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ON THE NUMBER OF SOLUTIONS OF x"IN A p-GROUP
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In Memory of Irving Reiner

1. Background

One of the most classical enumeration theorems in the theory of finite
p-groups is the following:

(1.1) THEOREM OF KULAKOFF [7]. If G is a noncyclic p-group of order pn
where p > 2, then for any positive integer m < n, the number of subgroups of
order pm in G is =- 1 + p (modp2).

For m 1, this theorem has the following equivalent form:

(1.2) COROLLARY. For G as above, the number of solutions of the equation
xp 1 in G is divisible by p2.

Theorem (1.1) was first stated in Miller’s paper [11] in 1923, and (1.2) has
appeared as early as 1916 as an exercise in the book of Miller, Blichfeldt and
Dickson [12, p. 133]. However, Miller’s proof of (1.1) in [11] contained a gap,
as was pointed out (and corrected) by Kulakoff [8]. The first complete proof of
(1.1) appeared in [7] (1931), which was independent of Miller’s work. Other
proofs have subsequently been found by O.J. Schmidt [13] and P. Hall [4]. For
a modern exposition, see [6, p. 314].
A natural way to extend Kulakoff’s Theorem is to try to prove enumeration

theorems modulo higher powers of p. In this direction, various results have
been obtained in the case m 1. Counting modulo p3, the best result is the
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following:

(1.3) THEOREM (Huppert [6, p. 339], Berkovich [2]). Let G be a finite
p-group which is not metacyclic. If p > 3, then the number of solutions of the
equation xp 1 in G is divisible by p3.

If G is an irregular (finite) p-group, then even stronger enumeration
theorems are possible. In fact, P. Hall [5] has shown that, for such G, the
number N of solutions of xp 1 in G is always divisible by p p-1, and N.
Blackburn [1] has shown that, if G is also not of maximal class, then N is even
divisible by pP. These results are, however, considerably deeper.
My own interest in Kulakoff’s Theorem stems from the fact that (1.2) has a

marvellous application to the computation of the Artin exponent of finite
groups. In fact, coupled with a result of Brauer, (1.2) implies that a noncyclic
p-group of order pn with p odd has Artin exponent pn-1 [10, Th. (5.1)]. In an
unpublished part of my thesis [9], I have given another proof of (1.2).
Recently, I discovered that the ideas of that proof can be extended to give
results on the number of solutions of the equation x a in a finite group G,
where a is a given element of G. Since these results represent, among other
things, generalizations of (1.2), (1.3), and do not seem to have appeared in the
literature, I shall record them in this short note.

I wish to thank Professor H. Bass who taught me some of the ideas used
here when I wrote my thesis. Shortly thereafter, I had the good fortune of
working on representation theory with Professor I. Reiner, through several
visits at the University of Illinois. In subsequent years, I have continued to
profit from his good counsel, and to receive his warm encouragement and
support. His untimely death in October, 1986 was to me a great personal loss.

2. Statement and proof of the theorem

Unless stated otherwise, all groups considered in this paper are finite
groups. In the following result, the prime p is fixed. However, we do not need
to work in a p-group, so we take G to be an arbitrary group.

(2.1) THEOREM. Let G be a finite group, and H c_ G be a p-elementary
abelian normal subgroup of order pr. Then, for any central element a Z(G)

pkand any integer k >_ 1, the number N of solutions of the equation x a in G is
divisible by pr-tr/pk]. ([d] denotes the integral part of a positive number d.) In
particular, N is divisible by pmin(r,

Before proceeding to the proof of the theorem, let us first explain how the
second conclusion follows from the first. If r < pk_ 1, then [r/p] O, so
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the first conclusion gives the divisibility of N by

pr pmin(r, pk_ 1).

If, on the other hand, r >_ p’, then, writing r qpk ._ r0 with 0 < ro < pk, we
have [ripk] q >_ 1 and so

r- [r/pk] qpk + ro-- q q(pk--1) +r0>pk-1.

Then the first conclusion of the Theorem implies that N is divisible by

P pk prain (r, pk 1)

It is also worth noting that the theorem above is not true if the element a is
not assumed to be central in G. In fact, if G is the alternating group on four
letters, then the 2-Sylow group H < G is 2-elementary abelian of order 2 with
r=2, soforp=2andk=l, wehave

pr-tr/pk] 22-1 2.

However, for the (noncentral) 3-cycle a (123), the equation x2 (123) has
only one solution, namely, x (132).

