REAL PARTS OF NORMAL EXTENSIONS OF SUBNORMAL OPERATORS¹

BY

C.R. PUTNAM

1. Introduction and main theorem

A bounded linear operator S on a separable Hilbert space H is said to be subnormal if S has a normal extension N to a Hilbert space $K \supset H$. In case S has no normal part then S is said to be a pure subnormal operator. Further, Nis called the (essentially unique) minimal normal extension if the only reducing space of N which contains H is K. (For the basic properties of subnormal operators, see Halmos [3], Chapter 21, and for a detailed exposition of the subject, see Conway [2].) Since H is invariant under N then $H^{\perp} = K \ominus H$ is invariant under N*. As in Conway [1], the operator $T = N^* | H^{\perp}$, is called the dual of S = N|H. Further, one can express N and N* as operator matrices

(1.1)
$$N = \begin{bmatrix} S & X \\ 0 & T^* \end{bmatrix}$$
 and $N^* = \begin{bmatrix} S^* & 0 \\ X^* & T \end{bmatrix}$ on $K = H \oplus H^{\perp}$.

In Olin [6], p. 228, it is shown that since S is pure with minimal normal extension N then T is also pure with minimal normal extension N^* . Further ([1], p. 196), T is the dual of S with spectrum $\sigma(T) = \{\bar{z} : z \in \sigma(S)\}$. Simple calculations with the matrices of (1.1) show that

(1.2)
$$S * S - SS * = XX^*, T * T - TT^* = X^*X$$

and

(1.3)
$$\operatorname{Re}(N) = \frac{1}{2}(N+N^*) = \begin{bmatrix} \operatorname{Re}(S) & \frac{1}{2}X \\ \frac{1}{2}X^* & \operatorname{Re}(T) \end{bmatrix}$$
 on $K = H \oplus H^{\perp}$.

Since S and T are pure subnormal (hence also hyponormal) operators, both $\operatorname{Re}(S)$ and $\operatorname{Re}(T)$ are absolutely continuous operators on H and H^{\perp} , respectively; Putnam [8], pp. 42-43.

© 1987 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received May 15, 1985. ¹This work was supported by a National Science Foundation research grant.

THEOREM 1. Let S be a pure subnormal operator on H with the minimal normal extension N on $K \supset H$, and let T be the dual of S. Suppose that

(1.4) $D^{1/2}$ is of trace class, where $S^*S - SS^* = D(\geq 0)$. Then

(1.5) Re(N), on K, has an absolutely continuous part, which, on the corresponding absolutely continuous subspace of K, is unitarily equivalent to Re(S) \oplus Re(T) on $K = H \oplus H^{\perp}$.

More generally, if a and b are real and $a^2 + b^2 > 0$ then $a\operatorname{Re}(N) + b\operatorname{Im}(N)$ has an absolutely continuous part which is unitarily equivalent to $[a\operatorname{Re}(S) + b\operatorname{Im}(S)] \oplus [a\operatorname{Re}(T) + b\operatorname{Im}(T)]$.

Proof. It follows from (1.3) that $\operatorname{Re}(N)$ is the sum of $\operatorname{Re}(S) \oplus \operatorname{Re}(T)$ and the selfadjoint perturbation

$$\frac{1}{2} \begin{bmatrix} 0 & X \\ X^* & 0 \end{bmatrix}.$$

The square of this last operator is $\frac{1}{4}(XX^* \oplus X^*X)$. In view of (1.4) and (1.2), $(XX^*)^{1/2}$ is of trace class. Thus, X and hence also $(X^*X)^{1/2}$ are of trace class. As was noted above, $\operatorname{Re}(S) \oplus \operatorname{Re}(T)$ is absolutely continuous, and so (1.5) is a consequence of the well-known Rosenblum-Kato theory [10], [4]; for example, see also, [5], p. 540 and [8], p. 101. The last part of Theorem 1 readily follows by replacing S by $e^{it}S$, where t is real, and the proof is complete.

