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INVARIANT SUBSPACE LATTICES THAT
COMPLEMENT EVERY SUBSPACE

BY

CHE-KAO FONG, DOMINGO A. HERRERO AND LEIBA RODMAN

1. Introduction and the main result

In the theory of factorizations of operator polynomials and analytic oper-
ator functions (see [4] [5] [8] [9]) it is necessary to study invadant subspaees of
a given operator (acting on a complex Hilbert space) that are direct comple-
ments to a given subspace. Of course, such invariant subspaces do not always
exist. (Easy finite dimensional examples bear this out.) The following fact (due
to D. Gurarie [6]) proved to be a very useful tool in the factodzation theory
(see [9][10]): Let A be a (bounded linear) operator acting on a Hilbert space
J’, which is similar to a normal operator with finite spectrum. Then for every
(dosed) subspace t’ of J’ there is an A-invariant subspace such that
’n --- {0} and t’+

The main goal of this article is to prove that the operators similar to
normals with finite spectrum are the only ones whose lattice of invariant
subspaces complements every subspace.

It is convenient to introduce some definitions and notation. A subspace of a
(complex) Hilbert space f’ is a closed linear manifold. Two subspaces, t’
and , are called complementary (denoted t’ 4- ) if t’ n {0},
t’ + ,,f’. An operator A:3f’--, o,W is a bounded linear transformation
from into itself, and we denote by L(’) the algebra of all operators
acting on o,f’. The lattice of all invariant subspaces of T .oq’(o,’) is denoted
by Lat T. We shall say that Lat T has the complement property if for every
subspace ’ and there exists Lat T such that t’ 4- Y. The
lattice Lat T is said to have the chain complement property if for every finite
chain of subspaces

1 C’/t2 C C’ C’

there exist a chain

of T-invariant subspaces such that .t’ + for all 1, 2,..., r.
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The main result of this article is the following characterization of operators
whose lattices of invariant subspaces have these properties.

THEOREM 1. Let T Z’(’), where 9’ is a complex Hilbert space. The
following statements are equivalent:

(i) Lat T has the complement property;
(ii) Lat T has the chain complement property;
(iii) T is similar to a normal operator with finite spectrum.

If 9f’ is finite dimensional, then it is not difficult to verify the theorem by
using the Jordan form of an operator. (Observe that the complement property
is a similarity invariant.) It is remarkable that exactly the same result remains
true for infinite dimensional Hilbert spaces.

This article was completed while the second author was attending an
Informal Seminar on Operator Theory (Summer, 1986) at the S.U.N.Y. at
New Paltz. This author wishes to thank Professors L.A. Fialkow and H.N.
Salas, and the Department of Mathematics of S.U.N.Y at New Paltz for their
hospitality.

2. Proof of the main result

Obviously, (ii) implies (i). As mentioned at the Introduction, (iii) implies (i).
(A proof of this implication can be found in [9]). A simple argument (see
Proposition 3 in [10]) shows that (i) and (iii) together imply (ii). It only
remains to prove that (i) implies (iii).
Throughout the remainder of this section, T () will always denote an

operator whose lattice of invariant subspaces has the complement property.
For S in a(9,), we denote by ran S the range (or image) of S (ran S ( Sx:
x ’ }), and ker S (x g’: Sx 0}. The closed linear span of a collec-
tion of ( } r of subsets of ’ is denoted by

i r}.

Finally, 5f- stands for the closure of a subset r of scg’.

We begin with two simple observations.

LEMMA 1. (i) Every g in Lat T has a complement in Lat T.
(ii) ’= V(ker(T- X): X C}.

Proof. (i) This is a trivial consequence of the definition, applied to the
subspaces in Lat T.

(ii) Let "o V(ker(T- h): h C). If o #: ’, then we can find a
subspace t’ of such that fo c ’, and dim t’ _t= 1. Let 9 Lat T be a
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complement of /t’. Clearly, V{e} for some unit vector e such that
Te =/,e for some/, C. Therefore, c a’0 c .//t’, a contradiction. I

LEMMA 2. For each l C,

and

[ran(T-/,)]-= V(ker(T- X)" X 4=/,}

’= ker(T-/) 4-[ran(T-/)]-.

Moreover, [ran(T-/x)]- is the only complement of ker(T-/z) in Lat T.
Conversely, ker(T- #) is the only complement of [ran(T- #)]- in Lat T.

