ILLINOIS JOURNAL OF MATHEMATICS
Volume 32, Number 1, Spring 1988

GENERATORS AND RELATIONS FOR FINITELY
GENERATED GRADED NORMAL RINGS OF
DIMENSION TWO

BY
FRANCES VAN DYKE

Chapter 1. Introduction

Assume that R is a finitely generated graded normal ring of dimension 2
over C such that R = &, R, where R, = 0if kK < 0 and R, = C. This implies
that R is the coordinate ring of a normal affine surface which admits a
C*-action with a unique fixed point P, corresponding to the maximal ideal
&, R, (see [5]). Henry Pinkham has shown that R is isomorphic to
F(D) = &2 ,L(nD) where D is a divisor on a Riemann surface X of genus g
of the form

D=ZnP+E(-§-)i (*)

(=D ¢ i=1
P pP€EX

where n, € Z, all but finitely many n,=0, 0 < B,/a; <1, and L(nD)
denotes the set of meromorphic functions f, such that div(f) + nD > 0. It is
easily seen that for each n, L(nD) is a vector space over C.

It is always possible to choose a minimal set S = { y,,..., y,} of generators
for £ (D) such that the elements of S are homogeneous i.e. y; € L(g,;D) for
some ¢,. In the polynomial ring C[Yy,..., Y] give the variable Y, degree g;;
then there exists a graded surjective homomorphism

P C[Yp---’ Yk] ‘*-?(D), (P(Yx) =)

Let I be the kernel of ¢. We call I the ideal of relations for £ (D)
corresponding to S.

In the following paper it is shown that in many cases a minimal set of
homogeneous generators S and generators for the corresponding ideal of
relations I for &£ (D) can be determined if homogeneous generators and
relations are known for £ (D,) where D, < D and #(D,;) has a much simpler
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116 FRANCES VAN DYKE

structure than Z(D). In particular, the degrees of homogeneous generators
and relations can be deduced for all divisors D = D, + X(B;/a;)P, where
deg D, = 2g + 1 or D, is the canonical divisor on a nonhyperelliptic curve of
genus g > 3. Here and throughout the paper D, refers to an integral divisor.
These results generalize Mumford’s and Saint-Donat’s work on #(D,) where
D, is of degree > 2g + 1 (see [4] and [8]). They also generalize Saint-Donat’s
results in his paper on Petri’s analysis of the linear system of quadrics through
a canonical curve (see [7]).

Given D as in (*) above, to find the degrees of the elements in a minimal
set of homogeneous generators S for £ (D), we show that it is necessary to
consider the convergents p,,/q;; of the decomposition of the continued
fraction

Here

o1
a..
We find a divisor D, such that £(D,) is understood and

D1=Z”P+qui

PeX i= 1P’J:

where g;; =0 or p;; /q;; is one of the convergents of «;/B;. The precise
conditions D; must satisfy are given in Theorem 2.10. We then start with a set
of generators for #(D;) and build on to it. The additional generators
correspond to the convergents which appear in fractions in D but not in D,.
By Riemann-Roch it is clear that whenever deg p;;D > 2g where j > j, there
exists a rational function y € L(p;;D) — L(p;;D — P,). In Lemma 2.9 it will
be shown that y is a primitive element and therefore if S is a minimal set of
homogeneous generators for £ (D) and deg p;;D > 2g, S must contain an
element (which will be called x; ;) of degree p,;. We say that such an x; ;is a
generator corresponding to the convergent p;;/q;; at P,.

Once the necessity of having elements x; ; in any minimal set of homoge-
neous generators for £ (D) has been shown, the sufficiency is demonstrated by
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showing that a basis for the vector space L(¢D,) for any ¢ can be completed to
a basis B, for L(tD) using certain powers and multiples of the newly acquired
generators x; ;. In each example to be considered the completed basis for
L(tD)is

B, = basis L(tD)J{x/" x!' ;1 }

where mp,, + j np, j+1 = t. Linear independence is shown by seeing that each
function x";x}" .., has a pole at P, of a different order.

Having estabhshed that a Immmal set of homogeneous generators for £ (D)
can be obtained using a minimal set S; = {y,,..., y,} for #(D,) and a set of
new generators { x; ;} we now have a surjective graded homomorphism

¢: C[Yy,.... X, ] = £(D)

where the variables ¥, and X, ; have been given the degrees of the generators
y,and x; ;. Let I be the kernel of this map and let I; be the kernel of the map

¢: C[Yy,...,Y,] »2(D,).
It will be shown by induction on the number of new generators that

I=(I,M~- }.¢B)
1

where M is a quadratic monomial such that X; /|M,c; € C and ¢(B)) is a
basis element of the same degree as M. By a quadratic monomial we will
always mean that M = Z,;Z; which of course does not imply that M is of
degree two relative to the grading.

The conditions on D, stated in Theorem 2.10 ensure that the elements x; ;
exist in Z(D), suffice to generate £(D) but do not make any of the
generators y;,..., y; of #(D,) unnecessary as generators for # (D). First of
all it is required that degnD; > 2g ~ 1 for all » > min p, 41 This require-
ment ensures the existence of new generators

x; ; € L(PijD) - L(PijD -P), j>j
as well as the fact that for all m > min p;; ,,,

1(mD) — 1(mD,) = ¥ [mEt| — 4,
i=1 i

where 7, = [mp,; /q;;1if j; # 0 and 0 otherwise. To prevent the possibility that
some y, € (S; — {y},{x; ;}) it is required that each y, € S; be of degree
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< min p;; ., or that y, be a primitive element,
» € L(p;,D) — L(p;;D - P,).
Finally, to form the basis for L(z¢D) it will be necessary to have a generator
x; ;, Whenever j; # k; and this is assured if degree p;; D; > 2g.

As an example we con31der two divisors on a R1emann surface of genus 0.

Example 1.1. Let D and D, be divisors on a Riemann surface X of genus
0 such that

1

D, =—1.r>+21>+;1>2 and D= 1!>+B‘1Dl+'82

where

Ay,

has convergents p,;/q;; and 1/2 < B,/a; < 1. It is not difficult to see £(D,)
= C[Y;] where Y; is of degree two, ¢(Y;) = y;, and we can take

(z—P
(Z_Pl)(Z_Pz)

For k € Z* a basis for L(2kD,) is { y¥} and L((2k + 1)D,) = {0}. We have
the necessary conditions of Theorem 2.10 since degnD; > 2g — 1 for all n
and y, is a generator corresponding to the first convergent for a,/B; and
a,/B,. To form a minimal set S of homogeneous generators for £ (D) one
can take y; as above and then elements

(z-P)™ N
xi,j (Z—P)q'j(l P)Pij"qij’ 36{192}_{1}’]>1

The elements x; ; are functions of degree p,; with poles at P; of degree g;;.
They are necessary as generators as in L(p;;D) no product of functions of
lower degree will have poles at P; of as high an order as ¢,,. For k € Z* a
basis for £ (2kD) is

{yl, Xj X ‘l+1} where  mp;; + np;;,, = 2k
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and a basis for Z((2k + 1)D) is
{xmx!,+1} where mp, +np,; =2k + 1.

Using properties of convergents one shows the sets are linearly independent
and of the right order. The degrees of the generators and relations as well as
the Poincaré power series for the ring can be found in Table 2.

