain Hardy classes on the unit disk A. These proofs
are based on sharp norm inequalities for holomorphic functions which are of
interest on their own right. For example, the following sharp inequality is
proved in [6]. Let f € H'(A), then

2
7

4qrfA|f(z)|2dA(z) < {faAIf(Z)IIdZ'I}

where dA denotes the area Lebesgue measure, and H?(A) (0 < p < o)
denotes Hardy class. Equality holds if and only if f is of the form f(z) =
CQ — z$)72, z € A, for some constant C and some point { € A. Other sharp
inequalities, similar to the one above, were proved by Aronszajn [1], Saitoh [9]
and Burbea [3],[4]. The main purpose of this paper is to give an extension of
these results to various situations which were not covered in [1},[3], [4], [6], [9]-
The method of proof will be based on ingredients taken from a rather general
theory expounded in [4] (see also [2],[3]).

2. Preliminaries and notation

For z = (zy,...,2,) €C", a=(ay,...,a,) €Z} we use the standard
multinomial notation

a

al =o' a,), |a| =0+ - ta,, z*=2z{t .- 25,

1/2
lzll o = max |z;| and |lz|| = (jz,|> + - -+ +]z,|?) 7"
l<j<n
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Moreover, if also { = ({;,..., {,) € C", then we let
z-8=1(241,.-,2,8,) EC" and (z,¢) =z,5 + --- +2,8,.
We also let

A={AeC:|A| <1},
T=3A={AeC:|A\| =1}, A"={zeC":|z|, <1}

and
B={zeC":|z|| <1}, S=03B={zeC":|z| =1)}.

For a complex manifold D, H(D) denotes the class of all holomorphic
functions on D. An open set @ in C” is said to be a complete Reinhardt
domain if z € Q implies z - { € Q for every { € A". In this case @ is a star
shaped domain containing the origin. Moreover, for any f € H(Q) there exists
a unique power series

f(z) = Xaz* (2€9)

with normal convergence in £, i.e., the power series converges absolutely and
uniformly on compacta of £ to f, and with

a,=a,(f) = (9%)(0)/a! (a€Zl).
Here, for z = (zy,...,2,) € C" and a = (a;,...,a,) € Z%,
d*=29; --- d;» where 9;,=0/9z;,1<j<n.
For a subset A of Z%, we let
H(Q:A)={feH(Q):{9}(0) =0,a € A}.

We fix a complete Reinhardt domain £ in C”. A function ¢, holomorphic
on a neighborhood of 0 € C” with ¢, = a,(¢), a € Z1, i.e,

¢(z) = X2

is said to belong to £(Q) if ¢, = 0 for every a € Z% and if ¢(z - Z) < oo for
every z € Q. It is said to belong to Z_(Q) if ¢ € £(R) and also ¢(z - Z) = o0
for every z on the boundary 9@ of Q. For ¢ € #(2) we let A, = {a €
Z%:c,=0} and Iy = Z}\ A,, and define

ky(z,8) =¢(z-§) (z,¢€Q).
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Evidently, for any { € Q, k,(-,§) € H(R: A,), and
N
Y a,dnky(24,2,,) 20
k,m=1
for every z,,...,zy € Q and every a,,...,ay € C (N =1,2,...). It follows

;hat k, is a sesqui-holomorphic positive-definite kernel on @ X . In particu-
ar,

k¢(2’§) =k¢(§,z) and |k¢(z,§)|2sk¢(z,z)k¢(§’,§)

for every z,¢{ € Q. From the general theory of reproducing kernels (see
Aronszajn [1]) follows that there exists a unique functional Hilbert space 5,
of functions f in H(: A,) with k, as its reproducing kernel. To identify this
Hilbert space we introduce the quadratic norm (see [4])

I3 =X catlaal

a€T,

for any f € H(Q: A,) with a, = a,(f), a € Z%, and denote by ( , ), the
induced inner product. This gives