In general, a pure subnormal operator for which (1.4) holds does not have a minimal normal extension N for which $\operatorname{Re}(N)$ is absolutely continuous. That is, in general, the absolutely continuous subspace of $\operatorname{Re}(N)$ may be a proper subspace of K. Perhaps the simplest example showing this is that of Sarason cited in [3], p. 307, where S is a unilateral weighted shift with weights $\{2^{-1/2}, 1, 1, \ldots\}$. Here the selfcommutator $S^*S - SS^*$ even has finite rank and $\sigma(N)$ consists of the unit circle together with the origin. In particular, 0 is in the point spectrum of N and hence also in that of $\operatorname{Re}(N)$.

Earlier, Wermer [11] (Theorems 1 and 2) gave an example of a pure subnormal S having a minimal normal extension N possessing a pure point spectrum (as has been noted also by Olin [7] and Radjabalipour [9]), so that the eigenvectors of N span K. In particular, Re(N) must also have a pure point spectrum. In this example, of course, the condition (1.4) cannot be satisfied.

It will be shown in Section 2 below that under the hypothesis (1.4) of Theorem 1, $\operatorname{Re}(N)$ may have, in addition to the absolutely continuous part claimed in (1.5), not only a point spectrum as in the example of Sarason above, but also a purely singular continuous spectrum. Finally, it will be shown in Section 3 that if (1.4) is relaxed to the requirement that $D^{1/2}$ only be of Schmidt class, or equivalently, that D is of trace class, then it is possible that $\operatorname{Re}(N)$ has a purely singular spectrum, so that its absolutely continuous component is missing.

C.R. PUTNAM

2. An example

It will be shown that there exists a pure subnormal operator S, in fact, an analytic Toeplitz operator, having a selfcommutator D satisfying (1.4) and a minimal normal extension N for which $\operatorname{Re}(N)$ has both an absolutely continuous part and a purely singular continuous part.

Let $f \neq \text{const}$ belong to H^{∞} , so that

(2.1)
$$f(t) \sim \sum_{n=0}^{\infty} c_n e^{\operatorname{int}} \neq c_0 \text{ and } |f(t)| \leq \operatorname{const}(a.e.) < \infty,$$

and let $S = T_f$ denote the corresponding Toeplitz operator. See [2], p. 272, [3], p. 136 or [8], pp. 128–132. Relative to the basis $\{e_n\}$, $e_n = e^{int}$ (n = 0, 1, 2, ...), for H^2 , with normalized Lebesgue measure on the unit circle, T_f has the representation as a bounded matrix

(2.2)
$$A = (c_{i-j}), i, j = 1, 2, ..., \text{ and } c_n = 0 \text{ for } n = -1, -2, ...$$

With respect to the standard orthonormal basis $\{\phi_n\}$ in l^2 , where $\phi_1 = (1, 0, 0, ...), \phi_2 = (0, 1, 0, 0, ...), ...,$ it is seen from a straightforward calculation (for example, see [8], p. 131), that

$$||A\phi_n||^2 - ||A^*\phi_n||^2 = |c_n|^2 + |c_{n+1}|^2 + \dots$$

so that

(2.3)
$$A^*A - AA^* = B^*B$$
, where $B = (c_{i+j-1}), i, j = 1, 2, ..., j$

Thus, in order that S satisfy (1.4), $(B^*B)^{1/2}$ must be of trace class. However,

$$\operatorname{tr}(B^*B)^{1/2} = \sum_{n=1}^{\infty} \left(\left(B^*B^{1/2}\phi_n, \phi_n \right) \leq \sum_{n=1}^{\infty} || \left(B^*B \right)^{1/2} \phi_n || \right)$$
$$= \sum_{n=1}^{\infty} \left(\sum_{k=n}^{\infty} |c_k|^2 \right)^{1/2} \leq \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} |c_k| = \sum_{n=1}^{\infty} n |c_n|.$$

Consequently, the condition

(2.4)
$$\sum_{n=1}^{\infty} n |c_n| < \infty$$

is sufficient in order that (1.4) be satisfied. Since (2.4) implies that $\sum |c_n| < \infty$, it is seen that, in particular, (2.4) assures that f(t) of (2.1) is bounded, and even continuous, on $[0, 2\pi]$.

