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PRODUCTS OF MATRICES OVER A FINITE FIELD
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1. Introduction

Let Fq be a finite field of q elements. Let be a class of n x n matrices
over Fq. Now, choosing I n x n rnatdces Al,..., At we ask: what is the
probability that the product At... A will belong to ? We considered this
question in an earlier paper [5], where ’ was the class of matrices of rank r
(and nullity t n r). To introduce the results of [5] we need some notation:

[.l (q"- 1)[n 11 (q"- 1)(q"-x- 1)...(q- 1), [0] 1,

(1)
[n] q qn-1 n-k+1[nlk] [n’-k] ( -1)( -1)...(q 1), n > k > O,

(2)

In] [n] (q" l)... (q’-k+ l)
k [k][n k] (qk_ 1)...(q-- 1)

n > k > 0. (3)

The ]’s are called the Gaussian coefficients and give the number of k-dimen-
sional subspaees of an n space over Fq (for more details see [4]).

In [5] we proved that the probability for a product of k n x n matrices to be
of rank r n t is

where

Pnn-t--" (q-n’-k)(kmnn-t) (4)

rl t-o

0
kmnn_ q1/2(n-l’(nk-9-t)+(t2)[t ] (-1) It ]q(Z)

X(q 2 [’1"-] (5)
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In particular, the probability for the product of k matrices to be zero is

kpo=q-(+)-(2)2 (--1) Oq() n (+)[n[n2 --o] (6)
o--0

In a further paper [6] we utilized the results of [5] to answer the basic question
for 2 classes, nilpotent matrices and idempotent matrices.

In the present paper we generalize the methods of [6] and show how they
can be used for any class of matrices which is invariant under inner-auto-
morphisms, provided we know the number of matrices from in fight (lef0
ideals of the ring of n x n matrices over Fq (Lemma 1).

After proving the basic counting lmma, we proceed to give some applica-
tions. In Sections 3 and 4 we treat two easy cases: matrices of given trace and
matrices of given determinant. Next, in Section 5, we turn to matrices of given
characteristic polynomial and in Section 6 to diagonalizable matrices. The
results of these two sections generalize the results of [6]. Clearly the method
yields itself to many more applications.

Apart from the notation introduced in (1)-(6) we shall use the following
notation throughout the paper.

Let N be a fixed n-dimensional space over Fq and gt HomF(N N)=
M(Fq) where matrices will be viewed as linear transformations on N when
convenient.
The number of elements in a finite set S is denoted by f.5. Thus

V q, :R q. (7)

If ot (a, a2,... at) is a vector of integers with a + x2 + + a r/we

define

We shall also use the abbreviation

<or>= a,aj. (9)

2. The basic counting lemma

Let be a class of matrices in R M(Fq) which is invariant under inner
automorphisms, i.e., AA- ’ for all invertible A R. Now let eg be the
standard matrix units of R and e =ett + e22 + +e. Let us now denote
by c the number of matrices in ’ whose n r last columns are zero, i.e.,

Cr cCI er. (10)
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Note that by the invariance of ’ we could have defined er as $ff iRB where
B is any matrix of rank r in . Let us now denote by (1, n,q) the
probability that the product of l matrices chosen at random from will fall
into ’.

"y(l, n, q) I ( AI. A -. (11)

Our basic lemma expresses ,(1, n, q) in terms of the cr and the probabilities
that a product of k matrices will have rank r--which have been computed in
[51.

L.MM), 1.
n

y(l, n, q) q"tc,,-ti-tm,,,,-, (12)
t--0

where

km,,n-t q1/2(n t)(,,k-:t)(t:)n]t (--1) [o
o--0

(13)

Proof. For 1 k + 1 > 1 we have

"y(k + 1, n,q) --..(Ak+I...A -n

E e a, r}.
r--0

(14)

NOW,

( Ak+B - ’lrank B r }
q-’$(alaB ,rankB r}
q-n:{AIAB O, rank B r}{B I if}
q-n2qn(n-r)Cr
q-nrCr"

On the other hand, from [5, Theorem 2] we know that

(rank(Ak... A1) r } q

where km,, is given by (13).

nk kmnr
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Combining these into (14) and changing the index of summation from r to
t n r will yield the result.

In the upcoming sections we shall exhibit several applications of the basic
counting lemma, starting with some very simple ones and going on to greater
complexity. Some more applications may be found in [6].

