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GENERATORS AND RELATIONS FOR FINITELY
GENERATED GRADED NORMAL RINGS OF

DIMENSION TWO

BY

FRANCES VAN DYKE

Chapter 1. Introduction

Assume that R is a finitely generated graded normal ring of dimension 2
over C such that R (3 kRk where Rk 0 if k < 0 and R0 C. This implies
that R is the coordinate ring of a normal affine surface which admits a
C*-action with a unique fixed point P, corresponding to the maximal ideal
@>oRk (see [5]). Henry Pinkham has shown that R is isomorphic to
09(D) ._oL(nD) where D is a divisor on a Riemann surface X of genus g
of the form

pX i=1
piX

where n, Z, all but finitely many n, 0, 0 < fli/ai < 1, and L(nD)
denotes the set of meromorphic functions f, such that div(f) + nD >_ O. It is
easily seen that for each n, L(nD) is a vector space over C.

It is always possible to choose a minimal set S ( Yl,..., Yk ) of generators
for .’(D) such that the elements of S are homogeneous i.e. yj L(qjD) for
some qj. In the polynomial ring C[YI,..., Yk] give the variable Y degree qi;
then there exists a graded surjective homomorphism

p C Y, Yk "-) 09 ( D ) P ( Y )

Let I be the kernel of . We call I the ideal of relations for .’(D)
corresponding to S.

In the following paper it is shown that in many cases a minimal set of
homogeneous generators S and generators for the corresponding ideal of
relations I for .(D) can be determined if homogeneous generators and
relations are known for .’(D) where D < D and .’(Dx) has a much simpler
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116 FRANCES VAN DYKE

structure than .,’(D). In particular, the degrees of homogeneous generators
and relations can be deduced for all divisors D DO + E(Si/ai)P where
deg DO > 2g + 1 or DO is the canonical divisor on a nonhyperelliptic curve of
genus g > 3. Here and throughout the paper DO refers to an integral divisor.
These results generalize Mumford’s and Saint-Donat’s work on ’(D0) where
DO is of degree > 2g + 1 (see [4] and [8]). They also generalize Saint-Donat’s
results in his paper on Petri’s analysis of the linear system of quadrics through
a canonical curve (see [7]).
Given D as in (,) above, to find the degrees of the elements in a minimal

set of homogeneous generators S for (D), we show that it is necessary to
consider the convergents Pij/qij of the decomposition of the continued
fraction

Ol 1
Z aix ai2--

1

aikx

Here

Pij 1
aij]ail 1 al’qij a i2 a 3

". 1
aij

We find a divisor D such that .a(D1) is understood and

O
n qijiY’ npP + l ij, Pi

P-X if

where qij, 0 or pi,/q, is one of the convergents of Oti/i. The precise
conditions D1 must satisfy are given in Theorem 2.10. We then start with a set
of generators for (Dx) and build on to it. The additional generators
correspond to the convergents which appear in fractions in D but not in Dx.
By Riemann-Roch it is clear that whenever deg pD > 2g where j > j, there
exists a rational function y L(pD) L(pD P). In Lemma 2.9 it will
be shown that y is a primitive element and therefore if S is a minimal set of
homogeneous generators for (D) and deg pD > 2g, S must contain an
element (which will be called x,) of degree p. We say that such an x,. is a
generator corresponding to the convergent p/q at P.
Once the necessity of having elements x, . in any minimal set of homoge-

neous generators for (D) has been shown, the sufficiency is demonstrated by
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showing that a basis for the vector space L(tD1) for any can be completed to
a basis B for L(tD) using certain powers and multiples of the newly acquired
generators xi, j. In each example to be considered the completed basis for
L(tD) is

basis L(tD1)U ( Xm X n
i,j i,j+l }

where mpij + nl)ij+l t. Linear independence is shown by seeing that each
function x" x n has a pole at P of a different order.i,j i,j+l
Having established that a minimal set of homogeneous generators for (D)

can be obtained using a minimal set S ( Yl,..., Ys } for .W(D1) and a set of
new generators { x, j } we now have a surjective graded homomorphism

where the variables Yt and X, j have been given the degrees of the generators
Yt and x, j. Let I be the kernel of this map and let 11 be the kernel of the map

q)" C[Y1,’", Ys] ’(D1)"

It will be shown by induction on the number of new generators that

I (I1, M

where M is a quadratic monomial such that Xg, jIM, c C and tp(Bt) is a
basis element of the same degree as M. By a quadratic monomial we will
always mean that M ZiZj which of course does not imply that M is of
degree two relative to the grading.
The conditions on D stated in Theorem 2.10 ensure that the elements x, j

exist in .W(D), suffice to generate .W(D) but do not make any of the
generators Yl,..-, Ys of .Z’(D1) unnecessary as generators for (D). First of
all it is required that deg nD > 2g- 1 for all n >_ min Pij,+ 1. This require-
ment ensures the existence of new generators

xi, j L (PijD) L ( PijD Pi), J > Ji

as well as the fact that for all m > rain Pij,+l,

l(mD) l(mD1)
i=1

where t [mpj,/qj,] if ji, 0 and 0 otherwise. To prevent the possibility that
some Yk - (S1 (Yk }, { Xi, j } > it is required that each Yk e $1 be of degree
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<_ min p,+ or that Yk be a primitive element,

Yk - L(Pi,D) L(Pi,D- Pi)"

Finally, to form the basis for L(tD) it will be necessary to have a generator
xi, j, whenever ji k and this is assured if degree pj,D > 2g.
As an example we consider two divisors on a Riemann surface of genus 0.

Example 1.1.
0 such that

Let D and D1 be divisors on a Riemann surface X of genus

1 1
Dt -P + Pt + -Pz and D-- -? + +

1 2 2

where

". 1

has convergents Pij/qij and 1/2 < fl/a < 1. It is not difficult to see La(Dx)
C[Y] where Yx is of degree two, q(Y1) y and we can take

(z- p)2
(z-

For k Z/ a basis for L(2kD) is (y) and L((2k + 1)D) (0}. We have
the necessary conditions of Theorem 2.10 since deg nD > 2g- 1 for all n
and yl is a generator corresponding to the first convergent for a/flx and
a2/f12. To form a minimal set S of homogeneous generators for .’(D) one
can take Yl as above and then elements

Xi,j
(Z- P)PJ

( z Pi) qiJ ( z Ps) pij-qij s {1,2} (i},j> 1

The elements x,j are functions of degree Pij with poles at Pi of degree qij"
They are necessary as generators as in L(pg2D) no product of functions of
lower degree will have poles at P of as high an order as q2. For k Z/ a
basis for .’(2kD) is

( yl, x." .x. 2k,, j ,, j+ } where mpij + npj+
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and a basis for a((2k + 1)D) is

(xm x" 2k + 1i, j i, j+ } where mPij + nPij+

Using properties of convergents one shows the sets are linearly independent
and of the fight order. The degrees of the generators and relations as well as
the Poincar$ power series for the ring can be found in Table 2.