The minimal normal extension N of $S = T_f$ on $H^2(0, 2\pi)$ is multiplication by f(t) on $L^2(0, 2\pi)$. For convenience, suppose that all c_n are real, so that Re(N) is the operator on $L^2(0, 2\pi)$ of multiplication by g(t), where

(2.5)
$$g(t) = \sum_{n=0}^{\infty} c_n \cos nt \neq c_0, \quad c_n \text{ real.}$$

It will be shown that g(t) of (2.5) can be chosen so that, in addition to (2.4),

(2.6) $g(t) = g(2\pi - t), 0 \le t \le \pi$, and g(t) is strictly increasing on $[0, \pi]$,

and, further,

(2.7) g''(t) is continuous on $[0, 2\pi]$, $g'(t) \ge 0$ on $[0, \pi]$ and g'(t) = 0 on a subset of $[0, \pi]$ of positive Lebesgue measure.

First, let C be a Cantor set on $[0, \pi]$ of positive measure. If the sequence of removed open intervals of $[0, \pi] \setminus C$ is denoted by I_1, I_2, \ldots , then $\Sigma |I_n| < \pi$. Next, for each $n = 1, 2, \ldots$, let $f_n(t)$ on $[0, \pi]$ satisfy:

(2.8) $f'_n(t)$ is continuous, $0 \le f_n(t) \le 1$ and $|f'_n(t)| \le 1$ on $[0, \pi]$; $f_n(t) > 0$ on I_n and $f_n(t) = 0$ on $[0, \pi] \setminus I_n$.

That such functions exist is clear. Next, let

(2.9)
$$h(t) = \sum_{n=1}^{\infty} f_n(t)/n^2,$$

so that h(t) = 0 on C and h(t) > 0 on $[0, \pi] \setminus C$. Also, h' is continuous and can be obtained from term by term differentiation of (2.9). If g(t) is defined by

(2.10)
$$g(t) = \int_0^t h(s) \, ds, \quad 0 \leq t \leq \pi,$$

then $g \in C^2[0, \pi]$ and g'(t) = h(t) on $[0, \pi]$. Extend the domain of g to $[0, 2\pi]$ by putting $g(2\pi - t) = g(t)$ for $0 \le t \le \pi$. Clearly,

$$g''(t) = \sum_{n=1}^{\infty} f'_n(t)/n^2$$

and $g''(\pi) = 0$, as a left hand derivative of g' at $t = \pi$. Consequently, the extension of g to $[0, 2\pi]$ has a continuous second derivative there. Further, it is seen that (2.6) and (2.7) are satisfied. Clearly, g(t) has a Fourier series of

the form (2.5) and, since $g \in C^2[0, 2\pi]$, $|c_n| \leq |b_n|/n^2$ (b_n real, n = 1, 2, ...), where $\sum b_n^2 < \infty$. In particular,

$$\sum_{n=1}^{\infty} n |c_n| \leq \sum |b_n| / n \leq \left(\sum 1 / n^2 \right)^{1/2} \left(\sum b_n^2 \right)^{1/2} < \infty,$$

so that (2.4) holds.

Since $g(t) = g(2\pi - t)$, it is seen that g is strictly increasing on $[0, \pi]$ and strictly decreasing on $[\pi, 2\pi]$. In addition, it is clear that the operator $\operatorname{Re}(N)$, multiplication by g(t) on $L^2(0, 2\pi)$, is (unitarily equivalent to) the direct sum of multiplication by g on $L^2(0, \pi)$ with itself. Also, if $u, v \in L^2(0, \pi)$, it is seen that

$$\int_0^{\pi} g(t) u(t) \overline{v}(t) dt = \int_0^M x u \overline{v} d\mu, \quad M = g(\pi),$$

where the strictly increasing continuous function $\mu = \mu(x)$ on [0, M] is the inverse of g(t) on $[0, \pi]$. Consequently, $\operatorname{Re}(N)$ is unitarily equivalent to $Q \oplus Q$, where Q is multiplication by x on $L^2(\mu)$. Since g' is continuous on $[0,\pi]$ and is 0 on the set $C \subset [0,\pi]$, then $\int_C |dg| = \int_C g' dt = 0$. If Z = g(C), then |Z| = 0 and $\mu(Z) = |C| > 0$, and so the operator Q has a purely singular continuous component, as was to be shown.