3. Fixed trace

Let 3t be any element in Fq and ’ the set of all matrices in of trace
n2--1Clearly c6’ has q elements and almost as clearly

Cr ( e qr2-1qr(n-r) qrn-1, r > 1,
co 8xo. (15)

Let us now confine ourselves for a minute to the case h 0. Then, if we
denote by -/x(k + 1, n, q) the probabity that the product of k + 1 n x n
matces 1 have trace zero, we have by (15) d (12),

o(k + 1, q, n) q-(k+X) qntcn_tkmnn_
t-O

q-"2(+x) qntq(n-t)n-lkmnn-t W qn2kmno
t--O

q-n2(k+l)+n2-I( lt-O kmnn --+t qkmno)
q kmnn-t nO

tO

Now, -0km-t is, by the defiNtion of m_t, just the count of all
k-tuples of n x n matrices, hence it equals q; therefore

,o(k + 1, q, n)= q-X(1 + q-n2k(q- 1)(km,,o))= q-1(1 + (q- 1)(p,,o))
where kpo is the probability that the product of k n x n matrices is zero and
is given by (6).
Now, if h 0 we can proceed in the same way using co 0 or we may use

symmetry to conclude that (q 1)’x(k + 1, q, n) + "/0(k + 1, q, n) 1.
This proves:

THv.OV.M 1. The probability that the product of I n x n matrices over a fieM
of q elements will have trace is

q-X(1 + (q 1)(’-Xpo)) /f X 0,
(16)
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where kp.o is the probability of the product k matrices to be zero ,and is given
by (6).

4. Fixed determinant

We shall now determine the probability for the product At... A to have a
given determinant. Again let d be any element of Fq, and c,d the set of
matrices of determinant d in t. Applying the well known formula for the
number of regular matrices in 9t we get

oc.= q -q n]--q q 2 In] (17)

while for r < n we have

0 ,0 $e, q-O (18)C ("1 e

This takes care of matrices of determinant 0. As for matrices of determinant
d = 0 clearly their number is independent of d and so

n

a a = q()[n] ()
c=$ =c=$ q-1 =q [nln-1], (19)

while for r < n,

(20)

Now, if 3,x(k + 1, n, q) will denote the probability that the product of
k + 1 matrices will have determinant 1, we have by (12)

[nln 1] km,n.

Now, by (5),

km 2 k

,. q [nln] k

and so

),x(k + 1, q, n)
/ (2 (k+l)

q-n2(k+X)q [n] k+l
_(n+1)2

q-1

k+l
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Now -o(k + 1, q, n) can be computed directly using (17) and (18), or by using
symmetry we once again have "/0 + (q 1)’/1 1. This proves:

TaOEM 2. The probability that the product of I n x n matrices over a fieM
of q elements will have determinant is

F(q,n)’
q" l forhO,

1- F(q,n) for X O,
(21)

where

_(.+1)2
F(q,n)--q [n]. (22)

Buckheister in [2] computed the number of matrices in .with given trace
and rank. As a further application of the basic counting lemma one could use
that result to calculate the probability that a product of 1 matrices will have
given trace and rank. We turn now to applications concerned with the minimal
and characteristic polynomial of the product.

5. Fixed characteristic polynomial

We now compute the probability that the product Ax... A will have a given
characteristic polynomial. We shall use a result of Gerstenhaber [3] who
computed the number of matrices in gt having a given characteristic poly-
nomial. As previously noted we shall use the notation introduced in [3]:

_(r+1)2
F(q, r) q [r].

Let f(x)= fl(x)f"-(x).., fJd(x) a polynomial of degree n in Fq[x]
with f(x) irreducible of degree d, Z,dmi n. Let be the class of all
matrices in having f(x) as characteristic polynomial. It is proved in [3] that

F( q, n) (23)I-IF(qd’, mi)"
Note that the result holds for m 0 since F(qd’, O) 1.
We shall now want to compute c/, the number of matrices having f(x) as

characteristic polynomial in e.
To that purpose, let us rewrite f(x) as

 -ofr,(x)
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where x f(x) and m0 > O. Now, any matrix T in e may be written in
block form as

where 7 is r by r and x is n r by r. If Xr(X) denotes the characteristic
polynomial of T, we have Xr(x) x-Xf(x); hence we conclude

if r < n mo,
(24)Cr/=

qr(n-r)-f/xn-r if r > n mo.

Therefore, if we denote by c/(k + 1, n, q) the probability that the product of
k + 1 matrices will have f(x) as characteristic polynomial, we have from (24)
and (12)"

n
nte/ kmc/(k + 1, n, q) q ’-+) E q -t nn--t

t--O

mo
q-n2(k+t) E qntq(n-t)tq(n-t)2-(n-t)

t-O

F(q, n t) kmX
F(q, mo t)l-IF(qd’, mi) nn-t

Substituting in the expression for km-t and abbreviating FIa.. t(q d’, m) by
P-x we get, after some routine simplifications,

c/(k + 1, n, q) Pq E q q 2 [nln_o po(q)
o--0

where

Po(q) qm[n][no oln mol E (- 1)t-Oq 2

mo t
t’--O

Substituting t o v and m0 o ,r we get

Po(q) mol Y’. (-1)’q 2 +" r

u--O
(26)
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Considering now the inner ,summation in (26), we can replace
and using Lemma 2 of [6] we have

E (-1)’q(’ +’ r

u"O
,,o + 8,,x(1 q).

