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O. Introduction

The purpose of this paper is to analyse the problem of Zaremba concerning
the Laplacian on planar simply connected domains. Consider a region M
which is the interior of a compact simply connected domain M c R2. Assume
F_ is a non-empty contractible open submanifold of OM, and define I’+=
OM- _. Let Hg’r(M) denote the usual Sobolev space HS(.br) if s > r, or

Hs(II) {u D’(M)" Au L2(M)}

provided with the graph norm if s < r. Let H(s)’r(M) denote the space
H-9-(3r) if s > r, or L2(M) otherwise. We consider the map

H,,3/2(M)
A

H(’),3/2(M) H’-X/2(r+) Hs-3/2(F_),
1

u ---,Au Ulr+ Oulr_, (0.1)

where 0 is the normal vector field with respect to OM.
It is clear that (0.1) defines a continuous linear operator for s > 2. For s < z2

this is still true, but the result is less obvious and requires one to know that the
restriction map

1
u ulr/ -O,ulr_

is continuous when defined on H’3/2(M) (see [1]). In any case, (0.1) defines a
one parameter family of continuous linear operators between Hilbert spaces.
Inspired by the works of Melrose and Melrose-Mendoza (see [2] and [3]), we
examine the geometric properties of distributions in the kernel and cokemel as
well as Fredholm properties of each operator. In some cases, we just outline
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the basic points in the arguments required to prove our results, referring the
reader to [9] for more complete information. The technique we use seems to be
new, contrasting with the approaches in [4], [5], [6], [7] and [8]. Its power is
symbolized by formula (3.7) below. Needless to say, this technique applies to a
larger category of mixed elliptic boundary value problems, subject to be
discussed in a forthcoming article.
The organization of the paper is as follows" in Section 1 we discuss those

properties of the standard elliptic boundary value problems which are relevant
in the analysis of the kernel and cokemel of (0.1). In Section 2, we discuss the
structure of elements in the kernel of (0.1). As a byproduct, we also describe
the form of elements in the cokemel. Finally, in Section 3, we use these results
to prove that both the kernel and cokemel of A are finite dimensional spaces.
Further, using a result of [9] showing that for s 1/2 (mod Z) the range of A
is closed, we conclude that A is a Fredholm map for those values of s. In
Theorem 3.6 we compute the index of A s, and, using (3.7), we show that for
s-- 1/2 the map A fails to be Fredholm precisely because its range is not
closed.

1. Dirichlet and Neumann problems

Let X and S be manifolds with S dosed and embedded in X. Given a
vector bundle E over X, denote by I(X, S; E) the space of distributional
sections whose local Sobolev regularity remains stable under the action of
vector fields which are tangent to S. If M is contained in a smooth manifold
br of the same dimension, then (M, E) is the subspace of 1(2r, cgM; E)
consisting of those distributions supported on M. This space has a natural
topology, namely the topology of smooth functions for points in M, plus the
symbol topology near OM. If fl is the bundle of one densities on M, we set

The restriction to the boundary defined on C(M, E) extends to A’(M, E).
However, since A’(M, E) is not dosed under differentiation, we work with
B(M, E), the minimal extension of A’(M, E) which is dosed under the action
of differential operators of any order. When E is a trivial vector bundle of
rank one, we shall simply write B(M) instead of B(M, E). The properties of
this space of distributions are studied in [2], and for details we refer the reader
to that article.