In Chapter 2 the assertions of the foregoing paragraphs are proved in detail.
Applications of the theorems in Chapter 2 are given in Chapter 3. Here it is
shown that if D is a divisor on a smooth projective curve of genus g where
degD, > 2g + 1, Dy =1Xn,P, and

D =D, + Z(&)P,., 0<%<1,

Q; i

the degrees of the elements in a minimal homogeneous set of generators for
L(D) and the degrees of the generators for the corresponding ideal of
relations are obtained from the numerators of the convergents of the fractions
a,/B;. For a second application, rings of automorphic forms are considered.
Let G be a finitely generated Fuchsian group of the first kind and X the
Riemann surface which is the compactification of H,/G. Suppose Q;,..., Q,
are the parabolic points of X and P,,..., P, the elliptic points with branching
numbers e,,...,e,. Let A(k) be the vector space of automorphic forms of
weight k relative to G, i.e.,

fe (k) = f(g(2) = B ().

We consider the ring A4(G) = L7.,4(K) which we say has signature
(g;5;€15---58,).
Gunning has shown that
00
A(G) = ¥ A(k) =2(D)
k=0
where

,
=1
D=K+Q,+ - +0Q,+ Ze'TPi

i=1

and K is the canonical divisor on X. Given any such divisor D, the degrees of
the elements in a minimal set of homogenous generators for £ (D) and the
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degrees of the homogeneous generators for the corresponding ideal of relations
can be deduced using the theorems of Chapter 2. This work is started here and
will be completed in a subsequent paper. In many cases to find G,(¢) and
R ,(¢) one can apply the work of Chapter 2 to Wagreich’s results on rings of
automorphic forms with few generators. I am grateful to Wagreich for these
results and his good suggestions on the final copy of this paper.

Chapter 2

As stated in the introduction Henry Pinkham has shown that every finitely
generated graded normal ring of dimension two over C is isomorphic to
@, ,L(nD) where D is a “fractional” divisor on a Riemann surface of genus
g. More specifically D is of the form

(1) D=Dy+ ¥ B,

i=1

where B,/a;, € Q and Dy =X, c yn,P, n, an integer such that n, = 0 for all
but finitely many P. The fractions can be added so it is assumed without loss
of generality that the P,’s are distinct. We consider the vector space L(tD) =
{fI(f) = =D}, where (f) = Zv,(f)P denotes the divisor of a meromorphic
function f, and then study the nng @2 ,L(nD) which will be denoted by
Z(D). We will use the notation /(nD) to denote the dimension of L(nD).
These rings are precisely the coordinate rings of normal affine surfaces with
good C*-action.
For each ¢, it is clear that L(¢D) = L(D") where

D' =tD, + Z t—]

and [28,/a,] is the greatest integer < (¢B;/«;). Therefore, deg tD is defined in
the following way.
DErFINITION 2.1,  If

D= DO+ZBP

i=1

for t € Z we have

deg tD = deg tD, + Z t——]

i=1
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Note. We have degtD > 0 = deg(¢t + 1)D > 0. Consider the divisor of
Example 1.1,
1 1

D= —-P+ 7P1+ -2-P2.

We have deg2kD = 0 while deg(2k + 1)D = —1.If [, < B,/a; < I, + 1, ], €

Z, then for all n € Z,
[n—'Bi] =nl, + [n(—ﬂi - I,.)].
a; a;

We therefore assume the fractions B,/«; in (1) are such that 0 < B8,/a; < 1.
Finally, it is clear if D, ~ D§ (i.e., D, — D§ = (f)) then for

k(B 5 (B
D=Dy+ Z(;’)Pi and D' =D§+ Z(—a—')P,.,
i=1\ i i=1\ 1

we have
2(D)22(D) (p(g)=gf" forall ge L(nD’)).

It should be noted that in this paper the term “D a divisor” will refer to a
divisor of the form given in (1) where 0 < 8,/a; < 1 if k > 1 (the possibility
D = D, is not excluded.)

All the results of the paper are written down in Table 2 of Chapter 3 where
the Poincaré generating polynomial, the Poincaré relational polynomial and
the Poincaré power series are given for £ (D) for each divisor D which is
considered in the paper. These polynomials are defined below. For

[oe]
R= ®R,=K[X,,..., X,]/I,
i=0

let m be the maximal ideal m = @2 R,. The elements x, € m, 1 <j < d are
a set of algebra generators for R if and only if the residue classes X;,..., X, €
m/m? are a basis of m/m? as a K-vector space. m/m? is a graded vector
space m/m?* = @72 ,(m/m?),.

DEeFINITION 2.2. The Poincaré generating polynomial of

o0
R = @ Rig K[Xl,...‘, Xd]/I
i=0
is defined to be

[o o]
Gr(t) = Y a;it' where a,=dim(m/m?),.
i=0
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Similarly the elements x »J=1...,narea minimal set of generators for I if
and only if the residue classes x;, j =1,..., m form a basis for the graded
vector space I/mlI where m = (X,,..., X;).

DEFINITION 2.3. The Poincaré relational polynomial of

o0
R= ®R,=K[X,,..., X,1/I
i=0

is defined to be

0
Ri(t) = @D a;it’ where a,=dim(I/ml),.
i=0

DEFINITION 2.4. The Poincaré power series of R is defined to be

[~ 2]
Pp(t) = Y a;t' where a;=dimR,.
i=0

For #(D) we use the notation Pp(t), Rp(t) and Gp(2).

The key results of the paper are proved in Theorem 2.10 and Theorem 2.12.
Five short lemmas precede Theorem 2.10. The first three give very elementary
facts about graded rings that are used throughout the rest of the paper. The
fourth lemma is an equally elementary fact about certain sets of elements in
the vector space L(D) which will often be used to determine the independence
of a chosen set of rational functions. The proofs of these lemmas are all
straightforward and will be omitted. Lemma 2.9 is of utmost importance for
the proof of Theorem 2.10. Its proof depends on properties of the convergents
of continued fractions which are given in the appendix.

LEMMA 2.5. Suppose R is a finitely generated graded ring over F where

00
Q@ F[Xl,..., Xk]/I—)R'—_ e I/n

n=0

is a graded F-isomorphism.

(1) Given a set of elements b, € F{X,,..., X,] such that ¢(b; + I) are a
basis for V,, for an arbitrary monomial m of degree n in F[X,,..., X,] there
exists a | expression m — Xc;b; € I where c; € F.

2) I={m— c;b;) where m, c;, b; are as in (1).

DEFINITION 2.5A. Suppose M € F[X,, X,,..., X;] is a monomial of de-
gree n and we are given a set of elements b, € F[X,,..., X;] such that
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¢(b, + I) are a basis for V,. By Lemma 2.5 there exists a unique expression
Tc;b, such that M — Xc¢;b; € I. The notation f = L¢;b; will be used.

Part (2) in Lemma 2.5 implies that I = (M — f™|M a monomial).

Suppose F[X,,..., X;, Yp,..., Y] and F[X],..., X,] are finitely generated
graded polynomial rings over a field F such that X, is of the same degree in
both rings. Assume D < D’ where D and D’ are divisors on a smooth
projective curve of genus g. If ¢, and ¢, are graded F-isomorphisms where
e1(X; + 1) = ¢,(X; + 1,) for all J then Lemma 2.6 and 2.7 show that

Ian[Xl,..., Xk] = Il
where
FIX,,..., X/, = 2(D)
i |
FlXp.., X, Yy, Y/I, 2 2(D).

LEMMA 2.6. Assume we are as above. A basis ¢,(b; + I,) for L(tD) can be
completed to a basis for L(tD’).