H, = {fe H(Q:A,): Ifly < oo}
and
f(§) =</, k¢(’,§)>¢ (fe.)?;,g € Q)
We shall need the following theorem. Its proof is found in [4] (see also [3]).
THEOREM 2.1. Let ¢ and ¢ be in P(Q). Then ¢y € P(Q) with
I,,={v€Zi:y=a+B,a€l,,BeT,}.
Moreover, if f € #, and g € ), then fg € i, with
f8lley < NAllIEN,-
Equality holds if and only if either fg = 0 or f and g are of the form
f= Clk.p(‘,f), g= C2k¢(',§)
for some nonzero constants C, and C, and for some point { € C" with ¢(§ - O

< oo and Y(¢ - §) < oo. In particular, if also either ¢ or y is in P, () then
the point { must lie in Q.
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We also note that for ¢ € #(Q) with ¢, = a,(¢), a € Z%, the monomials

Jeuz% a € T,, form an orthonormal basis “for H,.
Forg>0 and meZl,/(q), stands for 1 if m 0 and

(9)m=T(qg+m)/T(q) =q(¢g+1)---(g+m-1) (m=1).

3. Inequalities in the plane
In the one dimensional case (n = 1) we take the unit disk A as our fixed
Reinhardt domain ©. On A we consider the function ¢,(z) = (1 — z)™7 where
q > 0. Evidently, ¢, € Z,(A) with a,,(¢,) = (¢),,/m! for m € Z, and with

I, =Z,.The correspondmg Hilbert space 9?; , norm || - ||¢ and reproduc-
mg kemel kg , are denoted by H#(A), || - |, and k, respectlvely Thus

ko(2,8) = 9,(£) = (1= )™ (2,8 €8)

and

IMz= X

Aml™>
= (q) | ml

where f€ H(A) with a,,=a,(f), m€Z,, and therefore H# (A) = {f€
H(A): Ifll, < o0}.As an 1mmed1ate consequence of Theorem 2. 1 we have:

THEOREM 3.1. Let f; e.;?;U(A) where q; > 0 forj=1,...,m, m > 2. Then

nfl lh"' +‘11(A)

with

I/,

Jj=1

m
< fill g -
L1z,

qQt+ o +q

Equality holds if and only if either TI]L,f; =0 or each f; is of the form
fi=Ck ( $) for some point § € A and some nonzero constants C(1 < j < m).

We let d4,(z) = |dz| /27 be the normalized boundary measure on dA, and
we consider the family {dA4,},. o of probability measures on A given by

day(z) = gn (1 - |z1*)* " dA(z) (z€A).

As a measure on A, dA ¢~ dA, as ¢ — 0™, In particular, if f is a continuous
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function on A, then

Jrado = [ fao = lim,_ [ faa,.

110’r

On the other hand

Jria,= [ fad, (g>0)

if f is integrable with respect to dA4 .
For g > 0and 0 < p < oo, we let 45(A) stand for the space of all functions
f € H(A) such that ||f]|, , < oo, where

.o = { fi1” a4 }w,

and where for ¢ = 0 the integration is carried over the nontangential boundary
values of f € Ag(A) It follows that A§(A) is the Hardy space H?(A), that
A%2(B), ¢ > 0, is a weighted Bergman space and that Af(A) is the ordmary
Bergman space AP(A). Moreover, it also follows that the space A2 2(4) is
identical with the space 57, ,(A) and that || - |l ,= || - ll144 for q=0.
Note also, that for 0 < p < oo, the Hardy space H?(A) = A§(A) is a projec-
tive limit, as ¢ — 07, of the weighted Bergman spaces 42(A), ¢ > 0.
Another functional Hilbert space of interest is the Dirichlet space

2(8) = {fe H(A:{0}): [If"llz1 < ®}.