In Chapter 2 the assertions of the foregoing paragraphs are proved in detail.
Applications of the theorems in Chapter 2 are given in Chapter 3. Here it is
shown that if D is a divisor on a smooth projective curve of genus g where
degDO > 2g + 1, DO End,P, and

D Do + ( fl- ) P,or O< fl <1,

the degrees of the dements in a minimal homogeneous set of generators for
.W(D) and the degrees of the generators for the corresponding ideal of
relations are obtained from the numerators of the convergents of the fractions
a/fl. For a second application, rings of automorphic forms are considered.
Let G be a finitely generated Fuchsian group of the first kind and X the
Riemann surface which is the compactification of H//G. Suppose Q1,..., Q
are the parabolic points of X and P,..., P the elliptic points with branching
numbers el,..., er. Let A(k) be the vector space of automorphic forms of
weight k relative to G, i.e.,

k

f A’(k) * f(g(z)) f(z).

We consider the ring A(G) EkoA(K) which we say has signature

(g;s; el,...,er).

Gunning has shown that

where

A(G) E A(k) =.W(D)
k=,O

D=K+QI+...+Q, e-I+ Pi
i=,1 ei

and K is the canonical divisor on X. Given any such divisor D, the degrees of
the elements in a minimal set of homogenous generators for .W(D) and the
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degrees of the homogeneous generators for the corresponding ideal of relations
can be deduced using the theorems of Chapter 2. This work is started here and
will be completed in a subsequent paper. In many cases to find Go(t) and
Ro(t ) one can apply the work of Chapter 2 to Wagreich’s results on rings of
automorphic forms with few generators. I am grateful to Wagreich for these
results and his good suggestions on the final copy of this paper.

Chapter 2

As stated in the introduction Henry Pinkham has shown that every finitely
generated graded normal ring of dimension two over C is isomorphic to

o L(nD) where D is a "fractional" divisor on a Riemann surface of genus
g. More specifically D is of the form

(1) D DO + .,--Pi,
i---1

where/3i/a Q and DO E, xnl,P, n, an integer such that np 0 for all
but finitely many P. The fractions can be added so it is assumed without loss
of generality that the Pi’s are distinct. We consider the vector space L(tD)
{ fl (f) > tD ), where (f) Y’.vp(f)P denotes the divisor of a meromorphic
function f, and then study the ring __oL(nD) which will be denoted by
q’(D). We will use the notation l(nD) to denote the dimension of L(nD).
These rings are precisely the coordinate tings of normal affine surfaces with
good C*-action.
For each t, it is clear that L(tD) L(Dt) where

D
k

tDo +
i1

and [ti/oti] is the greatest integer < (t/a). Therefore, deg tD is defined in
the following way.

DEFINITION 2.1. If

k

D=Do+ E
i=10i

for Z we have

k

deg tD deg tDo +
i---1
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Note. We have deg tD >_ 0 , deg(t + 1)D >_ 0. Consider the divisor of
Example 1.1,

1 1
D -P + P1 / P2-

We have deg 2kD 0 while deg(2k / 1)D -1. If l
Z, then for all n Z,

< fli/Oti < + 1,

We therefore assume the fractions fl/a in (1) are such that 0 < fl/a
Finally, it is clear if DO D (i.e., DO D (f)) then for

and D’=D+ E -i P’
i=1

we have

D=Do+ P
i-------1 i

a(D’) a(D) (q(g) gf" for all g L(nD’)).

It should be noted that in this paper the term "D a divisor" will refer to a
divisor of the form given in (1) where 0 < fl/a < 1 if k > 1 (the possibility
D DO is not excluded.)

All the results of the paper are written down in Table 2 of Chapter 3 where
the Poincar6 generating polynomial, the Poincar6 relational polynomial and
the Poincar6 power series are given for L’(D) for each divisor D which is
considered in the paper. These polynomials are defined below. For

R- I) R
i-o - K[ Xx,..., Xd]/I,

let m be the maximal ideal m 6)=R. The elements xj m, 1 _< j _< d are
a set of algebra generators for R if and only if the residue classes ffl,..., ffa
m/m- are a basis of m/m2 as a K-vector space, m/m2 is a graded vector
space m/mE i=l(m/m2)i

DEFINITION 2.2.

is defined to be

The Poincar6 generating polynomial of

R R, =- K[X1,...,, Xd]/I
i=O

GR(t ) Y’. aiti where a dim(m/m2)i
i-O
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Similarly the elements xj, j 1,..., n are a minimal set of generators for I if
and only if the residue classes j, j 1,..., m form a basis for the graded
vector space 1/mI where m (X1,..., Xd).

DEFINITION 2.3.

is defined to be

The Poincar$ relational polynomial of

R (D R, = K[X,..., Xa]/l
i.-O

RR(t ) ait where
i-O

a dim(//mI ) i.

DEFINITION 2.4. The Poincar6 power series of R is defined to be

PR ( ) E a ti where a dim R i.
i-O

For .oq(D) we use the notation PD(t), RD(t ) and GD(t ).

The key results of the paper are proved in Theorem 2.10 and Theorem 2.12.
Five short lemmas precede Theorem 2.10. The first three give very elementary
facts about graded tings that are used throughout the rest of the paper. The
fourth lemma is an equally elementary fact about certain sets of dements in
the vector space L(D) which will often be used to determine the independence
of a chosen set of rational functions. The proofs of these lemmas are all
straightforward and will be omitted. Lemma 2.9 is of utmost importance for
the proof of Theorem 2.10. Its proof depends on properties of the convergents
of continued fractions which are given in the appendix.

LUMM 2.5. Suppose R is a finitely generated graded ring over F where

q F Xt Xk /I R (D V,,
n--O

is a graded F-isomorphism.
(1) Given a set of elements b F[Xt,..., Xk] such that q(b + 1) are a

basis for V,, for an arbitrary monomial m of degree n in F[ Xt,..., Xk] there
exists a expression m F.cib I where ci F.

(2) I (m cibi) where m, ci, b are as in (1).

DEFINITION 2.5A. Suppose M F[Xt, X2,..., Xk] is a monomial of de-
gree n and we are given a set of elements b FIXt,..., Xk] such that
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(b + I) are a basis for V. By Lemma 2.5 there exists a unique expression
Y’.cb such that M- Ecb I. The notation fM Ecb will be used.

Part (2) in Lemma 2.5 implies that I (M- fMIM a monomial).
Suppose F[X,..., Xk, Y,..., Yt] and F[Xx,..., Xk] are finitely generated

graded polynomial tings over a field F such that X is of the same degree in
both tings. Assume D < D’ where D and D’ are divisors on a smooth
projective curve of genus g. If and q02 are graded F-isomorphisms where
tp(Xj + Ix) 2(X + I2) for all J then Lemma 2.6 and 2.7 show that

IzfqF X1, Xk I
where

F[X, Xk]/I -- .ff’(D)

F[ X,..., Xk, Y,..., Y]/Iz .Z’(D’).

LEMMA 2.6. Assume we are as above. A basis q92(b + I2) for L(tD) can be
completed to a basis for L(tD’).

LEMMA 2.7. Assume the hypotheses of Lemma 2.6 where

m f( X1,..., Xk) F X1,..., Xk, Y1,..., Yt]
is of degree t and a basis for L(tD’), (q2(bi + I2)} 1,..., r, is such that
b gi(Xl,..., Xk) i= 1,..., s and qgl(b + I1) i= 1,..., s, s < r is a basis
for L(tD). It then follows that in the relation

m- cb Ia, c-- O for all i>s and m- cb I.