Substituting this in (26), and (26) in turn back in (25), proves:

TI-noIM 3. Let f(X)= xmf:l(x)f:2(X).., fTa(X) be a polynomial in

Fq[x] where the fi(x) x are different irreducible polynomials of degree d and
m > O. The probability that the product of I n n matrices over Fq will have
f(x) as characteristic polynomial is

q((
1-ldi_lF(q d’, m,) [n[n- mo]t 1 qmOqmo_ 1 (27)

where

-(
F(q,n) =q In].

Remark. If we consider f(x) x n the theorem will give the probability
for the product At... A to be nilpotent. In this case n m0 while m 0 for
> 1. Then (27)collapses to

qn-1)qn
which is just Theorem 1 of [6].

6. Diagonalizable matrices

As a final application of the basic counting lemma we are going to address
the question of diagonalizable matrices over Fq. The methods of this section,
after some simple alterations could also handle matrices with given minimal
polynomial with distinct roots.
A matrix T in gt is diagonalizable in if and only if its minimal

polynomial re(x) splits into distinct linear factors over Fq,
m(x) (X- Xl)...(x- Xt)

where , which is equivalent to N’s being a direct sum

N--.NI @ @N

where the N are the eigenspaces of T belonging to ,.
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Recall that a composition of n into parts is a vector of positive integers

0t (al, a2,... at)

where Ea n. We denote by C(n, t) the set of all compositions of n into
parts.

In Lemma 7 of [2] we have calculated the number of decompositions of N
into 2 parts. An easy generalization of it will yield"

LEMMA 2. The number of decompositions ofN into a direct sum

Z qr+,.,,.[n]a (28)
a.C(n,t)

By the discussion above, (28) is also the number of matrices in R with
minimal polynomial having exactly distinct linear factors. Finally, counting
all the possibilities for the set of eigenvalues {,1,..., ht) and summing up
over t will give:

The number of diagonalizable matrices in R is

tl( q ) Z qZ’*J’aJ n (29)
aC(n,t)

ot

The same result, albeit in a slightly different form and with a more involved
argument may be found in Theorem 2 of [1].
To facilitate notation, we shall denote the sum E,aa for a vector a

by (a>.
Having counted the number of diagonalizable matrices in we easily

calculate their number c B in any left ideal B of , where c# of
course is just the set of diagonalizable matrices.

LEMMA 4. Let B be a matrix of rank r; then the number of diagonalizable
matrices in RB is

q-1 r

[1Cr= (q--1)qj(n-j)
co 1. (30)

Proof T is in RB and is diagonalizable if and only if N Ker T T(N)
with Ker B __. Ker T and T r(N) is diagonalizable and regular. If T is of rank
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j, we must have j < r and we may choose Ker T to contain Ker B in

n-(n-j)
ways.
Now we choose the image T(N) to complement Ker T; there are qj(n-j)

ways to do that. Next we decide on the number s of nonzero eigenvalues for T
and choose the eigenvalues hx... ,; this can be done in (qsX ways. Note
that s < q 1 and s < j. Finally we have to decide on the decomposition of
T(N) into s eigenspaces--by Lemma 2 this can be done in

etC(j,s)

ways.
Multiplying all the factors and summing up over all possible numbers of

nonzero eigenvalues s 1... q- 1 and over all possible ranks for T, j
s... r we get the total number of matrices in W 9tB.
Note that (30) does not hold for r 0 but co 1.
Now, letting ,(k + 1, n, q) be the probability that the product of k + 1

matrices will be diagonalizable, by (12) we have

-nkkmnn. (31)

In order to evaluate the first term of (31), note that we may as well sum for
t 0,..., n since for t---n, (30) yields zero. Using this and introducing
another abbreviation,

An m+oo,s=Ao, (q)
m m-i( iq(i+l)+io+j(n_j)[ m0 E (--1) 2

i,j
i-- j--s

(32)

After some simple manipulations, we get:

THEOREM 4. The probability that the product of n n matrices over a field
of q elements will be diagonalizable over the field is

kPnn +q
(n+l)t_() (2) (o+1)2 q 2

_o[n
q [nln o] q 1 An (q)

(33)
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where A,s(q) are given by (32) and kpn is the probability that the product of k
matrices will be zero and is given by (6).
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