This space can be generated by ¢,(z) = —log(l — z), and thus its reproduc-
ing kernel k, is given by

ko(zaf) = ¢0(Z§) = _log(l - Zf) (z’§ € A)

Moreover, for any f € H(A: {0}) with a,, = a,,(f), m € Z_, the quadratic
form ||f]|, of 2(A) is given by

o0

WAIS = 1f7NE = X mla,|>

m=1

Note also that (k, — 1)/q = k, and that q||f||2 - ||fII3(f € H(A:{0})) as
q — 0%, and thus 2(A) may be viewed as a projective limit of the space
Va - {f€#,(A): f(0) = 0} when g — 0*.
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THEOREM 3.2. Let f and g be in D(A). Then fg € A3(A) = H2(A) with

178ll2,0 < lflloligllo-
Equivalently,

of Veras < o{ firraa) - { f1g17 aa),

where ds(z) = |dz|, z € dA. Equality holds if and only if either fg = 0 or f and
g are of the form f(z) = C;z, g(z) = C,z for some nonzero constants C, and C,.

Proof. Let a,,=a,(f) b,=a,(g) and ¢, =a,(fg),meZ,. It fol-

lows that @y = by = ¢, =0, ¢, = 0 and

cn= Y ayb,_, (m=23,...).
k=1
This and the Cauchy-Schwarz inequality give
Velzo= X

m=1

kE agbyir—k

< Z Elakll -kl

m=1 =]

On the other hand

WAIangls = { > m\aml’} : { > m|bm|2}

m=1 m=1
© m

= 2 Z k|ak|2(m +1- k)|bm+1—k|2'
m=1 k=1

Since k(m + 1 — k) — m = (m — k)(k — 1) is non-negative for every 1 <
k<m, m=1,2,...,the desired inequality follows. If equality holds then for
every m = 1,2,..., there exists a scalar A,, € C so that A,, = a,;b,,,,_, and
(m — k)k - 1)|ak| |bpi1-kl? =0 for every 1 < k < m. Tt follows that A
= 0 for every m > 2 and { fg}(z) = A,z2. This gives the equality statement of
the theorem, and the proof is complete.

THEOREM 3.3. Letf; € HPi(A) with 0 <p; < ©forj=1,2,...,m,mz>=2,
Then

JAf - Aftemdd, s < TT [ 1ff ddo.
A j=17aa
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Equality holds if and only if either T17, f; = O or each f; is of the form
fi = Gkayp (-5 ),

i.e.,
Z\ -2
f(2) = 1= )7,
for some point { € A and some nonzero constants C; (1 < j < m).

Proof For 1 <j < m we let %; be a Blaschke product formed from the
zeros in A, if any, of f, and define g, = (f;/%,)%/> Then g; € H#,(A)
(= H*(Q)) for j =1,..., m, and, by Theorem 3. 1, ll'lj.ﬂgj €, with

(3.1) j_l'_:l[lgj

m
< TTuglh-
j=1

m

Equality holds if and only if each g, is of the form g, = ¢ k(-5 §) for some
¢ € A and some nonzero constants C 1 <j<m). We are assuming without
loss, of course, that [T7.,f; # 0 and henoe also [17~,g; # 0. Now, inequality
(3.1) is, by definition, equlvalent to the inequality

[1@172 - 1B PP AflPm dA, g < TT [ 151 dd,
A j=173a

and hence, since |%;| <1 (1 <j < m) on A, the desired inequality follows. If
equality holds then each %; must be a constant A; with [A;| =1 (1 <j<m)
and each g; is of the above mentioned form. It follows that each f; is of the
form

= NGO or f= Clagy,(+,8)
where C; = A jéjz/ 7, (1 <j < m). This concludes the proof

A special case of this theorem, namely when m = 2, was also obtained by
Mateljevi¢ and Pavlovié [6], by using different methods.

COROLLARY 3.4. Let f€ HP(A) with 0 < p < co. Then for any integer
m2=2, f€ AP, (A) with

"f“mp,m—l < "f"p,()'
Egquivalently

e aa, s {f deAo}m.
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Equality holds if and only if f is of the form f(z) = C(1 — z£)~%/?, z € A, for
some constant C and some point { € A.

Putting m = 2 and p = 1 in this corollary we obtain the result, mentioned
in the introduction, of Mateljevi¢ and Pavlovi¢ [6].