LEMMA 2.8. Suppose D E_lmPi, m Z, is a divisor on a smooth
projective curve X of genus g with function fieM K( X). Given a set of rational
functions { x xk }, x *’(D), choose any s, 1 < s < r. Suppose in
{Xl,..., xk } there exists at most one rational function xj such that v,,(xj) (9

for each integer , -m < < t, then if Ekix O, k 0 for all x such that
%(x,) <_ t.

The above will be used in the following situation.

L 2.8A. Suppose
k

D=Do+ E fl’
,-1 t’-’P’’ DO E n,e,n, Z,

pX
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is a divisor on a smooth projective curve of genus g. Suppose

where

Xi, j L(PiD)-L(PiD-Pi)

__PiJ jail,. aij](pio 1, qio 0).
qij

Then in L(nD) the set (x x,, i, + } where is fixed and spi + tpij+ n is
linearly independent. Here s and range over all nonnegative solutions to the
diophantine equation sPij -1- tPij+ n.

Proof By the theorem on convergents in the appendix each element in the
set is a rational function r with vp,(r) of a different order ,

nnp, >_ >_ nnp, n a
Now Lemma 2.8 applies.

DEFINITION 2.9A. Let x be a homogeneous element of L’(D). Thus
x L(nD) for some n and suppose x is not in the image of

Pi: L(iD) L((n- i)D) ---> L(nD)

for any 1, 2,... (n 1). Then x is called a primitive element of Aa(D).

It is clear if there exists a primitive element in L(nD), any set of homoge-
neous generators for .(D) must have an element of degree n.

LEMMA 2.9. Suppose D D + (fl/a)P is a divisor on a smooth projective
curve of genus g with function field K( X). Suppose 0 < fl/a < 1 and s Z is
the order of P in D1. Let a/fl [a,..., a k] have convergents p2/qj
[a,..., a2] (by convention Po 1, qo 0).

(1) If deg pjD > 2g then in .e(D) any x2 of degree p2 such that

is primitive.
(2) Suppose deg pjD > 2g forj 0,..., k and Z+. The set

xj xj+ mpj + npj+

is a set of [t/a] + 1 linearly independent elements of L(tD).
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(3) For a fixed positive integer v < k, the set

S ( xmx n
+ mpj+npj+x t,j>v,nOifj=v}

is a linearly independent set with [tfl/a] [tqo/po] elements. In (2) and (3), rn
and n are defined as s and were in Lemma 2.8A.

Proof If deg plD > 2g then there exists f L(pjD) L(pjD P) by
Riemann Roch. We claim that f is primitive. It is sufficient to see that if m is
an arbitrary monomial rn IIy, L(pjD), then Vp(m) > Vp(f) where each
Yt is an element of degree n t, n < p2. Now Vp(f)= -p2s- q]. Given Yl of
deg nl, n < pj, Yt is such that vp(yt) > -[ntfl/a nts.
Now we know by Fact 7 in the appendix that

q2:,,,!] if n<p..n lpj

We have Y’.n tm p and

Vp(m) >_ -Y’.ntmts- Eml ntp._ nl pj_l

Suppose

Then

which implies

mtntqj_ > pj_qj.

Using Fact 2 of the appendix (pi_qj- qj-lPj 1), we get

mntqj_ > 1 + q-lP

which implies

pq_ > 1 + qj_ p.

This is impossible so vp(m) > -pjs qj v(f) and .e(D) has a primitive
xj of deg pj where xj L(pjD) L(pjD P).
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Proof of (2). By the theorem on convergents in the appendix each element
in S is a rational function with a pole at P of a different order tP such that
-ts > d)>-ts- [fit/a]. Furthermore for each d there exists a rational
function f S such that o,(f)= d). The set S therefore has [tfl/a] + 1
elements; it is linearly independent by Lemma 2.8.

Proof of (3). Using the argument of (2), the subset S’ of S given by

j xj+t J O,..., 1, mpj + npj+t

is a linearly independent set of [tqo/po] + 1 elements. In L(tD), St S S’
and so is a linearly independent set of [tfl/a] [tqo/po] elements, m

In the theorems that follow it is always assumed that

D= Do + fl_.2p
i-1

is a divisor on a smooth projective curve X such that DO Y’.,xn,P,
n, Z, 0 < fli/ai < 1, and the Pi’s are distinct.
The jth convergent of ai/fl refers to the fraction

Pij 1
=air- =[a a

qij 1 il’’" ij

ai2- ai

1

where ai/fli [air,..., aik,]. Xi, j .’(D) is always a rational function of
degree pj. such that

THEOREM 2.10.
all i. Let

Suppose ai,..., aik 2 and [air,..., aij] Piy/qiy for

Dt Do +
qij,

i--1 iJ ei and D=Do+ fliPi.
iffi,1 i

Here ifj > O, Pij,/qi1, is a convergent of ai/fli Pik,/qik, and DO as always is
an integral divisor. If DO > 0 we may have Ji 0 using the convention qio O,
Pio 1. Otherwise 1 < Ji < k. Assume further:

(1) For 1 < < n ifj k there exists

xi,j, - L(Pij,Dt) L( Pij,D Pi)"
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In the case Ji 0 this is the constant function which we denote by xi, o.
(2) We haoe deg mD >_ 2g 1 wheneoer m >_ min Pij,+l, 1 <_ <_ n.
(3) There exists a minimal set of generators (Yl,..., Yt ) for L(D1) such that

for all r either (a) deg Yr < rain Pij,+ 1, 1 <_ n, or (b) yr is the sole generator
corresponding to a conoergent, i.e.,

Yr L(PtsD1) L(ptsD1- Pt)

for some s < Jt and for =/= r, Yi q L(ptsD1) L(ptsD1 Pt).
Choose elements xi, j of degree Pij L(pijD) L(pijD Pi) where Ji < J

< k, 1 < < n. It then follows that { Yl,..., Yt, xi, j,..., xn, k, } is a minimal
set of homogeneous generators for .(D).

Proof. For each m let Bm be a basis of L(mD1) and let

Cm ( X,,jx,j+ ji<j<k 1, s=0ifj=j,l<i<n, and

s, range over all nonnegative integers such that spj + tpj+ m }.
We will show that B, U C, is a basis for L(mD).

Step 1. We show that

l(mD) l(mD1) + ijm
i--

for all m.

If m < rain Pij,+l then L(mD) L(mD1) since [qik,/pik,m] [qij,/pij,m] for
all by Facts 7 and 11 in the appendix.

For m > min Pj,+I, by Riemann Roch, condition 2 and the fact that
deg mD > deg mD we have

(mD) =degmD+l-g

=degmDl+ [q’k’m [ qiji

i_l i, i, m +l-g

l(mD1) + i1._ im ijm

Step 2. By repeated application of Lemma 2.9,

n

u l(mD1) + E
i-1

l(mD).
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By Lemma 2.9 and Lemma 2.8, Bm to Cm is a linearly independent set. Thus

( Yl,..., Y2, Xi,j,’" Xn,kn)

generates the ring a(D). It must now be seen the set is minimal. The element

xi, j cannot be generated by other elements since xi, . is primitive in a(D) by
Lemma 2.9. It is clear that

as deg Yi < min pij,/ or y is a primitive element in a(D).