3. Another example

There will be given a pure subnormal analytic Toeplitz operator S for which

(3.1) S*S - SS* = D is of trace class

and for which

(3.2) Im(N) is purely singular,

where, as before, N is the minimal normal extension of S. (It is convenient here to consider Im(N) rather than Re(N). If $S_1 = -iS$ has the minimal normal extension N_1 then, of course, $\text{Re}(N_1) = \text{Im}(N)$.)

If A again denotes the matrix corresponding to S as in the beginning of Section 2 it is seen from (2.3) that

$$\operatorname{tr}(B^*B) = \sum_{n=1}^{\infty} ||(B^*B)^{1/2} \phi_n||^2 = \sum_{n=1}^{\infty} \left(\sum_{k=n}^{\infty} |c_k|^2 \right) = \sum_{n=1}^{\infty} n |c_n|^2,$$

so that relation (3.1) above becomes

(3.3)
$$\sum_{n=1}^{\infty} n |c_n|^2 < \infty.$$

It will be shown that there exists a real-valued function g(t) having a Fourier series

(3.4)
$$g(t) = \sum_{n=1}^{\infty} c_n \sin nt \quad (\text{with } \Sigma |c_n| < \infty)$$

satisfying (3.3) and such that the operator of multiplication by g(t) on $L^2(0, 2\pi)$ is purely singular.

The series (3.4) will be obtained as an adaptation of a certain lacunary series arising from Riesz products of the form

(3.5)
$$\prod_{i=1}^{\infty} (1 + \alpha_i \cos n_i t),$$

where, for i = 1, 2, ...,

$$(3.6) n_{i+1}/n_i \ge q > 3, -1 \le \alpha_i \le 1, \alpha_i \ne 0 \text{ and } \sum \alpha_i^2 = \infty;$$

see Zygmund [12], pp. 208–209. For use below, it may be noted that the first condition of (3.6) assures that

(3.7)
$$n_{i+1} - n_i - n_{i-1} - \cdots - n_1 > n_i;$$

[12], p. 208. Also, if $p_k(t)$ is the (nonnegative) k-th partial product of (3.5), so that

$$p_{k}(t) = \prod_{i=1}^{k} (1 + \alpha_{i} \cos n_{i} t) = 1 + \sum_{n=1}^{\mu_{k}} \gamma_{n} \cos n t,$$

then

(3.8)
$$\gamma_n = 0$$
 if $n \neq n_i \pm n_{i'} \pm n_{i''} \dots$, where $i > i' > i'' \dots$

In addition, the series

(3.9)
$$\lim_{k \to \infty} p_k(t) = 1 + \sum_{n=1}^{\infty} \gamma_n \cos nt$$

is the Fourier-Stieltjes series of the nondecreasing continuous function

(3.10)
$$F(t) = \lim_{k \to \infty} \int_0^t p_k(s) \, ds = t + \sum_{n=1}^\infty (\gamma_n/n) \sin nt;$$

that is, if $\gamma_0/2 = 1$,

(3.11)
$$\gamma_n = \pi^{-1} \int_0^{2\pi} \cos nt \, dF(t), \quad n = 0, 1, 2, \dots$$

Finally, and what is crucial here relation (3.6) implies that

(3.12)
$$F'(t) = 0$$
 a.e. ([12], p. 209).

Note that for any sequence $n_1 < n_2 < \ldots$ and for any fixed positive integer *i*, the number of sums of the form $n_i \pm n_{i'} \pm n_{i''} \pm \ldots$, where $i > i' > i'' > \ldots$, is not greater than 3^{i-1} . Next, choose the n_i so sparse that $n_1 < n_2 < \ldots$, $n_{i+1}/n_i \ge q > 3$, and so that, in addition,

$$(3.13) \qquad \qquad \sum_{i=1}^{\infty} 3^i/n_i < \infty.$$

Then, choose the α_i so as to satisfy (3.6). By (3.11), $|\gamma_n| \leq \text{const}$, and hence by (3.7), (3.8) and (3.13),

(3.14)
$$\sum_{n=1}^{\infty} |\gamma_n|/n \leq (\text{const}) \sum_{i=1}^{\infty} 3^i/n_i < \infty.$$