Let D be a hyperbolic simply connected plane domain and let A, be its
Poincaré metric. The latter is defined by

Ap(2) = ki(9(2), 9(2))l¢'(2)l (2 € D),

where ¢ is a Riemann mapping of D onto A, and is independent of the
particular choice of ¢. According to a theorem of Warschawski [10}, if D is
of class C! with a Dini-continuous normal, in particular if dD € Cb¢ (0 <
e < 1), then the conformal mapping ¢: D — A extends to a C'-diffeomor-
phism of D onto A and there exist positive constants a and b such that

0<ax<|¢'(z) <b<ow (z€D).

It follows that for any 0 < p < oo the Hardy space H?(D) coincides with the

Smirnov class E?(D) (see [5, p. 169]), and that the “norm” in H?(D) may be
given by

IAll, p = {2,7 fDIf(Z)V’IdZI}Vp < o0,

where the integration is carried over the nontangential boundary values of

f € HP(D). In particular, {¢™ - (¢')'/?},,5 forms an orthonormal basis for
H*(D) and

Ko p(2,8) = ki(8(2), s # ()Y} (2,8 € D)

is the Szegd reproducing kernel of H*(D).

Let 0 < p < oo. For ¢ > 0, we let LF(D) be the L?-space with respect to
the measure (q/7)N;9dA, and we let AP(D) H(D) N L{(D). It follows
that A2(D) is a closed subspace of LP(D) It is natural to extend these
deﬁnitions- to ¢ = 0 by letting LE(D) stand for the LP?-space with respect to
the boundary measure |dz| /27 on dD, and by defining 4§(D) to be H?(D)
as above. In this case we adopt the usual convention of identifying Hardy
classes A§(D) = H?(D) with closed subspaces of Lf(D). We now observe
that if ¢ is any biholomorphic mapping of D onto another domain D * such
that dD* is of class C! with a Dini-continuous normal, then the mapping

[ (fod) - (v) a7
constitutes a linear isometry of LF(D*) and A#(D*) onto LZ(D) and
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A2(D), respectively, for any ¢ > 0 and 0 < p < 0. In particular,
{ (q + l)m/m!¢m . (¢,)(q+1)/2}

forms an orthonormal basis for 42(D) and K, p(z,$) = (K, p(z, §)}9*!
(2, § € D) is the reproducing kernel of 42(D) (¢ = 0). Note also that A7(D)
is the ordinary Bergman space and that A45(D) is the projective limit of
AP(D)as ¢ > 0% (0 < p < o).

In view of the above discussion, the following theorem may be regarded as a
corollary of Theorem 3.3. Once again, a special case of this theorem, namely
when m = 2 and D is a simply connected plane domain whose boundary is
analytic is due to Mateljevi¢ and Pavlovi¢ [6]. (Note, however, that the
corresponding equality statement in [6] contains a trivial error.)

m>0

THEOREM 3.5. Let D be a simply connected plane domain whose boundary
dD is of class C! with a Dini-continuous normal. Let f; € H?(D) with
0<p <o forj=12,...,m,mz22. Then IT]L,|f;|” € L.,_,(D) with

m-—1
@

m m
/ ( H|f,~|”f) Npmdd < TTIAIE, o
D\ j=1 j=1
Equality holds if and only if either TI]_,f; = 0 or each f; is of the form

=G ()7

where ¢ is a Riemann mapping of D onto A and C; are nonzero constants
A<j<m)

Proof. Let y be any biholomorphic mapping of A onto D, and define
g =(f°9) (¢)"” (1=<j<m).
Since g; € H?/(A) we may apply Theorem 3.3 with g; in place of f,. This
gives the present inequality statement. Equality holds if and only if either
17,8, = 0 or each g; is of the form g; = C/k,,, (-, ) for some point 7 € A

; J, .
and some nonzero constants C/ (1 <j < m). Equivalently, either [17.,f, =0
or each f; is of the form

AL IOl R LW RTON K

Letting ¢ be a Riemann mapping of D onto A with ¢[¢(7)] = 0, and then
letting C; = C;{¥/()¢'(¥()) | ', we obtain the desired result.
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COROLLARY 3.6. Let D be a simply connected plane domain whose boundary

dD is of class C' with a Dini-continuous normal, and let f € HP(D) with
0 < p < 0. Then for any integer m > 2, f € AP (D) with

m-—1 m —-m m
= [N da < A

Equality holds if and only if f is of the form f = C(¢')'/? for some Riemann
mapping ¢ of D onto A and some constant C.