COROLLARY 2.10A. Let D and D be as above. If PR(t) is the PoincarO
power series for .P(D) then

n k,-1 1 1
PR(t) + . (1-t*’")(l-t";’/x) (1-tp’’)

i,= l---j

is the Poincar power series for .(D).

Proof This follows by comparing UBm and t.J(Bm to Cm) where Bm is a
basis for L(mDI) and B,, to Cm is the basis chosen in Theorem 2.10 for
L(mD).

Given D1 < D as in Theorem 2.10, it has been seen that the degrees of the
elements in a minimal set of homogeneous generators for a(D) can be easily
obtained when those for a(D1) are known. Theorem 2.12 shows that if the
degrees of the generators for the corresponding ideal of relations for a(D1)
are given, those for a(D) can be deduced.

Proposition 2.11 is an elementary fact which is used extensively in the proof
of Theorem 2.12. We can assume that if (Yl,..., Ys } is a set of homogeneous
generators for a(D1) the basis for each vector space L(nD1) consists of
elements of the form I-Iy/", i.e., the basis elements are monomials. The proof is
straightforward and will be omitted.

PROPOSITION 2.11. Let D be a divisor on a smooth projective curve of genus
g and suppose ’(D) is isomorphic to F[X1,..., Xs]/1. Suppose M is a
monomial of deg in F[ X1,..., X,]. Given M m J C I, m monomials of
degree t, to show M -fM j one need only see that m -fmi j for each i.

THEOREM 2.12. Suppose D and D are as in Theorem 2.10. Recall that

D=D0+
qij, p

i=,1 Pij
i, D Do + fl..A p
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where ifj O, Pij,/qij, is a convergent of ai/fl Pik,/qi,. By Theorem 2.10
we know that if

(zh) =- c[

then

.W(D) -= C[YI,..., , Xi,j,..., X,,,,.]/I.
We now show I is generated by 11 together with (M- fM[M is a quadratic
monomial and Xi, j M for some i, j 1 _< < n, ji + 1 < j < k}. The proof is
by induction on ._l(k-Ji). Suppose E’=l(k-ji) 1. By the hypotheses
and Theorem 2.10 we have a set of homogeneous generators
(Yl,..., Ys, xg, j,+l} for L(D), for some particular i, and we have some

Yk Xi, , - L (PijD1) L ( PieD1 Pi)"

Now xi, j.,+ L(pj,+ID ) L(pj,+ID P) is the only "new" element. Let

j (i1, ytx,.,,+l frx,,,+), 1 < < s.

If J I there exists a relation R I of smallest degree r such that R J. To
prove R cannot exist we look at the set

S ( Mk fMk. Mk is a monomial of degree r and M, fMk q j )
and show that S is empty. For each Mk -fM S we must have Xi, j.,+ 11Mk
as otherwise Mk fM 11 C J. Find M fMs S so that is the smallest
positive integer where X.is. Ms but vt,+l Ms" We know there exists a Ytt, Ji + "Li, Ji +
such that Yt 4: Xi,, and YtIMs since Xi",),Xi",/l is a basis element. We have

fM/Y, j

by choice of r. By Proposition 2.11, M fM, j if for each summand m of
YtfM‘/Y, we have mk f" J. By Lemma 2.6, 2.7 and the fact that 11 c J
we need only see that m -fm, j for m ctXiX+lXim,2Yt By Lemma 2.13
which follows the proof, we get m < s. We know that

,jl+l xYt fxi,ji+lYt J

Each summand of x..m-7 X.rag Xi’ji+ 1Yt is a basis element or a monomial m for, Ji-t" l, Jid
which m f must be in J by choice of s, so in either case Proposition 2.11
applies to show m fro, j. Thus M fMs S. The supposition that S is
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nonempty leads to a contradiction and the proof of the case E(k -ji) 1 is
finished.
For E= l(ki -Ji) > 1 consider an appropriate D" such that D < D" < D.

Use the induction hypothesis on L’(D) and (D") and then again on
L(D") and .o(D). r

In Lemma 2.13 we simplify notation by writing P for the particular P in
Theorem 2.11; X, j, will be simplified to X, X, j.,+ to Xj.+ 1, and the labels for
convergents will be simplified accordingly.

LEMMA 2.13.
any 1.

/f Xj.t+ M but vt+-tj+ M andfM EtctBt, then yt+l
.,xj+ BI for

Proof Suppose Y/ is of degree s then M Xt+ll-IY/", is of degree
d tp+l + Enisi and

v,( Xjt+lI-I Yi"’) >_ -tqj+l Eni

where lp is the order of P in D1.

Suppose there exists B Xj.llxm- where m > + 1, in ft. We have

mlpj+l + m2Pj=d I .,n (m t)pj+ + rn
tpj+l + Enisi d iSi 2Pj"

Op(XxX?2 ) -dip- mlqj+ m2qj.

Lemma 2.9 and Lemma 2.8 imply

tqj+l + Eni si-j
As

(1) implies

> mlq+ + mzq.i. (1)

n isij >- En si-j

tqj+l + ((ml- t)pj+l + mzpj)-j > mlqj+l + m2qj"

Using Fact 2 of the appendix we get

1)
tqj+l + /(m- t)

l
+ m2qj] >--mlqj+ + m2qj
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which implies

mlqj+ + m2qj + > mlqj+ + m2qj.&
But this is impossible if m > as then

[t-ml]<0"pj
Therefore m < t. []

It should be noted that if {rl,... rl) is a minimal set of homogeneous
generators for I, { r,..., rz, M- ft: M is quadratic and x,lM) may not
be a minimal set for I. Each element M- ft is necessary but one can have
some rk (M ft). A case in which this occurs is given in Example 3.5. If,
however, each r is of the form ri M’-fr, M’ quadratic, then
{ rl,..., rz, M- ft} is a minimal set for 1.
As this is an important fact and will be used in Chapter 3 it is proved as a

lemma.

LEMMA 2.14. Assume .W(D) is minimally generated by the rationalfunctions
Yl,..., Ys and, for each n, Bn is a chosen basis of L(nD). Then .W(D) is
isomorphic to K[Y1,..., Ys]/I, P(Yi) Yi. If the elements in the set { M fM:
M is quadratic ) are a sufficient set of generators for I, they are a minimal set.

Proof. We only prove the last statement. From Lemma 2.5 and the fact
that K[Y,..., Y] is noetherian we know I can be generated by a finite set of
elements r, 1,..., k, such that r M fM where M is a monomial and
fM is the expression for M in terms of the basis. If yjyz is not a basis element,
y.y f.v, I is a nontrivial element in I. As a(D) is minimally generated
by the y’s, the terms cYk and cY do not appear as summands in any r for
anyc K.

If YYt frg Ek=g,ri where g, K[Yx,..., Y] the quadratic term Y.Y
implies that for some i, g K and YjYt appears as a summand in r. But now
since YYt is not a basis element, we must have r YjYt f r.v.
COROLLARY 2.14A. If S (M f’ } is a set of generators for I, and M’

is quadratic but not a basis element then M’ -fM’ 0 and is in S.