LEMMA 2.7. Assume the hypotheses of Lemma 2.6 where
m=f(X,...., X,) € F[Xy,..., X, Y1,..., Y]

is of degree t and a basis for L(tD"), {@,(b; + I,)} i =1,...,r, is such that
b=g(Xy,....X)i=1...,5and (b, + 1) i=1,...,s, s <ris a basis
for L(tD). It then follows that in the relation

r S
m-— Y c¢b€l,,c;=0 forall i>s and m— Y cb,€1,.

i=1 i=1

LEMMA 2.8. Suppose D =Y . m.P, m,€ Z, is a divisor on a smooth
projective curve X of genus g with function field K(X). Given a set of rational
functions {x,...,x,}, x;€Z(D), choose any s, 1 <s <r. Suppose in

{X100s Xi } there exists at most one rational functzon x; such that v,(x;) =
for each integer 0, —m, < O < t, thenif L,k;x;=0, k, =0 for all x, such that
v(x) <t

The above will be used in the following situation.

LeEMMA 2.8A. Suppose

D= D0+Z 'P,,Do Y n,P,n,€Z,
i1 PEX
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is a divisor on a smooth projective curve of genus g. Suppose
X, ;€ L(PijD) - L(pijD -P)

where

Then in L(nD) the set {x] x; ..} where i is fixed and sp;; + tp;; 1 = n is
linearly independent. Here s and t range over all nonnegative solutions to the
diophantine equation sp,; T iy =N

Proof. By the theorem on convergents in the appendix each element in the
set is a rational function r with v, (r) of a different order 0,

B;
—nn, 2 0> —nn, — [n;i .

Now Lemma 2.8 applies. O

DEerFINITION 2.9A. Let x be a homogeneous element of £(D). Thus
x € L(nD) for some n and suppose x is not in the image of

¢;: L(iD) ® L((n —i)D) - L(nD)
for any i = 1,2,---(n — 1). Then x is called a primitive element of Z(D).

It is clear if there exists a primitive element in L(nD), any set of homoge-
neous generators for £ (D) must have an element of degree n.

LEMMA 2.9. Suppose D = D, + (B/a)P is a divisor on a smooth projective
curve of genus g with function field K(X). Suppose 0 < B/a <1l ands € Z is
the order of P in D,. Let a/B=ay,...,a,] have convergents p,/q; =
[ay, ..., a;] (by convention p, = 1, g, = 0).

(1) If deg p;D > 2g then in £(D) any x; of degree p; such that

x,€ L(p,D) = L(p,D - P)

is primitive.
(2) Suppose deg p;D > 2g forj=0,...,kandt € Z™. The set

S = {xj’.”x;'H: mp; + np; | = t}

is a set of [tB/a) + 1 linearly independent elements of L(tD).
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(3) For a fixed positive integer v < k, the set
S, = {xj'-"xj'.'ﬂz mp,+np =t jzv,n*0ifj= v}

is a linearly independent set with [tB8/a] — [tq,/p,] elements. In (2) and (3), m
and n are defined as s and t were in Lemma 2.8A.

Proof. 1f deg p\D > 2g then there exists f € L(p,D) — L(p,D — P) by
Riemann Roch. We claim that f is primitive. It is sufficient to see that if m is
an arbitrary monomial m = I1y/™ € L(p;D), then v,(m) > v (f) where each
y; is an element of degree n;, n, < p,. Now v,(f) = —p;s — g;. Given y, of
degn;, n, < p;, y, is such that vp(y,) > —[n,B/a] — ns.

Now we know by Fact 7 in the appendix that

4j-1| .
[n,§]= [n,;j:] if n,<p,.

We have Xn;m, = p; and

0, (m) = — Lnms - Zm,[n,p 1] - ps- zm,[n,"{j].

pj-
Suppose
qj-1
Zml{"l'[j;':] 2 g,
Then
q;-1
Zml(nlpj_l) 29,
which implies

zmznzq,-l 2 P 14;-
Using Fact 2 of the appendix (p;_19; — ¢;-1p; = 1), we get
Zmlnlqj—l 21+gq;, ,p
which implies
P41 21+4q;_1p;

This is impossible so v,(m) > —p;s — q; = v,(f) and £(D) has a primitive
x; of deg p; where x; € L(p;D) — L(p,D — P).
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Proof of (2). By the theorem on convergents in the appendix each element
in S is a rational function with a pole at P of a different order @ such that
—ts =2 0= —ts — [B,/a]. Furthermore for each @ there exists a rational
function f€ S such that v,(f) = 0. The set S therefore has [t8/a] + 1
elements; it is linearly independent by Lemma 2.8.

Proof of (3). Using the argument of (2), the subset S’ of S given by
= {x'x/q: j=0,...,0=1, mp,+ np;,, =t}

is a linearly independent set of [7g,/p,] + 1 elements. In L(¢tD), S; =S — §’
and so is a linearly independent set of [¢8/a] — [7g,/p,] elements. B
In the theorems that follow it is always assumed that

D =D, + E 'B’P
t-l

is a divisor on a smooth projective curve X such that Dy =X, yn,P,
n, € Z,0< B/a; <1, and the P;’s are distinct.
The jth convergent of «;/8; refers to the fraction

Pij 1
E:i,=ai1_ 1 =[ai1""’aij]
J a, - =
1
a;
where «,/B; =[a;,...,a, ) x; ; € Z(D) is always a rational function of

degree p,; such that x;, ; € L(p,;;D) — L(p;;D — P).

THEOREM 2.10. Suppose a;,...,a;, 22 and [ay,...,a;;] = p;;/q;; for
all i. Let

D, D0+2q”'1> and D= D0+}:B'P
j=1 i=1

Here if j;> 0, p;;/q;; is a convergent of &,/B; = p;/q;x, and D, as always is
an integral divisor. If Dy > 0 we may have j;, = 0 using the convention q,, = 0,
Pio = 1. Otherwise 1 < j; < k;. Assume further:

(1) For 1 <i < nifj, # k, there exists

x; ;€ L(Pij,Dl) - L(Pij,Dl - Pz)-
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In the case j; = 0 this is the constant function which we denote by x, ,.

(2) We have degmD, > 2g — 1 whenever m 2 min p;; ,,, 1 <i < n.

(3) There exists a minimal set of generators { y,,..., y;} for L(D,) such that
for all r either (a) deg y, < min p;; .1, 1 <i < n, or (b) y, is the sole generator
corresponding to a convergent, i.e.,

Yr € L(pt.\‘Dl) - L(ptle - Pt)
for some s < j, and fori # r, y; ¢ L(p,,D,) — L(p,,D, — P,).
Choose elements x; ; of degree p,; € L(p;;D) — L(p;;D — P;) where j, <j

< k;; 1 < i < n. It then follows that { yy,..., Y, X; js---> X, s } iS @ minimal
set of homogeneous generators for £ (D).

Proof. For each m let B,, be a basis of L(mD,) and let

cm={x Xijet i Sisk,—1,5s#0if j=j,1<i<n, and

s, t range over all nonnegative integers such that sp,; + 1p,; ., = m }
We will show that B,, U C,, is a basis for L(mD).

Step 1. We show that

I(mD) = I(mD,) + Z

jm=]1

ki }-—{qim] forall m.
Pix k; pij,-

If m < min p,;; ., then L(mD) = L(mD,) since [q; /P, m] = [q;;/p;;m] for
all i by Facts 7 and 11 in the appendix.