Suppose M is realized as a submanifold with boundary of a compact,
boundaryless manifold r of the same dimension, and assume that P
D/ff2(3r) is elliptic. Let V be a vector field transversal to OM and consider the
map

B(M) D’( OM) * D’(OM),
u ----*UloM VUIoM. (1.1)
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If u is a distribution solving Pu 0 in/O, then the distribution u belongs
to B(M) (see [2]) and its boundary values, U-- Bu, are not arbitrary, but
satisfy certain constraints. To see this, observe that if u denotes the extension
by zero outside M, then

 ’Uc (VU)c + (1.2)

If Pu 0, then by applying a parametrix Q of P to this equation, we obtain

ul, =- Q-zUl. (1.3)

Since u B(M), we may apply B to both sides of (1.3), so that

U-- B,(Q.vUI), (1.4)

which shows that, modulo smooth errors, U is an eigenvector of distributions
of the operator

C,,: (D’( OM)) (D’( OM)),
W B(QvWI). (1.5)

The operator Cv, e is the Calder6n projector associated to P (depending on
V). It is a matrix of classical pseudo-differential operators, with matrix of
principal symbols having rank 1. It can be computed by

aP- q ( ( Cv’ P ) P’ q ) ( Y’ "11) "P’-- Y, ’-, -’j d, O<p,q<l.

(1.6)

Here, (x, y, , ) are coordinates in T*M near OM, x vanishes simply on OM,
V -i0,,, "I+ is a simple contour encircling all the zeros with positive
imaginary part of the principal symbol of P frozen at x 0, p2(0, y,
and

2

p9_(O, y, , rl) E 2b,(Y,
rO

For the Laplacian, the matrix of symbols of the Calder6n projector is given
by

1(1o(Cv, a)(y, r/)
ilr/I (i11)-)1" (1.7)
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From now on, we shall use a coordinate system (x, y) for which V -i0x
is the unit normal to OM, and F+/-= (y" q: >_ 0}. Following conventions, we
shall call u0 and u the restriction to the boundary of u and Vu, respectively.
Thus, if u B(M), then U= BEzu is just (Uo, Ul). Consider the set of
boundary conditions

BU= B( u)ux
uo)BXU BI u

U U0

1 ul"

The kernel of (I- o(Cv A))(Y, r/) is generated by (1, il/I). On the other
hand, the kernel of o(B(y, rl) is generated by (0,1) and the kernel of
o(BX)(y, rl) is generated by (1, 0). Hence both the Dirichlet problem (A, B0)
and the Neumann problem (A, B) satisfy the Shapiro-Lopatinski condition
ker(I- o(Cv, A)) ( ker o(Bi) (0, 0). Thus, the solutions to the problems

Au 0in
BiU u D’( OM)

are determined, up to smooth errors, by the boundary condition u (in this
particular case, more is known, but this is all we need).
We first attempt to understand (0.1) by searching for elements in its kernel,

that is to say, for solutions to the problem

Au= 0in
U01r/= 0

ulr_ 0.
(1.8)

Since Au 0 in M, a distribution solving (1.8) belongs to B(M) and,
therefore, it makes sense to restrict the distributions u and Vu to OM. By (1.4)
and (1.5), the distributional vector (u0, u) must be, modulo smooth errors, an
eigenvector of the operator Cr, A with eigenvalue one. Using the form of
o(Cz, a ) shown in (1.7), we conclude that u0 and ul are related by a classical
pseudo-differential operator N, whose symbol is lll. Hence, in order to
describe the kernel of A,, we need to characterize the set of distributions u0 in
D’(M) such that

Uolr/= 0

Nu0lr_ 0. (1.9)

Let us call the intersection points I’+ F_= (p,, p } the north and south
pole, respectively. In the next section we shall see that if uo is a distribution
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satisfying (1.9), then, near the north (resp. south) pole, u0 has an asymptotic
expansion of the form

m+l/2+. (1.10)uo(Y) E cy+
j-O

meaning that the difference between u0 and a suitable truncation of the sum is
in any preassigned space C*(OM), near the pole in question. The number rn
in (1.10) is a fixed integer. This result will allow us to understand all the
relevant properties of the kernel of A.
We finish this section by proving that finding the elements in the cokemel of

A, precisely involves the analysis of distributions with property (1.10) (this
feature is particular of the case here considered, and for a general result we
refer the reader to [9]).