4. Inequalities on the polydisk

We take the unit polydisk A" as our fixed Rienhardt domain 2. On A" we
consider the function

0(z) = | [10-2)" (2= (eenrz) €47)

where q = (qy,...,q,) € R, \{0}. Obviously, ¢, € Z,(4") with a,(¢,) =
(@, /a! for a € Z7 and wn.h I‘ = Z"%, where

@ o= (q1) ---(qn)an (¢ =(ay,...,a,) €Z7).

The corresponding Hilbert space, norm and reproducing kernel are denoted by
Hy(A"), || - |lq and kg, respectively. Thus

ka(2,8) = dy(z - §) = jlill(l —z§) " (a.8ea)
and
A1 = I ggr-leal’
where f € H(A") with a, = a,(f), a € Z', and therefore
Hy (&) = {fe H(A): ||fll < ).
Theorem 2.1 has now the following form:

THEOREM 4.1. Let fje.%’;lj(A”) where q; € R, \{0} for j=1,...,m,
m = 2. Then

l_.[f; q1+ ,,,(An)
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with

1,

m
< TTifll,-
Jj=1

Gt

Equality holds if and only if either T17_,f; = O or each f; is of the form
fj = Cjkq( ) g )

for some §{ € A" and some nonzero constants C; (1 < j < m).

When q > 1=(1,...,1) the quadratic norm || - ||, admits an integral
representation. To see this we consider the probability measure

dpg(z) =dA, _,(z,) -+ dA, ,(z,) forz=(z,...,z,) € "

As in the unit disk A, dp, = dp, as q > 17, and

W12 = [ifdp, (f<H (A7), q21).

Here, the integration is carried over A" if q > 1 and over the distinguished
boundary T" if q = 1. In the latter case, f in the integral represents the
nontangential (distinguished) boundary values of f. In a similar and obvious
manner one may describe the intermediate situation where some, but not all,
of the components g; of q = (q;,...,q,) 2 1 are equal to 1. It follows that
H((A™) is the Hardy space H*(A™) and that 52, 2(4") for q > 1 is the weighted
Bergman space A _1(&™) with #5,(A") = AZ(A”) as the ordinary Bergman
space. Moreover, any space J#; (A) with q, > 1 may be viewed as a projective
limit of weighted Bergman spaces A (A", q>1,asq~ q3.
Let R: H(A") —» H(A) be the d1agona1 restriction mapping defined by

{Rf }(@) = f(w,...,w).

Since the diagonal restriction of k, (q € R% \{0}), the reproducing kernel of
H#,(A), is the reproducing kernel k|q| of #\qi(A), where |q| = ¢, + -+ +q,,
we deduce from the general theory of reproducing kernels [1] (see also [2]) that
R is a contractive linear transformation of J#(A") onto #q|(A). Moreover, it
also follows that R*, the adjoint of R, is a ]inear isometry of J#q|(A) onto
N(R)*, the orthogonal complement of the null-space N(R) = {f €
H(A"): Rf = 0} in S (A"), with RR* as the identity operator on H#{q|(4)
and R*R as the orthogonal projector of #,(A") onto N(R)*, and thus
IR|| = ||R*|| =1. In parucular, R maps the Hardy space H?(A") onto the
weighted Bergman space A2_;(A). For these and related results we refer the
reader to Beatrous and Burbea 2]
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A somewhat more precise formulation may be given by considering certain
power expansions. For ¢ € R" and m € Z_, we consider the homogeneous
polynomial of degree m,

(4.1) bgm(z)= X %z“ (zeCn).