For m > min p;; ., by Riemann Roch, condition 2 and the fact that
deg mD > deg mD; we have

I(mD) = degmD + 1 —

= deg mD, + E q'k ]—[ﬂm

=1 plki

= 1n>) + £ || - | S

i=1 plk‘ .piji

Step 2. By repeated application of Lemma 2.9,

qik, qu,
B,uU C,| =Il(mD,) + —M
18,0 Gl = 1m0 + % |90 | | 2]

i=1

= I(mD).
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By Lemma 2.9 and Lemma 2.8, B,, U C,, is a linearly independent set. Thus
(V1505 »25 Xijoeees xn,k,,}

generates the ring £ (D). It must now be seen the set is minimal. The element

x, ; cannot be generated by other elements since x; ; is primitive in £(D) by
Lemma 2.9. It is clear that

Vi€ (Dseeos Yiets Vi Voo x;',j"'-a xk,k,,>
as deg y; < min p;; ., or y, is a primitive element in (D).

COROLLARY 2.10A. Let D, and D be as above. If Py(t) is the Poincaré
power series for £ (D,) then

n k-1 1 1
Pr(t) + . - ;
=(7) El E; M= 7)1 = 12i1) ~ (1 = 174)

is the Poincaré power series for £ (D).

Proof. This follows by comparing UB,, and \[(B,, U C,,) where B,, is a
basis for L(mD,) and B, U C,, is the basis chosen in Theorem 2.10 for
L(mD).

Given D, < D as in Theorem 2.10, it has been seen that the degrees of the
elements in a minimal set of homogeneous generators for £ (D) can be easily
obtained when those for #(D,) are known. Theorem 2.12 shows that if the
degrees of the generators for the corresponding ideal of relations for £ (D,)
are given, those for £ (D) can be deduced.

Proposition 2.11 is an elementary fact which is used extensively in the proof
of Theorem 2.12. We can assume that if { y;,..., y,} is a set of homogeneous
generators for £ (D,) the basis for each vector space L(nD;) consists of
elements of the form I'Ty/", i.e., the basis elements are monomials. The proof is
straightforward and will be omitted.

PROPOSITION 2.11. Let D be a divisor on a smooth projective curve of genus
g and suppose £ (D) is isomorphic to F[X,,..., X,]/1. Suppose M is a
monomial of degt in F[X,,..., X,]. Given M — m;, € J C I, m; monomials of
degree t, to show M — fM € J one need only see that m, — f™ € J for each i.

THEOREM 2.12.  Suppose D, and D are as in Theorem 2.10. Recall that

- i - B;
Di=Dy+ Y -*P, D=Dy+ ) P,
1 1

i=1 i i=
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where if j; # 0, p;;/q;; is a convergent of a,/B; = py./q;,- By Theorem 2.10
we know that if

£(D)) =(ClY,,...,. Y]/
then

2(D)=C[Yy,..., Y, X, ooy X i | /1.

We now show I is generated by I; together with { M — fM|M is a quadratic
monomial and X; ;|M forsome i, j1 <i <n, j,+1<j<k,}. The proof is
by induction on Y_;(k; — j;). Suppose X].,(k; —j;) = 1. By the hypotheses
and Theorem 2.10 we have a set of homogeneous generators
{ Y15+ Yo X, j+1} for L(D), for some particular i, and we have some

V=X ;€ L(Pile) - L(Pile - Px’)'
Now x; ; .1 € L(p;;+1D) = L(p;;,+1D — P,) is the only “new” element. Let
J=I,YX, o — [Ny, 1<I<s.

If J # I there exists a relation R € I of smallest degree r such that R & J. To
prove R cannot exist we look at the set

S = { M, — fM: M, is a monomial of degree r and M, — f« & J }

and show that S is empty. For each M, — f¥« € § we must have X, , . ,|M,
as otherwise M, — fM« € I, c J. Find M, — f™: € S so that ¢, is the smallest
positive integer where X/, ,;|M, but X/s'1, + M,. We know there exists a ¥,
such that ¥, # X; ; and Y,|M, since X"} X;"? , is a basis element. We have

M, /Y
lus /Y,
Y, f eJ

by choice of r. By Proposition 2.11, M, — f™ € J if for each summand m, of
Y,fM/Y we have m, — f™ € J. By Lemma 2.6, 2.7 and the fact that I, C J
we need only see that m, — f™ € J for m; = ¢, X/}, 1 X;}*Y,. By Lemma 2.13
which follows the proof, we get m; < t,. We know that

m -1 ym X, j+1Ys
XAX (X Y f R ) €.
Each summand of X171 X/"; f *.s+1" is a basis element or a monomial m for

which m — f™ must be in J by choice of ¢, so in either case Proposition 2.11
applies to show m, — f™ € J. Thus M, — f™: ¢ S. The supposition that S is
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nonempty leads to a contradiction and the proof of the case X(k; — j;) = 11is
finished.

For £7_,(k; — j;) > 1 consider an appropriate D" such that D, < D” < D.
Use the induction hypothesis on £(D;) and £(D"”) and then again on
L(D") and £ (D).O

In Lemma 2.13 we simplify notation by writing P for the particular P, in
Theorem 2.11; X; ; will be simplified to X, X; ; ., to X, ,, and the labels for
convergents will be simplified accordingly.

LemMA 213, If X/, ||M but X/}| + M and f™ = ¥,¢,B,, then X/}! + B, for
any .

Proof. Suppose Y, is of degree s; then M = X/ IV is of degree
d=1p; ., +Xn;s; and

q.
Up(th+1nX'n") 2z —19;4 — Zni[si;;] —d,

where [, is the order of P in D;.
Suppose there exists B, = X7 X" where m; >t + 1,in f M We have

mipi.+myp,=d
it Yons,=d

m my) — _ _ _
vp(xj-l}lsz)— dl, —mq;., — myy,.

} = Yons=(m - t)Pj+1 + m,p;.

Lemma 2.9 and Lemma 2.8 imply

q.
g4 + Zni[si;; 2 Mg, T myg;. 1)
As
I:Znisi%] 2 Z”i[si%j]’
(1) implies

1q;, +

q.
((ml - t)Pj+1 + msz)'];jf] 2 myq;,, t+ myg;.

Using Fact 2 of the appendix we get

(‘I‘ 1P — 1)
19;41 + [(m1 - t)”ijj'—" + mij] 2myq;y t+ myg;
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which implies

my
P;

mig;.; + myq; + 2 myq;, ., + myg;.

But this is impossible if m; > ¢ as then

[L—_'"_I] <o.
b;
Therefore m; < t. O
It should be noted that if {r,...,r,} is a minimal set of homogeneous
generators for I, {ry,...,r, M — fM: M is quadratic and x; ;M } may not

be a minimal set for I. Each element M — f™ is necessary but one can have
some r, € (M — fM). A case in which this occurs is given in Example 3.5. If,
however, each r, is of the form r,= M’ — f™, M’ quadratic, then
{ry...sr, M — fM} is a minimal set for I.

As this is an important fact and will be used in Chapter 3 it is proved as a
lemma.

LemMA 2.14.  Assume £ (D) is minimally generated by the rational functions
Y1s---» Y, and, for each n, B, is a chosen basis of L(nD). Then #(D) is
isomorphic to K[Y,,...,Y,)/I, o(y,) = Y,. If the elements in the set { M — f™:
M is quadratic} are a sufficient set of generators for I, they are a minimal set.

Proof. We only prove the last statement. From Lemma 2.5 and the fact
that K[Y,,..., Y] is noetherian we know I can be generated by a finite set of
elements r,, i = 1,..., k, such that r, = M — fM where M is a monomial and
f™ is the expression for M in terms of the basis. If Y;y; is not a basis element,
Y;Y, — f%" € I is a nontrivial element in I. As £ (D) is minimally generated
by the y,’s, the terms cY, and cY, do not appear as summands in any r; for
any ¢ € K.