Let us consider an dement (f, g, h) in the cokemel of A,. Then (f, g, h) is
an dement in the dual space of H’),3/2(M) H-/2(F+) H’-3/2(F_),
that is to say, if s > then f 2-(M), or if s < , fo L2(M), and the
distributions g and h are dements of/-x/2-S(l’+) and H3/2-s(’_), respec-
tively. Moreover, we have the relation

0 (Au, (f, g, h)), Vu C(M). (1.11)
The right-hand side of (1.11) is

(A,u, (f, g, h)) (Au, f) + (ulr+, g) + T0Ulr_, h (1.12)

where the first pairiong in the right-hoand side is the usual pairing between the
Sobolev space Hr(M) and its dual H-r(M),, and the last two pamngs are the

1/2 1/2 3/2usual pairings between H- (F+) and H -(F+) and H- (F_) and
3/9_- ,(i, _), respectively.
We recall here that the dual of H-r(F +) is identified with the normed space-r(F +/-) by the pairing (u, v) (, v), where fi is any extension of u

Hr(F +/-) to an element in Hr(oM). Hence, we can write the last two pairings
in the fight-hand side of (1.12) as

(Ulr/, g) (u0, g) and TO,ulr_, h (ux, h),

where each bracket denotes the pairing between H’(8M) and H-(8M).
Inserting these into (1.12), we obtain

0--(au, (f, , h)) (au, f) + (0, ) + (u, h)

<Au, f) + <u (R) 8(x), g) + (u (R) "[1 OxS(X), h> (1.13)

(u a: + g + h
/



A MIXED BOUNDARY VALUE PROBLEM FOR THE LAPLACIAN 103

Since the equation above holds for any function u C(M), by density we
conclude that

1 a;S(x) O.af + e, + h -: (1.14)

Using the jump formula (1.2) for the Laplacian, the equation (1.14) implies
that

flvt=f0=h and
1
7 Oflo fx g.

Moreover, from this expression we also conclude that the distribution f is
harmonic in r. Thus, elements (f, g, h) in the cokemel of A satisfy the
relations

Au Oin
folr/= hit/= 0

flr_= glr_= 0.

Therefore, since its elements are solutions of the same type of equations, as
stated above, the structure of the cokemel of A, is the same as that of the
kernel.

2. The structure of the kernel and cokemel

We now start the proof of (1.10), the form of the restriction to the boundary
of an element u in the kernel of As. Using the coordinate y on OM described
in Section 1, we can assume that near the north (resp. south) pole the
distribution u0 is just a_compactly supported distribution on the real line, with
s_upport contained in R/, and such that the support of Nuo is contained in
R_, where N is a classical pseudo-differential operator whose principal symbol
is ilrll.

Given manifolds X and S as in Section 1, let us call I(X, S) the space of
conormal distributions in X with respect to S. If M is a manifold with
boundary, .t.he space (M, 8M) is, as before, the set of distributions on an
extension M which are conormal with respect to M and supported on M.
The space A(M, 8M) is the set of restrictions to of distributions in
l(/r, 3M). When X and M are one dimensional, then given a point p in S or
3M which corresponds to 0 in the coordinate y, the local definition of the
above spaces of distributions is simply that for each element u there exists a
real number s such that u will remain in H[o,(X), I2Io(11) and H[o,(II),
respectively, when acted on by any of the operators (yDy)’.

Let be a compactly supported distribution in R, whose support is
contained in R +. Consider a pseudo-differential operator N whose action over
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v is given by

Ng(y) -ffei(y-Ygnn(y, rt)g(y’) dy’ d’rt.

THEOREM 2.2. Let v be a compactly supported distribution with supp v R /.

Suppose N is an elliptic pseudo-differential operator such that Nvl/ can be
extended to a smooth function on R. Then v(x) I(R, { y 0)).