In particular, the series of (3.10) is absolutely convergent. Moreover, by (3.14),

(3.15)
$$\sum n(\gamma_n/n)^2 \leq (\text{const}) \sum |\gamma_n|/n < \infty.$$

Now, choose a second sequence analogous to $\{\alpha_i\}$, say $\{\alpha_i^*\}$, in such a way that the corresponding sequence $\{\gamma_n^*\}$ is not identical with $\{\gamma_n\}$. (Since $\gamma_{n_i} = \alpha_i$ (see [12], p. 209), this can be done in many ways.) If $F^*(t)$ denotes the function corresponding to F(t) let $g(t) = F(t) - F^*(t)$, so that, by (3.10), g(t) has the form (3.4) with

(3.16)
$$c_n = (\gamma_n - \gamma_n^*)/n$$
 for $n = 1, 2, ...$

Clearly, $g(t) \neq \text{const.}$ Also, since $(\gamma_n - \gamma_n^*)^2 \leq 2(\gamma_n^2 + \gamma_n^{*2})$, relation (3.15) implies (3.3).

Since g(t) is the difference of continuous monotone functions, g(t) is continuous and of bounded variation on $[0, 2\pi]$. In addition, by (3.12), g'(t) = 0 a.e. Consequently, the operator of multiplication by g(t) on $L^2(0, 2\pi)$ has no absolutely continuous part. Since g(t) = Im(f(t)), where f(t) is given by (2.1) with the c_n defined by (3.16) (and $c_0 = 0$), then the above operator is just Im(N).

4. Remarks

The following result is similar to Theorem 1.

THEOREM 2. Under the hypotheses of Theorem 1, the absolutely continuous part of N*N(=NN*) is unitarily equivalent to the absolutely continuous part of $S*S \oplus T*T$.

The proof is similar to that of Theorem 1 and will be omitted. It may be noted that the absolutely continuous parts of S*S and of T*T may be absent as, for instance, is the case when S is an isometry.

Added in proof. Necessary and sufficient conditions in order that the Hankel matrix $B = (c_{i+j-1})$ considered above be of trace class (i.e., that $tr(B^*B)^{1/2} < \infty$) have been obtained by V. V. Peller, *Nuclearity of Hankel operators*, Steklov Institute of Mathematics (LOMI Preprint E-I-79), Leningrad, 1979. See also the survey by S. C. Power, *Hankel operators on Hilbert space*, Research notes in mathematics, vol. 64, Pitman Adv. Pub. Program, Boston-London-Melbourne, 1982.

References

- 1. J.B. CONWAY, The dual of a subnormal operator, J. Operator Theory, vol. 5 (1981), 195-211.
- _____, Subnormal operators, Research Notes in Math., vol. 51, Pitman Advanced Publishing Program, Boston, 1981.
- 3. P.R. HALMOS, A Hilbert space problem book, second edition, Graduate Texts in Mathematics, vol. 19, Springer-Verlag, New York, 1982.
- 4. T. KATO, Perturbations of continuous spectra by trace class operators, Proc. Japan Acad., vol. 33 (1957), 260-264.
- 5. _____, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, vol. 132, Springer-Verlag, New York, 1966.
- 6. R.F. OLIN, Functional relationships between a subnormal operator and its minimal normal extension, Pacific J. Math., vol. 63 (1976), 221-229.
- 7. _____, A class of pure subnormal operators, Mich. Math. J., vol. 24 (1977), pp. 115-118.
- C.R. PUTNAM, Commutation properties of Hilbert space operators and related topics, Erg. d Mat., vol. 36, Springer-Verlag, New York, 1967.
- 9. M. RADJABALIPOUR, Eigenvalues of minimal normal extensions, preprint, 1976.
- M. ROSENBLUM, Perturbation of the continuous spectrum and unitary equivalence, Pacific J. Math., vol. 7 (1957), pp. 997–1010.
- 11. J. WERMER, On invariant subspaces of normal operators, Proc. Amer. Math. Soc., vol. 3 (1952), 270-277.
- 12. A. ZYGMUND, Trigonometric series, vol. I, second edition, Cambridge Univ. Press, Cambridge, 1959.

PURDUE UNIVERSITY WEST LAFAYETTE, INDIANA