If YY,— f%% = E¥_ g, where g, € K[Y,,..., Y] the quadratic term Y)Y,
implies that for some i, g; € K and Y}Y, appears as a summand in r;,. But now
since Y;Y; is not a basis element, we must have r, = Y)Y, — f%%. 0O

COROLLARY 2.14A. If S = { M, — fM:} is a set of generators for I, and M’
is quadratic but not a basis element then M’ — fM # 0 and is in S.

THEOREM 2.15. Assume D is a divisor on a smooth projective curve of genus
g such that
n
_ B
D=Dy+ Y P,

i=1 "
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where B,/a; has convergents p;;/q, ;. Suppose

1) Dy=0, L(Dy) = C[Y,,...,Y,)/I and L(nD,) has a basis B,,

(2) N is the largest positive integer such that B,/a;, < 1/N for all i;

3) {yw---» )} is a minimal set of generators for £(D,) such that each y,
is of degree < N + 1,

(4) degDy=(2g—-1)/(N +1).
Then

L(D)=ClYy,.... Y, Xy 1ros X, 0 | /T

where I' = (I, M — fM: M is a quadratic monomial with X, ;|M for some i, j).
A basis for L(nD) is

{B x xl j+1 mlplj+m2plj+l n}

Proof. This follows from Theorems 2.10 and 2.12 where in the notation of
those theorems, min p;; ., =N + 1.0

Chapter 3

In Chapter 3 several applications of the theorems of Chapter 2 are given. It
is also shown that if D, and D fulfill the hypotheses of Theorem 2.10 where
D, < D and G,(1) > Gp (1) +1 > 3 then £(D) is not isomorphic to the
coordinate ring of a complete intersection. The results obtained in this chapter
are collected together at the end in Table 2. The single most general result
follows in Theorem 3.1.

THEOREM 3.1. Let D be a divisor on a smooth projective curve of genus g
such that

k ,B )
D =D, + Z;P., “e.

We assume without loss of generality that D, has integer coefficients, 0 < B,/a;
<1, and the P;’s are distinct. Suppose deg D, > 2g + 2. For each B,/a; find
the convergents p;./q;;, j =1,..., k;, of the decomposition of

Q;

B = g, au]

Letp,y=1andlet ¢, p =Xk t?s. Suppose S = {(i, j,i’, j): 1 <i<i' <k,
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1<j<k,1<j <k andfinallyj— ' > 2 if i = i"}. Then
k
GD(t) = GDo(t) + Z q)ai,ﬁia
i=1

k
RD(t) = RDo(t) + Z (GDo(t)q’a,-,ﬁ‘. - tp“+1) + Z tPi Py,
i=1 G, j,1'j) €S

k ki—1 1 1
Po(1) = P (0 + X £ (=t — ey )

i=1 j=0

Gol1) = Gy 1) + T ki

Rp(1) = Ry (1) + 5(3k,)(2G,,(1) + 2k, - 3).
Proof. 1In [8], Saint-Donat proves that
Gp,(1) = (deg Dy + 1 — g)t
and

RDO(t) - (GDO(t))2 - tGDzo(t) - 2t2deg D,

Now if deg D, > 2g — 1 then D, is base point free so we can assume D, is
effective. It is not difficult to see that D, and D satisfy the hypotheses of
Theorem 2.10. As an immediate consequence of Theorem 2.10,

k
Gp(t) =(degDy+1-g)t+ Y @, 4.

i=1

The elements represented in Gp(¢) — Gp (¢) are rational functions x; ;, j > 0
of degree p,; such that x;, ;€ L(p;;D) — L(p;;D — P;). Let x,, be the
constant function and one of the generators for £(D,). For each n, a basis
for L(nD) is B, = {basis for L(nDy), x[\x!%.1}, nip;;+ nyp;;q=n,
ny # 0 if j = 0. It follows that

ko & 1 1
PD(I) = PDO(t) + Z Z ((1 — t""f‘)(l — t"‘f“) - (1 _ tpij)

i=1j=0

by considering U, B,.
By Theorem 2.12, Lemma 2.14, and Saint-Donat’s result, the ideal of
relations is minimally generated by (M — f™) where M is quadratic (i.e., has
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precisely 2 factors). The terms in R,(t) — Rp(¢) are as follows. The sum-
mands in

k
Z GDo(t)q‘)a,-,ﬁ,-

i=1

represent the elements X; ;Y — f Xi.;% where Y, corresponds to a generator for
Z(D,). As there exists Y, = X, , and x, ox,, is a basis element, L’ sPn+?
must be subtracted out. The summands in

Z tPijtPiy

(i, j,1J)ES

represent elements X; ;X . — f Xi.;%.r, Gp(1) gives the number of elements
in a minimal set of homogeneous generators for £(D). R,(1) is as stated as
each time a new generator x; ; is added to a set of / generators one gets / — 1
new nontrivial relations M — f™ where M is quadratic and x, ;| M. Therefore

if Gp(1) — Gp (1) = s then

Rp(1) = Rp (1) = Gp (1) =1+ Gp (1) + --- +Gp (1) + 5= 2.

With one additional proposition one can extend the results of Theorem 3.1
to the case in which deg D, = 2g + 1 or D, = K where K is the canonical
divisor on a nonhyperelliptic curve of genus g > 3. Saint Donat has shown
that in both these cases G, (¢) is a polynomial of degree one and R, (¢) has
at most degree 3. Theorem 3.3 can then be proved as a direct consequence of
the following.

PROPOSITION 3.2. Let D be as in Theorem 3.1 only without the supposition
that deg D, = 2g + 2. Suppose instead we are given D, > 0, deg2D, > 2g — 1
and

Gp,(1) = ajt + ayt*, Ry (1) = byt? + byt®.

Then the conclusions of Theorem 3.1 hold for £ (D). Furthermore the coefficient
of t3 in Rp(t) is by + (a; — 1)N where N is the number of fractions in D which
are >1/2.

Proof. All follows as in Theorem 3.1 except for the statement about R ,(?).
Assume S is a minimal set of relations for the ideal of relations of £ (D,). We
claim that if f€ S, then f& (S — {f}, M — fM), M a quadratic monomial
such that X; ;|M where x; ; is one of the new generators for £ (D). Let N be
the number of fractions in D which are > 1/2. The degrees of the new
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generators are all > 2 and x,; ; is of degree 2 if and only if j =1 and
B./a; = 1/2. The degrees of the quadratlcs M are therefore > 3 and there are
precisely N(a, — 1) of degree 3 which are not basis elements. (Recall L(D)
has a generator x, which is the constant function and x,x, is a basis
element). Suppose

k
f=r+ Y g(M ™), re(S),someg, +0.
i=1
Now it must be that deg f = 3 and g, = ¢ but this implies that the right hand

side has a quadratic term which is divisible by a new generator while the left
hand side does not. Therefore

f$<s_ {f}’M_fM>
THEOREM 3.3. Let D be a divisor on a smooth projective curve such that
B B
D =D, + Z P, where 0 < = <1andD0 Y n,P,n,eZ
l=1 PEX
Suppose deg Dy =2g + 1 or Dy, = K where K is the canonical divisor on a
non-hyperelliptic curve of genus g > 3. Then the conclusions of Theorem 3.1 hold
for £ (D).
Proof. One can assume without loss of generality that D, > 0. Now apply

Saint Donat’s results from [7] and [8] along with Proposition 3.2 to get the
result. O

Thus far we have looked at examples in which D, > 0. The divisor of
Example 1.1,

D=-P+ '81P+'82P2,g O'B %

provides a clear illustration of Theorem 2.10 where D, < 0.