la| =m

Since ¢, ,, is the m-th coefficient in the expansion of ¢y (w - z) =I17.,(1 —

wz;)~% in powers of w, where w = (v, ..., w), we deduce that
o 1
(42) bam = L D2 Ly,
la|=m
and hence

b= T 1=(mtn-1)

|af=m

Let f € H(A") with a, = a,(f), a € z,. Then

43) (R} @)= L ( T a)om (o),

m=0"\|a|=m

and so

N(R) = {feH(A”): Y a,(f)=0,m =o,1,...}.
lal=m
THEOREM 4.2. Let q € R",\{0}. Then:

(1) R maps H(A") into H#\q1(A) and ||Rf|| \q < |Ifllq for every f € H(A"),
with equality holding if and only if there is a sequence {\,} of complex numbers
such that

00

1
Y —r(lal) Al < o
m=0 "
and such that a (f) = A«i(q),/a! for every a € 1’ or, equivalently
o0
f= X Mdyms
m=0
(ii) For g € #q(A) with b,, = a,,(g), m € Z, we have
bl m!
{R*g}(2)= X bmm¢q,m(z) (z € 4%);

m=0
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(iii) RR* is the identity operator on #q;(A) and R* is a linear isometry
of H#q1(A) onto N(R)*. Moreover, N(R)* is the closure in QQ(A”) of the
linear span of { &g »}m 05

(iv) R is a linear transformation of 5,(A") onto #}q(A) with ||R|| =1,
and R*R is the orthogonal projector of H#(A") onto N(R)*.

Proof. To prove (i) we assume that f € #(A") with a, = a,(f), a € Z}
and use (4.3). Then, by the Cauchy-Schwarz inequality and (4.2),

2

Y a,

|af=m

EEwer)
13,

18- T (|q|)m

m=0

A

and the desired inequality follows. Equality holds if and only if for every
m € Z, there exists a number A, € C so that a(a!/(g),)"? =
A,((@,/aN/? for all @ € Z" with |a| = m. This, together with (4.1) and
(4.2), concludes the proof of (i). Item (ii) follows from (i) by a direct
calculation based on (4.1) and (4.3). We now prove (iii). That RR* is the
identity operator on J#|q|(A) is a straightforward consequence of (ii), (4.1)
and (4.3). From this it follows easily that R* is a linear isometry of  #|q|(A)
onto R*(#q|(A)), and the latter is a closed subspace of #,(A"). In particu-
lar, R*(3#)q(A)) = N(R)* and the first part of (iii) follows. The second part
follows from this and (ii), and (iii) is proved. To prove (iv), we first observe
that by (i), R is a linear transformation of J(A") into J#|q(A) with
IR|| <1. We then use (iii) to conclude that R is onto s#q(A) and that
IR]| = ||IR*|| = 1. Finally, we let P = R*R, and note that, by the last
observation and (iii), P is a linear transformation of J,(A") onto N(R)*.

Since P* = P and, by (iii), P> = R*RR*R = R*R = P, we conclude that P
is the orthogonal projector of #(A") onto N(R)*. The proof is now
complete.

A special case of part (i) of this theorem, namely when n =2 and q=1 =
(1,1) was also observed in Mateljevi¢ and Pavlovi¢ [6]. In this case, by (4.1),

m+1 m+1

z -z
¢4, m(21,2,) = Y up=1—>=2" (n=2),

z - 22
ayta,=m

and thus, as a corollary, we obtain:
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COROLLARY 4.3. Let f € H*(A%) = 5#,(A?). Then Rf € A*(A) and

JJr(o, @) das(w) < [ 1f (21, 22 dAo(21) dAo(22).

Equality holds if and only if f is of the form

o0
F(z1,25) = X Aoz = 2) 7 (2 = 20*1),
m=0
where

Y (m+1)A,12 < .

m=0

The last condition on {A,,} is implicit, but not mentioned explicitly, in [6].
For other approaches to the problem of diagonal restrictions on polydisks
we refer to Rudin [7, p. 53] (see also the references in [2]).