Proof We prove the theorem by stages, first showing__that with the hy-
pothesis on v, the distribution w--Nv[_ belongs to A(R_, {y 0}). For
that, it certainly will be enough to show that, for some fixed s and m,

(yDy)kymw(y) Hoc(R_)

Using the representation (2.1), and restricting y to R_, we have

where the functions nj are symbols with deg nj deg n + j.
Let us call wj the jth term appearing in the right hand side of (2.3). Assume

that v H(R) c C(R), and fix m so that m deg n > 1. For y R_ and
y’ in the support of v, y y’ < 0. Hence,

where j is a symbol with deg j deg n m < -1, independent of k. The
term

y ) m+j’

’)
Y y, v(y

is bounded when y < 0 and y’ > 0. Hence, if we restrict y to a bounded set,
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we see that the supremum norm of wj is bounded by a multiple of
f(1 + Il)d d, which is finite since the exponent of the integrand is less
than -1. This holds for any j. Thus

sup ol(yD) mw< y (y) < C.

Away from_y 0 the distribution w(y) is smooth. We conclude that w(y)
belongs to A(R_, { y 0}). The assumption v Hc(R) is not essential to our
arguments. Details are left to the reader.

Therefore, the distribution w(y) belongs to A(R_, { y 0}). But the restric-
tion map

(o))

is surjective. Let be a distribution in (_, (0}) such that 1 R_ w. Let
g(x) be a smooth extension of Nv /. Then,

g(y), y>0,
h(y)

if(y), Y < O,

defines an element of I(R, (y 0}) such that Nv h is supported on y 0.
It follows that

Nv(y) h(y) + E cjiJ(y),
j<k

proving that Nv I(R, (y 0}).
For the final step, use a parametrix of N and recall that pseudo-differential

operators preserve I(R, ( y 0}). We conclude that v I(R, ( y 0}). m

In the coordinates (x, y) near Pn (resp. Ps) described in Section 1, the
restriction to the boundary, u0, of an element u in the kernel of A is a
distribution satisfying the hypothesis of Theorem 2.2. Also, if (f, g, h) is an
dement in the cokemel of A,, the restriction to the boundary of f, f0,
coincides with h and satisfies the conditions of the theorem. We obtain:

COROLLARY 2.5. Assume that uo is the restriction to the boundary of an
element in the kernel of A s. Then uo I( OM, ( p,, ps }). m

COROLLARY 2.6. Assume that (f, g, h) is an element in the cokernel of A.
Then the restriction to the boundary off, Co, belongs to I( OM, (p,, p }).

Let us return to the previous setting. We have a distribution v and a
pseudo-differential operator N on the real line satisfying the conditions of
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Theorem 2.2. Both distributions, v and Nv, are conormal with respect to
(y 0} and, consequently, modulo smooth functions, they can be represented
as the inverse Fourier transform of a symbol in the fiber of T*R. For Nv we
write

Nv(y) ---- feiYnf(rl) drl,

where f(l) is a symbol in T’R, y-independent.
Suppose N is classical, with symbol

o(N)(y, 1) E oft(Y, rl), (2.8)

where o(y, 1) is a homogeneous symbol of degree n -j, n the order of N.
Since N is elliptic, the principal symbol (that abusing notation we call o(N))
can be written as

o(N)(y, r/)ly.0= oV(y, rl) [y_0 a+l_+ a_l"_.

al+(rl++ aTla_’on__).
(2.9)

where a+ (N)(0,1) and a o(N)(0, 1). In the expression above, 1
stands for the distribution that coincides with 1" on the set { : + > 0}, and
is identically zero otherwise. This distribution is homogeneous when n is not a
negative integer. If n is a negative integer, homogeneity of o implies that
a_= (-1)"a+ and the decomposition (2.9) is still valid.

Using the principal branch of log, with arg z -,r for z R_, set

log atria_. (2.10)

THEOREM 2.11. Assume that v is a distribution and N is a pseudo-differential
operator satisfying the hypothesis of Theorem 2.2. Suppose N is classical. Then v
is classical and its Fourier transform can be expanded as

where or is a homogeneous symbol of degree r and k is a fixed integer.