LEMMA 3.4. Let D be a divisor on a Riemann surface of genus O such that

D=-P+ Blpﬁﬁpz,f}% for alli.
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Let ¢, g and S be as in Theorem 3.1. Then

2
GD(t) = Z (pa,,Bi - t29

i=1

2
RD(t) = E tPij TPy — f2 E Pa,, B, + t4,
@i, j,i' j)ES i=1

AL 1 1 12
PD(t) - Z Z (1 — tpij)(l - t}’ij+1) - (1 - tpij) - (1 _ t)2 +1

i=1 j=1
Proof. For D, = —P + 1/2P, +1/2P, one gets £(D,) = C[Y;] where

R € &
G CE A CE Y

and is of degree 2. Choose any other D satisfying the conditions of the lemma.
The three conditions of Theorem 2.10 are shown to hold for D; and D.

Condition 1 holds since we have deg2D = 0 > 2g.

For condition 2, deg nD > —1 for all n > 1, and for condition 3 we see that
the generator corresponds to a convergent.

The lemma now follows using Theorem 2.10 and 2.12 while keeping in mind
that there is only one generator of degree 2, no relations of degree 4 or of
degree p, , +2,i=12.0

As mentioned in the introduction, the theorems of Chapter 2 can be used to
find G (¢) and R, (2) for all rings of automorphic forms and in many cases
the theorems are applied to Wagreich’s results on automorphic forms with
three and four generators. The following example uses one of Wagreich’s
results and illustrates the process of finding D, given D.

LemMA 3.5. Suppose D is a divisor on a Riemann surface of genus 1,
D = (B/a)P, where B/a > 4/5. The entries for G(t) and R (t) are as in the
table.

Let a/B have convergents p,/q;, j =1,..., k;. By Fact 10 of the appendix
for1 <j<4wehave p,/q,=(j+1)/j.

We would like to find a divisor D,, D, < D, such that #(D,) is understood
and D, together with D fulfills the hypotheses of Theorem 2.10.

As A(G) with signature (1;0; e;) is isomorphic to #(D,;) where D, is a
divisor on a Riemann surface of genus 1 such that
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we consider the signatures (1;0;e;), 2 <e; <5 (see Table 1). The ring
associated with (1; 0; 2) is £ (D,) where D, = (q,/p,)P but £(D,) does not
fulfill condition 3 of Theorem 2.10 as the generators do not correspond to
convergents and are of degree higher than p,. Likewise for (1;0; 3) we have
the ring £ (D;) where D, = (q,/p,)P but again #(D,;) does not fulfill
condition 3 of Theorem 2.10. In the case of (1;0;4) however, one has
D, = (q;/p;)P where #(D,) has generators of degrees p,, p,, p;- By Lemma
2.9 one knows these generators are rational functions

x;€ L(q;P) — L((q,D - P).

The hypotheses of Theorem 2.10 are easily seen to be satisfied and therefore
k
Gp(t)=1t+ ) 7.
i=2

Using only Theorem 2.12 one can not completely determine R ,(¢) however.
We know R, (1) = t° and R (t) will necessarily have terms Y57 Z" JePitPis

+ Xk _ e (these correspond to elements (X, X,,, — f%%i+s) i > 2 s>2or
i =0, s > 4), but one cannot tell whether or not R,(¢) will contain the #°
term. Consider the monomials in L(9D,):

xox3 € L(6P) — L(5P), x3€ L(6P)— L(5P), x3,
x{x, € LQ2P) — L(P),
(*) x3x; € L(3P) — L(2P), x3x?2 € L(4P) — L(3P),
x2x,x, € L(5P) — L(4P).

By Lemma 2.8, the relation for £(D,) is necessarily of the form
F=XoX3 = CoX3 — €1X3 — CuX8X, — C3X3X3 — €4x3X3 — CsxX3XyX5, o # 0.

Next, consider £ (Ds) where Ds = 4/5P = (q,/p,)P. As could be predicted
using Theorem 2.10, Gp (#) = ¢ + ¢> + t* + ¢>. But now Ry, () = 1® + ¢* =
tP++Po 4 tP4*P2 and the 17 term does not appear. This implies

r € {XoX, — fXX, X, X, — f10%).

It can be seen that

X,(XoX, — f5%) = Xo( X, X, — f2%) = cr
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as
Xo X, — fYo% = Xo X, — by X7 — b, X3 X§ — by X, X5 — by X3,
_d4X3X3 - d5X2X05 - d6X§,
and Lemma 2.8 implies b, # 0, d; # 0. Therefore
1
Z[XO(X2X4 - f5%) = X, (XX, — f5%)] - r

= 01X23 - a2X09 - a3X3X2 - a4XgX3 - a5X03X22 - a6X(;ZX2X3.
Using (*) and Lemma 2.8 we get a; = 0 for all i. By Lemma 2.14,

k=2 k—i k
RD(t) - E Z tPitPi+j 4 Z t1+Pi.
im2 jm=2 i=4

If 3/4 < B/a <4/5 then the degree 9 relation will be necessary as a
generator in the ideal of relations as one can see, from Facts 10, 11 and

Lemma A.2 of the appendix, that all new additional generators necessary for
£ (D) will be of degree > 8.0

In finding the degrees of generators and relations for all rings of automor-
phic forms the case of g =0 is the most complicated. Here if 4(G) has
signature (0; s; e, €5,...,¢,), A(G) =% (D) where D is a divisor on a
Riemann surface of genus 0 and

,
=-2P+sP+ ) ——P

e;— 1
e, ¥

i=1 i
If s > 2, Theorem 2.10 and 2.12 can be applied and the results are listed in
Table 2. The case s =1, r = 2 is taken care of by Lemma 3.4. Rings with
signatures s = 0, r < 5 can be understood by applying Theorem 2.10 and 2.12
to Wagreich’s result on rings of automorphic forms with few generators. The
rest of the cases,ie, s=1, r> 2 and s =0, r > 6, will be taken care of by
Lemma 3.8. For the purpose of understanding A(G) one is only interested in
k -
D=-np+ Y 4 1p
‘ e;
i=1 !
where n = 1 or 2 and k > 3n but the more general case of
k
D= —rP+ Z&P,., kz3r,&z%,
=1 % %

is just as easily studied.
We first consider the divisor D, = —rP + £*_1/2P, k > 3r, and then
apply Theorems 2.10 and 2.12 to understand the general case.
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LEMMA 3.6. Let D, be a divisor on a Riemann surface of genus O such that
D, = —rP+ Xk 1/2P, k> 3r, P+ P, One can make a specific choice of
generators to show that for £(D,):

1) Gp(t) =(k—-2r+ D2 + (k= 3r + )23

@ R0 = (K52 )it k= 2nk+ 30t (K= I+ 2o
(k=2)(A+0) _ (k=2r=1)(1+7)

3 Pp()= a- t2)2 1 -r?)
(4) A basis for L(tD,), t even, is

B, = {x¥hxk, x4}, ky=1,..,t/2,1=1,...,k - 2r
Here x,,. ,, is a generator of degree 2 and

(Z _ P)Zr
X2rtm = lzr—1

T G- 2 - Puva)

’ m=0,...,k—2r.