Proof We can assume/, 0. Let ker T, and let Lat T be some
complement of t’. Suppose y is a unit vector in ker(T- ,), for some , 4= 0,
and let y m + r, where m ’, r ’; then

1 1 1
y xTy x(Tm + Tr)= Tr ,

because r and T c . It follows that

07 V(ker(T- h): X 4= 0}.

Since, by Lemma 1 (ii),

a’= ker T V (V{ker(T- h)" h 0)) M/4- ,
it follows from the above inclusion that

= V{ker(T- h): , 4= 0}.

Clearly, ran T T, and (ran T)-= (T)-= is the only complement of
ker T in Lat T.

Conversely, let 5a Lat T be some complement of V’= (ran T)-. Then a
unit vector m ker T can be (uniquely) written as m n + s, where n 4,
s 5a. It follows that 0 Tm Tn + Ts, so that

Ts Tn ran T,
and therefore

Ts (ran T)- n se= se= (o}.

Thus n m s ker T N a4r= {0}, whence we conclude that s ker T;
that is, 6aD ker T and 5a is a complement of (ran T)-. Since ker T is also a
complement of (ran T)-, we deduce that 5"= ker T. 1



154 C.-K. FONG, D.A. HERRERO, L. RODMAN

More generally, we have:

L.MMA 3. Let F be a subset of C, and let

then

V{ker(T- h): , r};

Je(r) \ r).

Furthermore, t’(C \ r) is the only complement of t’(I’) in Lat T.

Proof. Clearly, t’(r), t’(c \ F) Lat T. Let Lat T be some com-
plement of t’(F), and let y be a unit vector in ker(T- #), for some # r;
then y rn + r, where rn ’(F) and r , and we have

so that

#y= Ty= Tm + Tr= #m + #r,

(T- #)r -(T- #)m n (r) (o).

By Lemma 2, ker(T- #) is the only complement of [ran(T- #)]-. Since
(by Lemma 2) [ran(T-/t)]-= V(ker(T- h): X #} includes t’(F), we
deduce from rn t’(F) and (T- #)m 0, that rn 0.

It readily follows that y r . Hence,

\ r) V{ker(T- X): X r).

Since oYY= -t’(r) v ’(C \ F) t’(r) , it follows from the above inclu-
sion that J(C \ r) is the only complement of ,At’(r) in Lat T.

COROLLARY 4. If T has only finitely many distinct eigenoalues, then T is
similar to a normal operator with finite spectrum.

The proof follows immediately from Lemma 3.
Let P(r) denote the projection of f’ onto Jt’(r) along ’(C \ r). It

follows from Lemma 3 that ( P(F): r c c} is a complete Boolean algebra
of idempotents. According to [2, Lemma XVII.3.3, p. 2196], is bounded;
that is, there exists a constant C > 1 such that IIP(F)II < C for all F c C.
Our next observation is that

o(Tl (r)) [r o(T)]-
for every r c c, where o,(T) denotes the point spectrum of T. To prove (.),
we can directly assume that r o(T). Let r (ht, h2,... )kin) be a finite
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subset of I’, and let

x E x (rx), Ilxll 1,
j-1

where xj ker(T- hi) (j 1,2,..., m). If h I’-, then

II(T- X)xll (X- X)x > C’min(IX- XI" 1 <j < m},
j-1

where C’ is a constant depending only on C. Thus,

II(T X)xll > C’ dist[h, I’],

and since g(I’) V{ t’(I’t): I’ c F, Ft finite}, it follows that

II(Z ,) y II > C’ dist[ X, F]llY II
for every y ’(I’) and every h F- On the other hand,

m m

x= Ex= E(X-h)-t(T
j--1 j-1

j-1

belongs to (T h)g(I’), so that [(T- X)t’(I’)]-= t’(F).
It follows that (T- X)I’(I’) is invertible for all X I’- So we have

o(rlg(r)) c r-.
Since we obviously have I" c o(Tlt’(I’)) we obtain (.).

It follows from [2, Chapter XV] that T is a spectral operator. Furthermore,
since o,f’= V{ker(T-X)" X op(T)}, it is not difficult to deduce that the
spectral integral fhP(dh) coincides with T, and hence T is a scalar type
spectral operator (see [2, XV.4] for details). By using a well-known result of J.
Wermer [11] (Theorem XV.6.4 in [2]) we have the following conclusion.

COROLLARY 5. T is similar to a normal operator with purely atomic spectral
measure.

Le coup de gr,ce.