5. Inequalities on the ball

We now take the unit ball B as our fixed Reinhardt domain @ and consider
the function

Y (2) =1 -(z1))" (zeC")
where g > 0. Clearly, ¢, € Z,(B) with a(¥,) = (¢)1ai/a! for « € Z]; and
with ].",,,q = Z". The corresponding Hilbert space, norm and reproducing
kernel are denoted by #7(B), || - |||, and K, respectively. Thus
K (2,8) =v,(z-8)=(1~(2,8)"" (z,¢B)
and

A2 = Z(—qo%:—llaalz

where f€ H(B) with a,=a,(f), a€Z}, and hence ¥ (B)={fe
H(B): |ifll, < co}. Theorem 2.1 has now the following form:

THEOREM 5.1. Letf; € %}(B) where ;> 0 forj=1,...,m,m > 2. Then

m
,nlfj € Hypv - +a,(B)
e
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with
m m
Il 1-[1]3||qu+ e tgy, S l_lllllfjlllq,-
j= Jj=

Equality holds if and only if either TIJL,f; =0 or each f; is of the form
[i=CK, ( §) for some § € B and some nonzero constants C; (1 <j < m).

When g > n the quadratic norm ||| - |||, admits an integral representation.
To see this we let dv stand for the Lebesgue measure on C” and do for the
surface measure on § = JB, normalized so that ¢(B) = 1. For s > 0 we

consider the probability measure dv, on B, defined by dv, = do when s = 0
and by

dv,(z) = 77"(s5),(1 = N1zI1*)" " dv(z)

when s > 0. As a measure on B, dv, - dv, as s » 07, and

A2 g = [Ifi%de, (f €%, (B),q20).

Here, the integration is carried over B when ¢ > 0 and over S = dB when
q = 0. In the latter case, f in the integral represents the nontangential
boundary values of f. It follows that J,(B) is the Hardy space H*(B) and
that J,, ,(B) for ¢ > 0 is the weighted Bergman space 42(B) with 7 +1(B)
= AZ(B) as the ordinary Bergman space. It also follows that H 2(B) is a
projective limit of A2(B) as ¢ — 0™.

Let R,: H(B) » H(A) be the n-diagonal restriction mapping defined by

(R, f (@) =f(nY0,...,n" V).

As in the case of the polydisk, the n-diagonal restriction of K, the reproduc-
ing kernel of X (B), ¢ > 0, is the reproducing kernel k, of H#,(A). This
observation leads to the following theorem. Its proof follows elther from the
general theory of reproducing kernels [1], [2] or from arguments similar to
those given in the proof of Theorem 4.2.

THEOREM 5.2. Let q > 0. Then:
@ R, maps #,(B) into H,(A) with ||R,fll, < WIfll, for every f € #,(B).
Equality holds if and only if f is of the form
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where

P(z2)=(z;+  +2,)" (z2=(z2,...,2,) €EC").
and \,, € C with
o0

m!
: m}\ 2< :
Z (q)m” (Al S

m=0

(i) For g € H#(A) with b,, = a,(g), m € L., we have

0
Rg= X b,n"/’P,;
m=0

(iii) R,R} is the identity operator on #,(A) and R} is a linear isometry of
S#,(A) onto N(R,)*. Here N(R,) is the null-space in #,(B) of R, and
N(R,)* is its orthogonal complement in #,(B). Moreover, N(R,)* is the
closure in 3t (B) of the linear span of { P,,}> 05

(iv) R, is a linear transformation of 3(B) onto H#(A) with ||R,|| =1,
and R}R,, is the orthogonal projector of #,(B) onto N(R,) L,

The following corollary is a special case of part (i) of Theorem 5.2 (compare
Rudin [§, p. 127]).

COROLLARY 5.3. Let f€ H*(B). Then R,f € A2_,(A) and
JIR A2 dd4, < [ 171 do.
A s
Equality holds if and only if f is of the form

[~2]
AP, with Y, min™|\,|*/(n),, < .
0 m=0

f=

?Ms
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