A basis for L(tD,), t odd, is
- —3)/2—ky , k —3)/2—ky, k -3
BtO - {x%‘, % 1"C2;+ly3r’ xyr V/ 2x:ir2+.v Vir+ss xyr )/ y3r}

wherel <k, <(t-3)/2,1<1<r,0<k,<(t—-3)/2andl1 <s<k-13r.
Here

3r
z— P
Virem = [3r—1 ( ) ’ m=0’1a--~)k'—3r,

i‘l_ll (z - Pi)](z = Pyirm)

and y,, . ,, is a generator of degree 3.
(5) The relations can be chosen as follows.
(a) For degree 4,

Xorai Xarss = 1 X0, Xopip, — X5, X5, 45,
1<k <k—-2r-1,k <s<k-2r,

P2r - P2r+s

=35 1 >
P2r+k1 - P2r+s

ag=1-¢,
(b) For degree 5,
X2r+k1Y3r+s - cl’c,sX2rY3r+s - cl::’,sXIYm - ck,:,s X2rY3r
where l=2r, m=2r+ k ifky>randl=2r+k, m=3rifk, <r. Here

1<k, <k-2r;0<s<k-—3rwheres#0ifk,<randk,—r—s#0if
ky>r.
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(c) For degree 6,

st y3I—-mym __ .sty2 St 2
Y3r+syv3r+t Z ZC X X2r+l cmX2rX3r+s cOmXZrX3r+t

m=1 [=1

where 0 < s <k-—3rands <t <k - 3r.
We leave the proof to the reader.

LeMMA 3.8. Let D be a divisor on a Riemann surface of genus 0 such that
k
D=—rP+ Z%Pi, k = 3r, B: %

i=1

Then Gp(t), Pp(t) and Rp(t) are as given in Table 2.

Proof. Lemma 3.6 proves this lemma for D, = —rP + XX ,1/2P,, k > 3r.
Let D be any other divisor satisfying the conditions of the lemma. The
conditions of Theorem 2.10 are shown to be satisfied. For conditions 1 and 2,
L(2D), L(3D) nontrivial implies L(nD) D L(2D) ® L((n — 2)D) is nontriv-
ial for all n > 4 which implies deg nD > 0 for all n» > 2. Condition 3 follows
from the fact that all new convergents are of degree 3 or more. Theorem 2.12
and Corollary 2.11 finish the proof. O

Finally, we show that if D, and D fulfill the hypothesis of Theorem 2.10
where D, < D, Z(D) is rarely isomorphic to the coordinate ring of a
complete intersection. Let I and I; be the ideal of relations corresponding to
£ (D) and £ (D,) respectively. Let Z(1I) be the affine variety with coordinate
ring isomorphic to Z£(D). Suppose D; and D fulfill the hypotheses of
Theorem 2.10 where D, < D.

Lemma 3.9 (). If Gp(1) 2 Gp (1) + 2 and Gp (1) = 2 then Z(I) is not a
complete intersection.

(2) Suppose Gp(1) — Gp (1) = 1 and call the new generator x; ;. Then Z(I)
is a complete intersection only if I, C(QM - f OM\OM is a quadrattc mono-
mial such that x; ;|QM).

Proof. (1) Given Gp(1) — Gp (1) = k, Theorem 2.12 and Corollary 2.14A
imply

Rp(1) 2Gp(1) -1+ Gp(1) + - +Gp (1) + k— 2.
Since Gp(1) = Gp (1) + k, Z(I) is a complete intersection only if
Ry(1) =Gp (1) + k-2
Now if k > 2 and Gp(1) 22 weget Rp(1) 21+ Gp(1) + k— 2.
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(2) Since Gp(1) = Gp (1) + 1, Z(I) is a complete intersection if and only
if Rp(1) = Gp (1) — 1. With the new generator x; ; one gets Gp (1) —1
nontrivial relations QM — F2M where QM is a quadratic monomial such that
x; ;|QM. By Corollary 2.14A these are necessary as generators for 1. It follows
that Z(7I) is a complete intersection only if these relations are sufficient to
generate 1. O

Tables 1 and 2 now follow. The results in Table 2 have all been obtained by
applying the theorems of Chapter 2 to the established results listed in Table 1.
In Table 1 the entries in 1-3 are due to Mumford (see [4]) and Saint-Donat
(see [7] and [8]) while the rest of the entries can be found in Wagreich’s papers
[10] and [11]. The number of relations of degrees 3 is not determined for the
divisors given in 2 and 3. In Table 2 we consider divisors of the form

k ﬁ
D =D, + ) —P,
i=1 %
where 0 < B,/a; <1 and either deg D, <0 or D, is one of the divisors

considered in Table 1. Recall that in Theorem 3.1 it was shown that for the
divisor

B;

k
D* =D, + Y, %P,. where deg D, > 2g + 2and 0 < - <1,

j=1 ! i

we have the following results. We let

k;
q)ai)Bi = Z tpij
Jj=1

and let S = {(i, j,i,j):1<i<i'"<k1<j<k;,1<j <k, and finally
j —Jj' = 2if i =i'}. It was then shown that

k
Gps(1) = Gp (1) + )y Pa,, B,
i=1

k

RD‘(t) = Rpo(t) + Z (Gpo(t)(Pa“B' - t”ﬂ“) + Z tPistPry
i=1 (i, j, i, jHES

Gpe(D) = Go()) + 3 ks

i=1

@20, + £ ri-3)
5 i=1

R,.(1) =R Do(l) +

ko 1 1
P = Pal0)+ X X (== ~ =)

i=1j=0
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For each divisor D in Table 2 we give the polynomials f(¢) and g(¢) such that
Gp(t) = Gp«(t) + f(t) and Rp(t) = Rp.(t) + g(¢). The rational function
h(t), where P, (t) = Pp«(t) + h(t) is also provided and the numbers f(1) and
g(1) are computed. In the case

(*) g=0, D=Dy+ Z%P,.wheredegDonor
- 1 _B
deg D, = —land-z— < @ <1,

Henry Pinkham has shown that .Z (D) is isomorphic to the coordinate ring of
an affine surface with a single isolated rational singularity at zero. Jonathan
Wahl has shown that this implies R,(1) = 1/2(k — 1)(k — 2) whenever
Gp(1) = k. A simple computation shows that for all the divisors listed in
Table 2 which fulfill the conditions of (*) the entries satisfy Wahl’s result.

Appendix

The Appendix gives all the facts about the convergents of the simple
continued fraction a/f which are used in the paper. Given 0 < 8/a < 1,
consider the decomposition

a
F=a1— 1 =[al,...,ak].
a, — r—
Ay

Let py=1, q,=0 and let p,/q,=[a;,..., a;] be the convergents of the
above decomposition. By induction one can prove the following two proper-
ties.

Factl. p;+pi2=0;3Pi415 i+ Qiv2 = 4i2Gii1-
Fact 2. p,q;q —Pingi=1

(See [2] for the standard proofs for 1 and 2). Adding and subtracting multiples
of various p;’s in 1, one can see:

Fact 3. p;+pir3=(a;42— Dpis1 +(a,43 — Dpisr.
Fact 4.

Pt Divp = (ai+2 - 1)Pi+1 + (ai+3 - 2)Pi+2 + (ai+4 - 2)Pi+3
+ - +(ai+(k'—1) - 2)pi+k’-—2 + (ai+k’ ~Dpivr—1
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This holds for all k’ such that 3 < kK’ < k — i. (The same property holds for
the g,’s.)

From these the following can be deduced.

Fact5. p,/q;> p;;/4is; for j 2150 pig;,; — p;i;q; > 0 for j > 1. (This
follows from fact 2).