Proof Consider the representation (2.7) of Nr. That representation is
rapidly decreasing at + o0. Moreover, modulo rapidly decreasing functions, we
can assume that it is supported in R_. Indeed, if g is any smooth extension of



A MIXED BOUNDARY VALUE PROBLEM FOR THE LAPLACIAN ]07

Nrl with support contained in { y: y > -1), it is a Schwartz function and
Nr g coincides with Nv modulo that space of functions. Hence, under this
assumption, the Fourier transform of Nv is a symbol with analytic symbolic
extension to the upper half-plane. On the other hand, the Fourier transform of
r is a symbol with an analytic s(mbolic extension to the lower half-plane. Let
us call f and v the symbols of Nr and , respectively. Let r be the order of v.
By Taylor expansion about y 0, we obtain

o(N)(y, rl) o(N)(O, rl) + yS(N)(y,

where #(N) is a symbol of the same order as o(N). Since v is conormal and
the operator "multiplication by y" increases the regularity of cornormal
distributions by one, we have that

f(l) o(N)(O, )v(r/) rood sn+r-l(T*).

Consider the distributions

n + i0, fl_(r/) r/ i0.

They have analytic extensions to the upper and lower half-plane, respectively.
For z 4:0 define

w(z) { ayf(z)(+(z))-n/z+v’ arg [0,
v(z)(_(z)) n/z-v, arg [-r,O),

Then, w(z) is analytic in each open half-plane and continuous in the
closures. Since e 2"iv aSta_, using (2.9) and (2.13) we conclude that w(z)
has a jump on the real axis which is a symbol of order n/2 + r- 1 -Vt,
where , is the real part of ,. We can find a symbol d(z), of order
n/2 + r 1 3q, such that for z 4:0

Wo(Z ) {a-if(z)(fl+(z)) -’/2+v, arg [0, r),
v(z)(fl_(z)) "/2-v + d(z), arg [-r,O),

(2.14)

is smooth in the punctured plane C {0} R2 {0} and has as 0 deriva-
tive, OWo(Z ), a symbol go(Z) of order n/2 + r Vx 2. Consider a smooth
function q such that q0 -= 0 in the region Ilzll < 1/2 and q I in the region
IIz II > l, and set

wd(z) / q(sz)w(z)’ Ilzll > 1/2s,
O, IIz II 1/2s.



108 SANTIAGO R. SIMANCA

Then, w(z) is a smooth function in C such that Ow(z) g(z) is a symbol
of order n/2 + r- ,l- 2. We can find a symbol u(z) with the following
properties.

1. 3u=-gs.
2. If either n/2 + r.- ’1 2 < -1 or > -1, we have:

2.1 For any K such that + 1 + K < -1, the function u admits an
expansion of the type

K

U(Z) E CqZ-q-1 "1" UK(Z),
q=0

where ur(z) is a symbol of order K 1 8, 0 < < [t + 1.
2.2. If > -1, then u(z) can be chosen to be a symbol of order

+ 1 + 8 with and 8 as above.
Hence, w(z) + u(z) is analytic, and

w (z) + u(z) E
j<M

the summation being finite since both, v and u, have finite order.
The importance of (2.15) is that, from the properties of u, it isolates the

contribution of order n/2 + r / in wd, and shows that this contribution is
a homogeneous symbol of integer degree. Hence, using this result on the real
line, we conclude that the functions f and v decompose as

f=fo +fl, v v0 + Vl,

where, for some integer k, f0 and v0 are homogeneous symbols of degree
k + n/2 + ",1 and k- n/2 + ",/, respectively, and fl and vl are symbols of
order at most k + n/2 + Vx- 1 and k- n/2 + V 1, respectively. The
functions fx and v have analytic symbolic extensions to the half-planes where
f and v enjoy similar properties and, on the real line, they satisfy the relation

fl(’0) {I(N)(0,’0)Vl(’I]) + hi(’0)

where h(r/) is a homogeneous symbol of degree k + n/2 + ’1 1, coming
from the interaction of the principal contribution of v with the lower order
terms in the expansion of the symbol of N.
The rest of the induction is just a mere repetition of the arguments above, in

order to take care of the interactions of the terms of v previously found with
the lower order terms in the asymptotic expansion of the symbol of N. Details
are left to the reader (see [9]). m