LEMM 6. IfN ( hIx: h o(N)} (1x the identity on ker(N )) is a
normal operator with infinite spectrum, then Lat N does not have the complement
property.
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Proof o(N) [%(N)]- Thus, if o(N) is not finite, then op(N) includes a
sequence (Xn)_ of distinct eigenvalues. By passing, if necessary, to a
subsequence of (h )= 1, and replacing N by N aI for a suitable a C, we
can directly assume that A n

, 0 for all n, and IAn+ 1/,nl < 1/2, n 1, 2,
For each n 1,2,..., pick a unit vector e in ker(N- ,n). Note that

{ en)n=l is an orthonormal system. Now observe that if Lat(NISf ) does not
have the complement property for some c Lat N, then Lat N itself does not
have that property. (Let t’ be a subspace of 5f, let ? Lat N be a
complement of rig, and let P denote the projection of o, onto along
then c= (m + s: m t’, s 6a:= pc). It is not difficult to check that
5a Lat(NISf) is a complement of t’ in
By using this observation, we can directly assume that

6d= V(en) n=l"

Since o(N) (0) U ( , n }n-l (where ( , n }n=l is a sequence converging to 0),
it is straightforward to check that every invariant subspace of N is also
invariant under the orthogonal projection of d onto ker(N- Xn), and
therefore reduces N.
Now define

fp e(p_ 1)2 + + e(p_ 1)2 + 2 + + ep2)
(p 1, 2,... { fe )e= an orthogonal system) and

/"-" (V{fp}OO).1.e=l

If 0 Lat N is a complement of ’, then is spanned by a subset of the
orthonormal basis (en}n% (because 0 reduces N), including es(p) for some
s(p), (p 1) 2 + 1 < s(p) < p2 (p 1,2,... because otherwise it is impos-
sible to write fe me + re, with me ’ and re ).

Observe that

hp e(e)- (2p 2) -1

Therefore,

p2

j=(p-1)2+l j.bs(p)

e:,/g (p=1,2,...).

dist[e,(), ’] < Ile(,) h, (2p 2) -t/2 0 (p --, c),

whence it follows that t’ and ’ cannot be complementary subspaces.
Hence, Lat N does not have the complement property.

From Corollary 5 and Lemma 6, it easily follows that T is similar to a
normal operator with finite spectrum. Indeed, by Corollary 5, T is similar to a
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normal operator N with purely atomic spectral measure. If o(N) is not finite,
then Lemma 6 shows that Lat N does not have the complement property;
since the complement property is a similarity invariant, we conclude that Lat T
does not have the complement property, contradicting our assumption. Hence,
o(N) must be a finite set.
The proof of the Theorem 1 is now complete, m

3. Concluding remarks

(a) By combining the main result with [7, Theorem 4 (iii)], we have the
following result.

THEOREM 2.
(i)

(iii)
(iv)

The following are equivalent for T in ():
Lat T has the complement property;
Lat T has the chain complement property;
T is similar to a normal operator with finite spectrum;
the similarity orbit T,

6# ( T ) ( WTW W . :g’ ) is invertible ).
is a closed subset of .(,’).

(b) Theorem 1 suggests the following:

Problem. Characterize those operators A in (’) such that Lat A has
the quasi-complement property" for each subspace ’ of f, there exists in
Lat A such that

n= (0), (+ )- =.
Observe that if either t’ or ’ +/- is finite dimensional, then a quasi-comple-

ment of t’ is actually a complement. Therefore, Lemma 1 (ii) remains true in
this more general setting; more precisely:

"= V(ker(A ,)" X C) V(ker(A ,)*" , C),
where A* denotes the adjoint of A.

Moreover, each t’ in Lat A has a quasi-complement in Lat A, and we can
mimic part of the proof of Lemma 2 in order to show that

[ran(A -/)]-= V(ker(A X): X :

is the only quasi-complement of ker(A- #) in Lat A. Indeed, if # 0,
t’ ker A, and Lat A is a quasi-complement of t’, then given a unit
vector

y ker(A X) ( : 0)
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and e>O, we can write y=m+r+t, where mt’, r#, and
II L II < e. It follows that

1 1 1
y= ry= rr+ rt,

so that

1
dist[ y, 9] 11TII e.

Since e can be chosen arbitrarily small, and is dosed, we deduce that
y i’. Therefore,

V(ker(A ,)" , O) (ran A)-,

whence we conclude as in the proof of Lemma 2 that (ran A)-. Unfor-
tunately, the remaining results of the article do not have simple "translations"
to this new setting. The results of [3] can be relevant in connection with this
problem.
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