THEOREM 2.15.
g such that

Assume D is a divisor on a smooth projective curve of genus

D=D0 + flip.
i=1 Ixi
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where fli/ai has convergents Pi/’qij. Suppose
(1) DO >_ O, .(Do) --- C[Y1,..., Ys]/I and L(nDo) has a basis
(2) N is the largest positive integer such that fli/ai< 1IN for all i;
(3) (Yl,-.., Y, } is a minimal set of generators for .(Do) such that each Ys

is of degree < N + 1,
(4) deg DO >_ (2g- 1)/(N + 1).

Then

oq(D) =- C[Y1,..., Ys, XI,1,..., X,,k,]/I

where I’ I, M fM: M is a quadratic monomial with Xi, jlMfor some i, j).
A basis for L(nD) is

( B,, x,ix,i+1" mlpij + m2Pi2+ n.}

Proof. This follows from Theorems 2.10 and 2.12 where in the notation of
those theorems, min Pi,+ N + 1. [3

Chapter 3

In Chapter 3 several applications of the theorems of Chapter 2 are given. It
is also shown that if D and D fulfill the hypotheses of Theorem 2.10 where
D < D and GD(1) > GDI(1) + 1 >_ 3 then &a(D) is not isomorphic to the
coordinate ring of a complete intersection. The results obtained in this chapter
are collected together at the end in Table 2. The single most general result
follows in Theorem 3.1.

THEOREM 3.1.
such that

Let D be a divisor on a smooth projective curve of genus g

k

D=Do+ fliP
i=10i

We assume without loss of generality that DO has integer coefficients, 0 < fli/ai
< 1, and the Pi’s are distinct. Suppose deg DO > 2g + 2. For each fli/ai find
the convergents p/qi, j 1,..., k, of the decomposition of

Oli
fl- Jail,... aiki].

Letpo 1 and let q,,O, .,=xtP,J. Suppose S ((i, j, i’, j’): 1 < < i’ < k,
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1 <_ j < ki, 1 <_ j’ <_ ki,, andfinally j- j’ > 2 if i= i’). Then

k

i=1

k

gD(t) RDo(t) + E (GDo(tl)a,,fl,- tP’l+l) +
i-1

k ki-l( 1P(t) P(t) + 1 E (1 tP’J)(1 tP’J+1)i= j=0

k

Go(l) GDo(1) + E k,,
i=1

l (yki)(2GDo(1) + Yk 3).RD(1) RD0(1) +

E tPij+Pi,j,
(i, j, i’j’)S

1 )(1 --tpij)

Proof.

and

In [8], Saint-Donat proves that

Goo(t ) (deg DO + 1 g)t

R ,o(t)
(GDo(t))2- tGDo(t) 2t2deg DO

Now if deg DO > 2g- 1 then DO is base point free so we can assume DO is
effective. It is not difficult to see that DO and D satisfy the hypotheses of
Theorem 2.10. As an immediate consequence of Theorem 2.10,

k

GD(t ) (degD0+ 1-g)t+ E
i--’1

The elements represented in GD(t) GDo(t ) are rational functions x,j, j > 0
of degree pj such that x,j L(pjD)- L(pijD- P). Let x, 0 be the
constant function and one of the generators for .oq’(Do). For each n, a basis
for L(nD) is Bn= (basis for L(nDo), x,x.x,i+t}, ntpis + n2Pij+ n,
n 2 0 if j 0. It follows that

k k, ( 1PD(t) PDo(t) + ., E (1_ tP’)(1-- t"/’)i=1 j=0

by considering U,B.
By Theorem 2.12, Lemma 2.14, and Saint-Donat’s result, the ideal of

relations is minimally generated by (M fM) where M is quadratic (i.e., has



134 FRANCES VAN DYKE

precisely 2 factors). The terms in RD(t) RDo(t) are as follows. The sum-
mands in

k

i---1

represent the elements X, jY fx,,jr where Ys corresponds to a generator for
S(Do). As there exists Y Xg, o and Xg, oX, is a basis element, Ektp‘x+

must be subtracted out. The summands in

E tPij q-Pi’j’

(i, j, i’j’)S

fx, jx,,,:,. GD(1) gives the number of elementsrepresent elements X jX,, :,
in a minimal set of homogeneous generators for (D). Ro(1) is as stated as
each time a new generator xi,:!s_ added to a set of generators one gets 1
new nontrivial relations M fM where M is quadratic and xg,:lM. Therefore
if Go(1) GDo(1) s then

RD(1) RDo(1) GDo(1) 1 + GDo(1) + +GDo(1) + s- 2.

With one additional proposition one can extend the results of Theorem 3.1
to the case in which deg DO 2g + 1 or DO K where K is the canonical
divisor on a nonhyperelliptic curve of genus g > 3. Saint Donat has shown
that in both these cases Gno(t) is a polynomial of degree one and RDo(t) has
at most degree 3. Theorem 3.3 can then be proved as a direct consequence of
the following.

PROPOSITION 3.2. Let D be as in Theorem 3.1 only without the supposition
that deg DO > 2g + 2. Suppose instead we are given DO > 0, deg 2Do > 2g 1
and

GDo(t ) alt + a2t2, RDo(t) b:zt 2 + b3 t3.

Then the conclusions of Theorem 3.1 holdfor .(D). Furthermore the coefficient
of t 3 in RD(t ) is b + (al 1)N where N is the number offractions in D which
are > 1/2.

Proof. All follows as in Theorem 3.1 except for the statement about RD(t).
Assume S is a minimal set of relations for the ideal of relations of .’(Do). We
claim that if f S, then f (S (f }, M ft), M a quadratic monomial
such that X,2IM where x,j is one of the new generators for L’(D). Let N be
the number of fractions in D which are > 1/2. The degrees of the new
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generators are all >2 and xi, j is of degree 2 if and only if j=l and
fl/a > 1/2. The degrees of the quadratics M are therefore > 3 and there are
precisely N(a 1) of degree 3 which are not basis dements. (Recall L(D)
has a generator xo which is the constant function and XoXl is a basis
element). Suppose

k

r (S), some gi O.

Now it must be that deg f 3 and g c but this implies that the fight hand
side has a quadratic term which is divisible by a new generator while the left
hand side does not. Therefore

f (S- ( f ),M-- fm).

THEOREM 3.3. Let D be a divisor on a smooth projective curve such that

D=Do+
if Xi

B
where 0 < ,-_.2 < 1 and DO Y’. nvP, nvot

pX

Suppose deg DO 2g + 1 or DO K where K is the canonical divisor on a
non-hyperelliptic curve of genus g > 3. Then the conclusions of Theorem 3.1 hoM
for oW(D).

Proof One can assume without loss of generality that Do > 0. Now apply
Saint Donat’s results from [7] and [8] along with Proposition 3.2 to get the
result, ra

Thus far we have looked at examples in which Do > 0. The divisor of
Example 1.1,

D-- -P + +
IX 22P2 g=O, fli > 1

provides a clear illustration of Theorem 2.10 where Do < 0.