With this result we are now ready to prove the expansion (1.10) for the
Dirichlet condition of an dement u in the kernel of A.
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THEOREM 2.16 (Structure of the kernel). Assume that u is an element in the
kernel of As. Let (x, y) be coordinates nearpn (resp. Ps) such that V (1/i)0
and F+= (y: T-y > 0). Then uo, the restriction of u to the boundary, has an
asymptotic expansion of the form

m+ 1/2Uo(y) +;
j=O

for some integer m.

Proof In the coordinate y, if u is the restriction of Vu to the boundary,
then Uo is supported in R+, u Nuo with ux supported in R_, and the
operator N is classical and elliptic with principal symbol i11. In this case, the
number defined from o(N) via (2.10) is 0. Applying theorem 2.11, near the
pole in question the Fourier transform of uo can be expanded as in (2.12),

a0(n) E
jO

where u0, j() is a homogeneous symbol of degree k 1/2 -j, for some integer
k. The inverse Fourier transform of Uo, j. will then be certain linear combina-
tion of y /-k-1/-+J and y-k-/2+_ Since u0 is supported on +, the coefficient
of y-k-/2+ has to vanish for all j. The desired result follows by setting
m= -k-1. H

By the discussion at the end of Section 1, we also obtain the following:

THEOREM 2.17 (Structure of the cokernel). Assume that (f, g, h) is an
element in the cokernel of A and consider the coordinates (x, y) of the previous
theorem. Then, fo fl oM h, and

fo(Y) E cjym-+X/2+

for some integer m. H

3. Fredhoim properties of A

Using the structural theorems proven in Section 2, we want to analyse
Fredholm properties of the map A defined in (0.1).
We begin proving the following:

THEOREM 3.1. For all s R, the kernel of A is a finite dimensional space.
Moreover, if s >_ 1/2, ker A (0}.
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Proof. For u ker A,, let (u0, ut) Bu be its vector of boundary values.
By Theorem 2.11, when localized near the poles, the distribution u0 has an
expansion of the form

m+ 1/2Uo(Y ) . ciy + +, (3.2)
j=0

for some integer m. Since uo ns-1/2(OM), we must have 2 + rn -s e
for some positive e. This shows that the set

9r(A) {u0 e H’-I/2(SM) uo UlaM, U e kerA,}
is contained in Hs’-I/V(SM) for some s’ strictly bigger than s. Thus

(A) Hs’-l/Z( aM) HS-1/Z( aM). (3.3)

By Rellich’s theorem, the last inclusion in (3.3) is compact. This shows that
r(h) is a finite dimensional space. But the Dirichlet data, u0, of a harmonic
distribution u in determines the distribution itself. Hence, ker A, is also a
finite dimensional space.

Let dh be the usual measure on M, and let dt be the induced measure on
8M. Green’s formula

fMhUd, fMV u V---- d +1 fOMU7 vd

can be extended by contuity to H2(/r) Hl(/r), where Hz(/Q) is the
space of dements in H’(M) with Laplacian in L-(M).