Fact 6. Given L,b;p; and ¥L;b,q;, b;> 0, b, € Z, there exists j, m,n €
Z*U 0 such that

s
Z bp;,= mp; + np;

i=l
and

Zbiqi =mq;+nq;,,.

i=|

Proof. We use induction on s — . If s — [ = 1, there is nothing to show.
Suppose the fact is true whenever s — / < ¢ and s — / = ¢t. Without loss of
generality say min(b,, b,) is b,. Then

K s—1
Y bpi=bp+bp+ Y bp+(b—b)p,
i=] i=l+1

Now, using Fact 1, 3 or 4, replace the first two terms on the right hand side by
s—1
by X cpi

i=+1

and then apply the induction hypothesis to the new right hand side. The proof
is identical for the g,’s.

Fact 7. For n < p,, [nq,/p] = [nqi_1/Pi_1l
Proof. Suppose there exists an integer s such that

di-1 9k
n—- <s<n—.
Pr-—1 Py

Then nq,_, < sp,_, < nq,_, + n/p, as

9k _ k-1 + 1
Py Pr- PrPr-1
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follows from Fact 2. Since sp,_; € Z and is larger than nq,_,, sp;_; = nq,_;
+ 1 which implies n > p,, a contradiction.

Fact 8. If mp,+ np,., =t where m,n€ Z*U 0 then mgq, + ng,,, <

tB/a.
Proof. Suppose not. Then

(1) mp,qy + NP 1dy = 14,

and

(2 mq; + nq;.; > tﬂ#
D

Multiplying by p, in (2) and then subtracting (1) from (2) we get

m(pid; — pid) + n(Prdis1 — Piv1qs) > 0.

This contradicts Fact 5.
Using the above one can show the following theorem.

THEOREM A.l. Given any fraction B/a, 0 < B/a <1, and any positive
integer j, consider j and [ jB/a). Choose any k' in the set {0,1,2,...[jB/a]}.
Then there exists non-negative integers m, n, i such that

mg; + ng;., =k’ and mp;+ np,., =j

where p, and q; are as above. Furthermore, whenever mn # 0 the integers
m, n, i are unique.

Proof. The existence is shown by induction on the length of the decom-
position of a/p. If the length is 1 then 8/a =1/s, s € Z*. We have p, = 1,
4 =0, py=s, g, =1. Choose any j € Z* and / € {0,1,...[j1/5]}. Now
I <j/s sols <jand one can write j = nls + r, 0 < r <Is, n > 1. It follows
that

(n=Dis+r)gy+1g, =1
and
((n=1)ls+r)po+ Ipy =

Suppose existence holds whenever the decomposition is of length ¥ — 1 and
a/B has decomposition of length k. It should be noted that 8/a = ¢,/p, and
has the same first k¥ — 1 convergents as g,_,/p;_;. Choose the smallest j for
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which one can find no proper m, n, and i. If j < p., [jgr/Pi] = [J9k-1/Pi-1]
by Fact 7. In these cases there exists m, n, i such that

mp;+ np;,,=j and mq;+ng;,, =1

since by the induction hypothesis existence holds for g, _,/p,_;. Therefore we
can assume j > p,. If I+ [jB/a] then I € {0,1,...[(j — 1)B/a]} so there
exists m, n, i such that

mp;+np=j—1, mg,+ng =1
But then
Potmp,+np=j,  qot+mg+ng., =1l
Using Fact 6 one can get the desired integers. Therefore assume / = [ jB/a].

Now j=n'p, +r, n' € Z*, 0 < r <p,, and [jqi/pi] = n'qi + [rq,/pi).
But we know there exists m, n, i such that

mp; + np; 1 =r, mq; + ngiv1 = [qu/Pk]’
Then

Wi+ mp+ npy =j, n'q+mg,+ng,y = [jg/pel
and again use Fact 6 to get the desired integers. Therefore there exists no
smallest j and we can always find integers to satisfy the theorem.

We now show uniqueness.
Suppose there exists m’, n’, i’ and m, n,i € Z*U{0} such that

mq; + nq;y s =J, mp,+np, =K
and
mq, +nq...=J, mp,+np,, =K.

Without loss of generality assume i’ > i and suppose J >0 and J, K € Z™.
Now

mg;+ng;., Mg+ n'g,

mp; + np; ., m'p, + n'py iy

Cross multiply and subtract the left hand side from the right hand side. We
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have
(x)  mm'(pgy — prq;) + m'n(pisrdr = qi41Pr)

+mn'(piqyir = Pradi) + 1’ (Piiadie1 = Priadivr) =0
If ¥/ >i+1 and J > 0 we claim that the left hand side of (*) is strictly
positive. Suppose not. By Fact 5 the expressions p;q, — p,q; are all positive so
we must have mm’ = m'n=mn’ = nn’ = 0. One gets m=n=0or m' = n’

= 0. This is impossible if J > 0. The claim then holds and =i =i or
i+ 1=i".1f i =i one gets

(3 (m=m")q,(n—n)gq., =0,
(4) (m—=m)p;+(n—n)p,. =0.

Multiply (3) by p; and (4) by g;, subtract (4) from (3) to get n = n’. Then
m = m’ follows. If i’ =i + 1 then

mm’ + nn' + mn'(p,g;rs — Pisaq;) =0

implies m = n’ = 0 if J > 0. Note that the expression for J and K is still
unique in this case. The labeling is just different. One can write

Op;+np.1=J, 0g;+ng, ;=K
or
mpi+0pa=J, mq, +0q,,=K.
It is clear that m’ = n.

Fact10. If k/(k+1) < B/a <1, k € Z*, then

= [2,...,2, ak+1,-..,an]

™| R

and has first k convergents p,/q; = (j +1)/j, j=1,2,..., k.
Proof. Letk=1.1f1/2<B/a<1thenl <a/B<2s0

o

5= [2, a,,...,a,]
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Suppose the fact holds for k < ¢ — 1 and k = ¢t where ¢t > 1. Now ¢ /(¢ + 1)
< B/a <1implies1 < a/B < (¢ + 1)/t. We have

a 1 28— a _t+1 -1
3_2 B and B 22— = —

28—«

By the induction hypothesis, 8/(28 — &) = [2,...,2, a,,...]. The fact now
follows.

Fact11. For 0 < B/a; <1, p;<p;.1, 4; < g;4; forall j>0.

Proof. The fact certainly holds for fractions with decomposition of length
1. Suppose it holds whenever the fraction has decomposition of length & — 1
and a/p has decomposition of length k > 2. The fact holds for p,_,/g,_; so
we must only show that p, > p,_1, g, > q,_,. We have a/B = [a,,..., a;],
a;=22. Now p,_,+p,=a,p,_, by Fact 1. So p, =a;p,_1 — pr_,, and
P> (a,— 1)py_y as py_y > p;_,. Therefore p, > p,_, as a; > 1.

The same property holds for the g,’s.

LEMMA A2. Assume 0 <p,/q,<1and 0 < p]/q/ < 1. Suppose

p P
?11=[a1,...,a1],ﬁ=[01,--.,ﬂ1_1],
and
Pi
- = yeees By ’b :
PT [01 a1 ]
Then

Pl _ Pt npig
At Tl g ez
Ul q+ nq;—, for n
where p, + np,_; > p,_;.
Proof. By Fact 2, p,_,q/ — q,.,p{ =1and p,_1q,— q,_1p,= 1. By ele-
mentary number theory, if x, and y, are a particular integral solution to the
equation p,_;x — gq,_,y = 1 the general integral solution is

x=(xo+ngq_1), y=yo+np._y,

where n € Z. By Fact 11, p; > p,_;. The lemma now follows.
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