LEMMA 3.4. Let D be a divisor on a Riemann surface of genus 0 such that

D -P + flip + --P2 fl--- > foralli.OL Oli
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Let q,,,,t, and S be as in Theorem 3.1. Then

2

i-1

2

Ro(t) tP’J+P’"J’ t2 E Pai,#, + t4
(i,j,i’,j’)S i=l

2 ki-1 (PD(t) Y’- E (l--i--1 j--1

1 1 2 )t"J)(1 -t"/1) (1 -t") (1 -t)2

Proof. For D -P + 1/2P + 1/2P2 one gets Za(D1) C[Yx] where

(z- p)2
X ,l (z ,’l)(Z

and is of degree 2. Choose any other D satisfying the conditions of the lemma.
The three conditions of Theorem 2.10 are shown to hold for D1 and D.

Condition 1 holds since we have deg 2D 0 > 2g.
For condition 2, deg nD> 1 for all n > 1, and for condition 3 we see that

the generator corresponds to a convergent.
The lemma now follows using Theorem 2.10 and 2.12 while keeping in mind

that there is only one generator of degree 2, no relations of degree 4 or of
degree P,2 + 2, 1, 2. [3

As mentioned in the introduction, the theorems of Chapter 2 can be used to
find Go(t ) and Ro(t) for all tings of automorphic forms and in many cases
the theorems are applied to Wagreich’s results on automorphic forms with
three and four generators. The following example uses one of Wagreich’s
results and illustrates the process of finding D given D.

LEMMA 3.5. Suppose D is a divisor on a Riemann surface of genus 1,
D (fl/a)P, where fl/a >_ 4/5. The entries for Go(t) and Ro(t) are as in the
table.

Let a/fl have convergents pj/qj, j 1,..., ki. By Fact 10 of the appendix
for 1 < j < 4 we have pj/qj (j + 1)/j.
We would like to find a divisor Dr, D < D, such that .’(Dt) is understood

and D together with D fulfills the hypotheses of Theorem 2.10.
As A(G) with signature (1; 0; e) is isomorphic to .oq’(D) where D is a

divisor on a Riemann surface of genus 1 such that

ei-1
ei
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we consider the signatures (1;0; ei), 2 < ei < 5 (see Table 1). The ring
associated with (1; 0; 2) is .ff’(D2) where D2 (ql/pl)P but .ff’(D2) does not
fulfill condition 3 of Theorem 2.10 as the generators do not correspond to
convergents and are of degree higher than P2. Likewise for (1; 0; 3) we have
the ring .ff’(D) where D (q2/P2)P but again .(D3) does not fulfill
condition 3 of Theorem 2.10. In the case of (1; 0; 4) however, one has
D4 (q3/p3)P where .o90(D4) has generators of degrees P0, P2, P3. By Lemma
2.9 one knows these generators are rational functions

z((q z 

The hypotheses of Theorem 2.10 are easily seen to be satisfied and therefore

k

Go(t ) t+ E t’’’
i=2

Using only Theorem 2.12 one can not completely determine Rz(t) however.
x,k- 2v’k- #Pi +Jgi+jWe know RD,(t) 9 and RD(t) will necessarily have terms ,-,i=2

+ E_4tx+’, (these correspond to elements (XX+, fx,x,/,) > 2, s > 2 or
0, s > 4), but one cannot tell whether or not Ro(t) will contain the 9

term. Consider the monomials in L(9D4):

XoX L (6P) L (5P),

xx2 L(2P) L(P),

xx L(3P) L(2P),

xx2x L (5P) L (4P).

x23L(6P)-L(5P), x09,

X3oX L(4P) L(3P),

By Lemma 2.8, the relation for .ff’(D4) is necessarily of the form

2 C5XX2X3 CO O.r XoX c0x32- cix- CEX60X2 c3xx C4XoX2

Next, consider .ff’(Ds) where D5 4/5P (q4/P4)P. As could be predicted
using Theorem 2.10, Gos(t) + + 4 + 5. But now Rz5(t) 6 + 8

’,+’o + ’’+’2 and the 9 term does not appear. This implies

It can be seen that



138 FRANCES VAN DYKE

as

d4g3g d5X2X d6g
and Lemma 2.8 implies b 4: 0, dl 4= 0. Therefore

1d--[Xo(XzX4- fx2x’) Xz(XoX4- fXoX’)] r

32 6ggg2g3alX a2Xgo- a3XX2 a4X5oX3- asXoX: a

Using (.) and Lemma 2.8 we get a 0 for all i. By Lemma 2.14,
k-2 k-i k

i-2 j=2 iffi4

If 3/4 < /a < 4/5 then the degree 9 relation will be necessary as a
generator in the ideal of relations as one can see, from Facts 10, 11 and
Lemma A.2 of the appendix, that all new additional generators necessary for
.o’(D) will be of degree > 8. 1

In finding the degrees of generators and relations for all tings of automor-
phic forms the case of g 0 is the most complicated. Here if A(G) has
signature (0; s; ex, e2,...,e,), A(G)=Za(D) where D is a divisor on a
Riemann surface of genus 0 and

ei--1D -2P + sP + Pi.
iffil

If s > 2, Theorem 2.10 and 2.12 can be applied and the results are listed in
Table 2. The case s 1, r-- 2 is taken care of by Lemma 3.4. Rings with
signatures s 0, r < 5 can be understood by applying Theorem 2.10 and 2.12
to Wagreich’s result on tings of automorphic forms with few generators. The
rest of the cases, i.e., s 1, r > 2 and s 0, r > 6, will be taken care of by
Lemma 3.8. For the purpose of understanding A(G) one is only interested in

k

D= -nP+ ei-lp
i=,1 ei

where n 1 or 2 and k > 3n but the more general case of

k fli fli 1
D= -rP + Y’. --P, k > 3r >

-"l Ol -,
is just as easily studied.
We first consider the divisor D =-rP + Ek_xl/2P, k > 3r, and then

apply Theorems 2.10 and 2.12 to understand the general case.
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LEMMA 3.6. Let D be a divisor on a Riemann surface of genus 0 such that
D -rP + 2i_l/2Pi, k > 3r, P 4 Pi. One can make a specific choice of
generators to show that for .W(D)"

(1) Go(t)=(k-2r+l)t2+(k-3r+l)t a.
(2) Rzh(t)= (k-2r)t4+(k-2r)(k+3r)t5+(k-3r+2) 6

2 2
t.

(k-2r)(l+t3) (k-2r-1)(l+t3)(3) Pox(t)= (1 t2)2 (1 -t2)
(4) A basis for L(tDt), even, is

nte {rt/2-kl" ’a ,/2} kt 1 t/2, 1= 1 k- 2ra’2r "l2r+l "’2r

Here X2r+ is a generator of degree 2 and

(z- P)2
X2r+m= [ 2r-li=lI-I (Z Pi)](z P2r+m)

m O,...,k- 2r.