Suppose u is in the kernel of A, for s > 1/2. Then, u0 is at least an L(SM)
-t/ is almost in L- but not quite, the integer rn in (3.2) hasfunction. Since y+

to be greater than or equal to 0. Hence, the worst singularity of u0 is of the
form y1/2/2, allowing us to conclude that Uo e HI-(OM) for any positive . It
follows that u H3/z-(II), showing that ker A, c H/--(M) if s > 1/2. For
u in the kernel of A,, set v u in the Green’s formula above. We easily
conclude that u has to be constant on M. But u is almost in H3/Z(M).
Hence, it is continuous and vanishes on F +. It must vanish everywhere, m

If we use Theorem 2.17 combined with the discussion at the end of Section
1, by the same arguments we obtain the following:

Tn.OlM 3.4. For all s R, the cokernel of A is afinite dimensional space.
Moreover, if s < 2, coker A (0}. m

Concerning Fredholm properties of As, the only unresolved point is the
closedness of its range. This is a little delicate, and in fact the map h, has
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closed range if, and only if, s is not congruent to x
2 modulo Z. In [9] we have

proven a proposition that for this particular situation reads as follows:

PROPOSITION 3.5. For s, 1/2 mod Z, the range of A, is closed.

Let us briefly outline a proof of this proposition. Recall that s > 1/2 the
map

H(I) H*-2(21)I) Hs-1/2(OM),
u Au $ uloM

is bijective with continuous inverse. Using this, we can prove that closedness
of the range of A, is equivalent to closedness of the non-homogeneous version
of (1.9)"

u Nulr_.

Away from the poles, this map can be inverted without any restriction on s. At
the poles, we can invert it modulo compact operators when s, 1/2 (mod Z).
For that, we use the coordinates (x, y, , ) of T*M described in Section 1 to
reduce our problem to a similar one on L2(R/) for an operator h whose
principal symbol is i( + iO)S-3/2lrll(l i0) -s+l/2. If g L2(R+), we can
think of it as an element of L2(R). Then g =/q-Xgl is in A(_, (y 0})
(see__proof of Theorem 2.2). We can find a conormal distribution os, supported
on R_, such that /q-tosin_= g. With this result, a parametrix modulo com-
pact operators can be easily constructed. The compactness of the error is
proven using Theorem 2.11. The details are technical and would make our
exposition a little bit too long. We therefore skip it.
Note that Proposition 3.5 does not say anything about the behavior of the

range when s-= 1/2 mod Z. The reason for this restriction is related to the
integer m appearing in the expansion of Theorem 2.16. In fact, for those
prohibited values of s, m is somewhat undetermined and, as a consequence,
the range of A is not closed.
The combination of Theorems 3.1 and 3.4, and Proposition 3.5, shows that

the map A is Fredholm for s 1/2. Our final goal is to compute the index of
our operators at these values of s, and in doing so, to understand the behavior
of As at the exceptional values s 1/2.

Let [t] denote the integer part of R.

THEOREM 3.6. Let k be any non-negative integer. For

s 1-2(k+l) 1-2k]
2 2
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the kernel of A is a 2(k + 1)-dimensional space. Similarly, for

(3+2k 5+2ks 2 2

the cokerne! of A is a 2(k + 1)-dimensional space. If s 1/2 mod Z then

1
Index As =-2Is -].

For s 1/2 mod Z, the range of A is not closed.

Proof. Putting together Theorems 3.1, 3.4, and Proposition 3.5, we con-
clude that A is an isomorphism for s (1/2, 2).
We shall prove the result for the dimension of the kernel. We have seen that

the cokemel obeys the same type of relations as the kernel. The result for the
dimension of the cokemel will then follow from the same arguments, if we just
replace the role of s 1/2 by that of s.
We use induction on k. First, we construct a two parameter family of

solutions to (1.8) out of Hs(/Q) for s [- 1/2, 1/2) (this corresponds to k 0).
If there is any such solution u, its restriction to the boundary, u0, has an
asymptotic expansion as in (3.2) near the poles { Pn, Ps }. Consider a distribu-
tion u (resp. u) supported near p, (resp. Ps) that agrees with y-1/2 in a
neighborhood of p, (resp. Ps). Then, u (resp. u) lies in -(F_) for any
positive e. Let N be the operator relating the Dirichlet and Neumann
conditions of a harmonic distribution in the interior of M. It is a classical
pseudo-differential operator whose principal symbol is given by lr/I in the
coordinates (y, /) of T* O.M. The principal contribution of the Fourier trans-
form of Nu (resp. Nu) will be of the form c(r/+ i0)1/2, and hence, it
produces a distribution supported on y < 0, which corresponds to F_ in the
coordinates used. Thus, the distribution Nug (resp. Nu) has its principal
contribution supported on F+, allowing us to conclude that Nu0lr_ (resp.
Nulr_0 lies in H-(F_) for any positive e. Taking linear combinations of u
and u we obtain a two parameter family of distributions ’0 such that"

1. ’0 -(F_), Ve > 0.
2. h 0 N,0lr_ H-(F_), /e > 0.

Let Uo be the unique solution to the problem

Au 0 in r (3.8)
U cgM /Y0"

Consider the element Uho of H/2-e’(M) that corresponds to 0 + 0 + h 0 via
A when s (1/2, 2) (recall that h is an isomorphism within that range). Then,

w U,o- Uho (3.9)
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is a solution to (1.8), lying in H1/2-*(]) for any e > 0. Note that w is not
trivial since the Sobolev regularity if u0 is almost one unit lower than the
Sobolev regularity of Uho. Hence, (3.9) defines a two parameter family in
the kernel of A for [- 1/2, 1/2), and consequently, for those values of s, the
dimension of the kernel is at least 2.
Using the expansion (3.2) for the restriction to the boundary of an element

in the kernel, we can easily show that in this range of s’s, the dimension
cannot be bigger than 2. Indeed, let and be the leading coefficient in the
expansion of u0 near Pn and Ps, respectively. Consider the map

ker A C2

U "-----(tn, ts).

Suppose we have three linearly independent elements in the kernel of A
s [- 1/2, 1/2), say 01, o2, 03. Then, for some constants c and c2, we have

for

r(o ) + c:r(o:). (3.10)

It follows that v =/33 Cl/31 (?2/32 solves (1.8). Moreover, from (3.10) we see
that the leading term in the expansion (3.2) for the restriction of /3 to the
boundary, vanishes. Hence, the distribution /3 lies in H3/2-() for any
positive e. By Theorem 3.1, it must vanish identically, contradicting the
independency of /31, /32 and /33. Thus, no such/3 exists, which shows that the.
dimension of the kernel in this range of values of s is less than or equal to 2.
Hence, it is exactly 2.
To complete the induction, we assume the result is true up to k- 1.

-1/2-k instead of y + we construct a two parameter familyStarting with y +
v, with the properties:

1. ’k -k-(F-), Ve > O.
2. h k Nvlr_ H-k-(F_), Ve > O.

The solution uk to (3.8) is still unique and lies in H-1/2-k-e(Jl) for any
positive e. By Theorem 3.4 and the induction hypothesis, there exists a
2k-parameter family of distributions Uhk that corresponds to 0 + 0 / h, via
A for

(1-2k 1-2(k-1))2 2

It follows that u
kernel of A for

Uh, is a 2(k + 1)-parameter family of elements in the

1- 2(k+ 1) 1-2k)2 2
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The same procedure will also prove that the dimension of

ker As" s 2 2

/kerAs. s {1-2k2 ,i-2(k-1)2 )/
cannot be greater than 2, completing the induction.
As we pointed out at the beginning, the result for the cokemel follows from

the same arguments.
Formula (3.7) is obtained counting the number ofjumps in the dimension of

the kernel and cokemel, respectively, and observing that the index of A is 0
on the interval (1/2, 2).

Finally, when s 1/2 mod Z, the range of A cannot be dosed. Otherwise, in
virtue of Theorems 3.1, 3.4, and Proposition 3.5, A would be a continuous
family of Fredholm maps in a neighborhood of those points. Therefore, it
would have constant index across them, contradicting formula (3.7). m
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