A basis for L(tD), odd, is

+t (t-’)/2-t’=x3=,’+ Y3 +, x-3)/ZY, }Bto { X(2-3)/2-k’x2r+ty3r, X2r

wherel < kx < (t 3)/2,1 <l<r,O<k2<(t-3)/2andl<s<k-3r.
Here

(Z- p)3r
Y3r+m m=O, 1,...,k-3r,

and Y3r+m is a generator of degree 3.
(5) The relations can be chosen as follows.
(a) For degree 4,

X2r+ k1x2r+s c1x2rx2r+ k c2 X2rX2r+
1 <k<k-2r-l, kt<s<k-2r,

P2r+
C2 P2r+kl P2r+s’ C 1 C2

(b) For degree 5,

X2r+klg3r+s- Ctk, X2rY3r+ Cttk, XlYm- ’’k,t" ’"S X2rY3r

where l= 2r, rn 2r + kt if kt > r and l= 2r + kt, rn 3r if kx < r. Here
1 <kt<k-2r;O<s<k-3rwheresOifk<randk-r-sOif
k>r.
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(c) For degree 6,

2 r-1

Y3r+sY3r+t E E _st v3- X’rn. stv2 X3r+t;miA2r m--zr+l t;mA2r
m--1 1--1

where 0 < s < k 3r ands < < k 3r.

Corn

We leave the proof to the reader.

LEMMA 3.8. Let D be a divisor on a Riemann surface of genus 0 such that

k 1
D= rP + ’ --fl Pi, k > 3r _fl >_

i 1 i

Then Go(t ), Po( ) and Ro( ) are as given in Table 2.

Proof Lemma 3.6 proves this lemma for D -rP + Eki_ 11/2Pi, k > 3r.
Let D be any other divisor satisfying the conditions of the lemma. The
conditions of Theorem 2.10 are shown to be satisfied. For conditions 1 and 2,
L(2D), L(3D) nontrivial implies L(nD) L(2D) (R) L((n 2)D) is nontriv-
ial for all n > 4 which implies deg nD > 0 for all n > 2. Condition 3 follows
from the fact that all new convergents are of degree 3 or more. Theorem 2.12
and Corollary 2.11 finish the proof. D

Finally, we show that if D and D fulfill the hypothesis of Theorem 2.10
where D < D, .a(D) is rarely isomorphic to the coordinate ring of a
complete intersection. Let I and 11 be the ideal of relations corresponding to
Aa(D) and .oq’(D1) respectively. Let Z(1) be the affine variety with coordinate
ring isomorphic to .(D). Suppose D1 and D fulfill the hypotheses of
Theorem 2.10 where D < D.

LEMMA 3.9 (1). If Go(l) > Gox(1) + 2 and Go1(1) > 2 then Z(I) is not a
complete intersection.

(2) Suppose Go(1) Go1(1) 1 and call the new generator xi, j. Then Z(1)
is a complete intersection only if lox c QM- fQMIQM is a quadratic mono-
mial such that xi, j QM)

Proof.
imply

(1) Given GD(1) GDI(1) k, Theorem 2.12 and Corollary 2.14A

RD(1) >_ GD,(1)- 1 + GD,(1) + +GD(1) + k- 2.

Since GD(1) GDx(1) + k, Z(I) is a complete intersection only if

Ro(1) Gz(1) + k- 2.

Now if k > 2 and Go(1) > 2 we get Ro(1) > 1 + Go(1) + k 2.
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(2) Since Go(1) Gox(1) + 1, Z(I) is a complete intersection if and only
if Ro(1) Go1(1) -1. With the new generator xi, j one gets GDI(1)- 1
nontrivial relations QM Fo.M where QM is a quadratic monomial such that
xi, jl QM. By Corollary 2.14A these are necessary as generators for I. It follows
that Z(I) is a complete intersection only if these relations are sufficient to
generate 1. E3

Tables 1 and 2 now follow. The results in Table 2 have all been obtained by
applying the theorems of Chapter 2 to the established results listed in Table 1.
In Table 1 the entries in 1-3 are due to Mumford (see [4]) and Saint-Donat
(see [7] and [8]) while the rest of the entries can be found in Wagreich’s papers
[10] and [11]. The number of relations of degrees 3 is not determined for the
divisors given in 2 and 3. In Table 2 we consider divisors of the form

k

D=D0+ fl---Li P
i=10i

where 0 < fli/a < 1 and either deg DO < 0 or Do is one of the divisors
considered in Table 1. Recall that in Theorem 3.1 it was shown that for the
divisor

D*=D+ i--l Pi
B

wheredegD0>2g+2and0< <1,

we have the following results. We let

ki

and let S ((i, j, i’, j’): I <_ <_ i’ <_ k, 1 <_ j <_ k, 1 <_ j’ <_ kr, and finally
j -j’ >_ 2 if i’}. It was then shown that

k

a,,.(t) %o(t) + E
i=1

k

RD*(t) RDo(t) + E (GDo(t)%,,a,- t"x+l) + g
(i,j,i’,j’)Si-1

k

GD*(1) GDo(1) + E ki,
i=l

(Y’.k,) (2
RD.(1) RD0(1) + i,=1

k k ( 1PD*(t) PD(t) + 1 E 1, (1 t/"J)(1 --tP’/x)i= j=0
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For each divisor D in Table 2 we give the polynomials f(t) and g(t) such that
Go(t) Go,(t) + f(t) and Ro(t) Ro,(t) + g(t). The rational function
h(t), where Po(t) Po,(t) + h(t) is also provided and the numbers f(1) and
g(1) are computed. In the case

(,) g=0, D=Z o+E a-’ Pi where deg DO > 0 or

degD0= -land- < <1,
Ot

Henry Pinkham has shown that L’(D) is isomorphic to the coordinate ring of
an affine surface with a single isolated rational singularity at zero. Jonathan
Wahl has shown that this implies Ro(1) 1/2(k- 1)(k- 2) whenever
Go(1) k. A simple computation shows that for all the divisors listed in
Table 2 which fulfill the conditions of (,) the entries satisfy Wahl’s result.

Appendix

The Appendix gives all the facts about the convergents of the simple
continued fraction a/ which are used in the paper. Given 0 < [3/a < 1,
consider the decomposition

a 1
=al- 1 [al,..., a,].

a 2 a3
". 1

a k

Let Po--1, qo 0 and let Pi/qi [ax,..., ai] be the convergents of the
above decomposition. By induction one can prove the following two proper-
ties.

Fact 1. Pi + Pi+2 ai+2Pi+l, qi + qi+2 ai+2qi+l"

Fact 2. Piqi+ Pi+ lqi 1.

(See [2] for the standard proofs for I and 2). Adding and subtracting multiples
of various p’s in 1, one can see:

Fact 3. Pi + Pi+3 (ai+2 1)Pi+ + (ai+ 1)Pi+ 2.

Fact 4.

Pi + Pi+k’ (ai+2 1)Pi+I + (ai+3 2)Pi+2 + (ai+4 2)Pi+3
+ +(ai+fk,_)- 2)Pi+k,_ 2 + (ai+ k, 1)Pi+/,,_t
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This holds for all k’ such that 3 < k’ < k- i. (The same property holds for
the q’s.)

From these the following can be deduced.

Fact 5. P/qi > P+j/qi+j for j > 1 so Piqi+j
follows from fact 2).

Pi/jqi > 0 for j >_ 1. (This

Fact 6. Given EibiPi and Y’.ibiqi, b > 0, b Z, there exists j, m, n
Z+ tA 0 such that

biP mpj + npj+
i=l

and

biq mqj + nqj+ .
i=l

Proof. We use induction on s l. If s- 1, there is nothing to show.
Suppose the fact is true whenever s- < and s- 1 t. Without loss of
generality say rnin(bt, bs) is bt. Then

s--1

i==l i=1+1

Now, using Fact 1, 3 or 4, replace the first two terms on the right hand side by

s-1

bt .,
ciPi

i-+1

and then apply the induction hypothesis to the new fight hand side. The proof
is identical for the q’s.

Fact 7. For n < Pk, [nqk/Pk] [nq-l/Pk-1]"

Proof. Suppose there exists an integer s such that

qg-x qk
<s<n.

P-I P

Then nqk_ < SPk_ <- nqk- + n/Pk as

q_kk qk-1 + 1
Pk Pk- PkPk-x
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follows from Fact 2. Since Spk_ Z and is larger than nqk_l, Spk_ >_ nqk_
+ 1 which implies n > Pk, a contradiction.

Fact 8. If mpi + =t where m, nEZ+U0 then mqi+nq+l<

Proof. Suppose not. Then

(1) mpiqk Or rlPi+lqk-- tqk

and

(2) mqi + nqi+x > q_Ek.
Pk

Multiplying by Pk in (2) and then subtracting (1) from (2) we get

m(Pkq, Piqk) + n(Pkqi+ P,+qk) > O.

This contradicts Fact 5.
Using the above one can show the following theorem.

THEOREM A.1. Given any fraction fl/a, 0 < fl/a < 1, and any positive
integer j, consider j and [jfl/a]. Choose any k’ in the set (0,1,2,...[jfl/a]).
Then there exists non-negatioe integers m, n, such that

mqi + nqi+ k’ and mpi + nPi+ J

where p and q are as abooe. Furthermore, wheneoer mn 0 the integers
m, n, are unique.

Proof. The existence is shown by induction on the length of the decom-
position of a/ft. If the length is 1 then fl/a l/s, s Z+. We have P0 1,
qo 0, Pl S, ql 1. Choose any j E Z+ and E (0,1,...[jl/s]). Now
1 < j/s so ls < j and one can write j nls + r, 0 < r < Is, n > 1. It follows
that

((n 1)ls + r)qo + lql

and

((n 1)ls + r)po + IPl =j

Suppose existence holds whenever the decomposition is of length k- 1 and
a/fl has decomposition of length k. It should be noted that fl/a qk/Pk and
has the same first k 1 convergents as qk-1/Pk-X" Choose the smallest j for
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which one can find no proper m, n, and i. If j < Pk, [Jqk/Pk] [Jqk-1/Pk-1]
by Fact 7. In these cases there exists m, n, such that

mp + np+ j and mqi + nq+ l

since by the induction hypothesis existence holds for qk-1/Pk-1" Therefore we
can assume j > Pk" If 1 * [jfl/a] then (0,1,... [(j- 1)fl/a]) so there
exists m, n, such that

mpi + npi+t =j-1, mqi + nqi+t l.

But then

Po + mpi + npi+ J, qo + mqi + nqi+ 1.

Using Fact 6 one can get the desired integers. Therefore assume 1 [jfl/a].
Now j- n’Pk + r, n’ - Z+, 0 < r < Pk, and [Jqk/Pk]---- n’qk + [rqk/Pk]"

But we know there exists m, n, such that

mpi + nPi+I r, mqi + nqi+1 [rqk/Pk].

Then

n’Pk + mpi + nPi+l =j, n’qk + mqi + nqi+l [Jqk/Pk]

and again use Fact 6 to get the desired integers. Therefore there exists no
smallest j and we can always find integers to satisfy the theorem.
We now show uniqueness.
Suppose there exists m’, n’, i’ and m, n, Z+O (0) such that

and

mqi + nqi+ J, mpi + npi+t K

m’qi, + n’qi,+i J, m’pr + n’pr+l K.

Without loss of generality assume i’ > and suppose J > 0 and J, K Z+.
Now

mqi + nqi+l m’qr + n’qr+t
mp + npi+ m’Pr + n’Pr+

Cross multiply and subtract the left hand side from the fight hand side. We
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have

mm’(Piqi’- Pi’qi) + m’n(pi+lqi’- qi+iPi’)

+mn’(Pi’qi’+-Pi’+qi) + nn’(pi+qi’+ Pi’+lqi+l) 0

If i’ > + 1 and J > 0 we claim that the left hand side of (,) is strictly
positive. Suppose not. By Fact 5 the expressions Pjqk Pkqj are all positive so
we must have mm’ m’n mn’ nn’ 0. One gets m n 0 or m’ n’

0. This is impossible if J > 0. The claim then holds and i’ or
i+ 1 =i’.Ifi=i’onegets

(3) (m- m’)qi(n n’)qi+ O,

(4) ( m m’) Pi + ( n n’) Pi+ 0.

Multiply (3) by Pi and (4) by qi, subtract (4) from (3) to get n n’. Then
m m’ follows. If i’ + 1 then

mm’ + nn’ + mn’(piqi+ 2 -Pi+2qi) 0

implies m n’ 0 if J > 0. Note that the expression for J and K is still
unique in this case. The labeling is just different. One can write

OPi + nPi+l J, Oqi + nqi+l K

or

m’Pi+l + 0Pi+2 J, m’qi+l + Oqi+2 K.

It is clear that m’ n.

Fact 10. Ifk/(k+l)<fl/a<l, k Z+,then

fl [2,...,2, ak+l,... a]

and has first k convergents p/q (j + 1)/j, j 1, 2,..., k.

Proof. Letk=l. Ifl/2<fl/a<lthenl<a/fl<2so

a-- [2, a a2’’’ n
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Suppose the fact holds for k _< 1 and k where > 1. Now t/(t + 1)
<_ fl/a < 1 implies 1 < a/fl <_ (t + 1)/t. We have

a 1 2fl-a t+l t-1
2 fl and fl

>_ 2

2fl- a

By the induction hypothesis, fl/(2fl- a)= [2,...,2, at,... ]. The fact now
follows.

Fact 11. For 0 < fli/ai < 1, pj < pj+ 1, q < q+ for all j >_ 0.

Proof The fact certainly holds for fractions with decomposition of length
1. Suppose it holds whenever the fraction has decomposition of length k 1
and a/fl has decomposition of length k >_ 2. The fact holds for p_t/qk-1 so
we must only show that Pk > Pk-1, qk > qk-l" We have a/fl [at,..., ak]
a >_ 2. Now Pk-2 + Pk akPk-1 by Fact 1. So pg akPk_ --Pk-2, and

Pk > (ak- 1)Pk-1 as Pk-1 > Pk-2" Therefore Pk > Pk-1 as ak > 1.
The same property holds for the qi’s.

LEnto, A.2. Assume 0 < Pt/qt < 1 and 0 < P’t/q < 1. Suppose

P__21
al, al] Pi-t

ql ql-
[al,...,al_l],

and

Then

p;
q[ [at,..., al_ t, b].

Pt + npt-
for n Z

qt + nqt-

where Pt + nPl-t > Pl-t"

Proof By Fact 2, Pt-tq[- qt-tP’t 1 and Pt-tqt- qt-tPt 1. By ele-
mentary number theory, if x0 and Y0 are a particular integral solution to the
equation pt_x ql-tY 1 the general integral solution is

x (xo + nqt_t), Y =Yo -I- nPl_l,

where n Z. By Fact 11, p[ > Pt-t. The lemma now follows.
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