Proof of the theorem. It is sufficient to prove that, for any element b G,
the number of Nb of solutions of xp= a with x H. b is divisible by
pr-tr/’J. If such solutions do not exist, then Nb 0 and we have nothing to
prove. Therefore, we may as well assume that b itself is a solution, i.e.,
bp a. Now we must count the number Nb of elements h H such that
(hb) ’ a. Let fl Aut(H) be defined as the conjugation action of b on H,
i.e., fl(h) bhb -1. For any h H, we have

(hb)2= h(bhb-)b2= hfl(h)b2,

and so inductively,

(hb)’= hfl(h)flE(h) fl’-(h)bi.

In particular, (hb)r= hfl(h).., flP-(h)a. Therefore, Nb is exactly the
number of elements h - H such that hB(h)... BP-(h) 1. Next, note that,
since B is the conjugation action of b a on H and a is central, we have
B’= 1. Letting {B} be a cyclic group of order pk and viewing H as an

F,-vector space, we can then make H into a (left) F{B)-module by the action
B h B(h) (for any h H). Using this action, Nb is now the cardinality of
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the annihilator of

1 + B + B2 + +Bpk-1 Fp(B)

on H. In order to calculate the sum expression, note that, for any inde-
terminate T over Fp, we have

1 + (1 + T) + +(1 + T)p-
1 (1 + T)e
1-(I+T)

1 1 Te

Letting t:= B- 1 in the group algebra R .’= Fe(B) and specializing the
above polynomial identity by T t, we get

pk1 + B + B2 + +Bp-I R,

and hence Nb Card annn (tP-l). Now let us invoke our knowledge of the
modular representation theory for the group (B) (cf. [3, pp. 431-432]). The
(finite dimensional) indecomposable left R-modules are, up to isomorphism,

Mi=R/R.t withdimFpM=i (1 _< < pk),

so H (as an R-module) has a Krull-Schmidt decomposition

H SlM s2M2 (spkmp,,

where the non-negative integers st,..., s_ denote the multi.plicities with which
P

the M’s occur. Since p 0 but p -t : 0, we have

ann,ti(tea-t) l Mi if < pk,
if =p.

Using the fact that tM has codimension 1 in M, we see that

Pk-1 )dim Fpannn (t dimF,H sp r

On the other hand, the fact that H contains sp. copies of Mp. implies that

r > (dimv,Mp,)Sp, pk’Spk.
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and so Spk <_ [r/pk]. It follows that

pk--1) kdiml,annH(t > r-[r/p ],

and therefore Nb is divisible by pr-[r/p’], as desired. Q.E.D.

In the proof above, the only property we needed for the element a is that it
centralizes the subgroup H. Thus, the conclusion of the theorem holds already
if we only assume that Ca(a) has a normal p-elementary abelian subgroup H
of order pr. However, this does not really give a stronger result, since any
solution x of the equation xp= a lies in Ca(a ), so for the purpose of
counting the number of solutions of this equation, we could have, in any case,
replaced G by Ca(a), in which a is central.
A nice illustration of the method used in the proof of (2.1) is provided by

the group G which is a p-Sylow group of the symmetric groups Sp2. As is well
known, G is a regular wreath product Zp Zp; in particular, G is a semidirect
product of H Z, Zp (p copies) with a cyclic group (b) of order p.
Here we have r p, and we take a 1, k 1. With the element b chosen as
above, the R-module H referred to in the proof of (2.1) is just the left regular
module RR Mp and so H0

.’= annn(tP- 1) is a "hyperplane" in H. Accord-
ing to the proof of (2.1), (x H. b: xp 1) is just H0 b. Applying the
same consideration to any coset H. b (1 < < p), we get

(x = H. bi" xp= 1) Ho. bi.

(It is easy to see that the same H0 works for all the non-identity cosets. In fact,
Ho is exactly the commutator subgroup of G.) Therefore,

(X G" Xp 1} H U (Hob U UHobp-1 ) H U H’

where H’= H0, b) (cf. [6, p. 381, Ex. 36]), and the number of solutions of
xp 1 is pP + (p 1)p ’-1 pP-(2p 1), as was pointed out already by
P. Hall in [5, p. 480].
Even if the element a G is not central, the proof of Theorem (2.1) can be

used to give divisibility results for the number of solutions of xp a when a
is a p-element and the integer k is sufficiently large.

(2.2) THEOREM. Let G be a finite group and H c_ G be a p-elementary
abelian normal subgroup of order pr. Then, for any p-element a G, the number
N of solutions of the equation x a in G is divisible by pr- when p r, and
divisible by pr when p > r.
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Proof. Going back to the notations used in the proof of (2.1), we fix an
element b G such that b’k a and consider the automorphism fl Aut(H)
induced by the conjugation action of b. In order for the proof to work, we
need to know that tip 1. This can be deduced from the assumptions (i) a is
a p-element, and (ii) pk> r, as follows. By (i), we know that b is also a
p-element, and so flpm 1 for some m. Working in End(H) -= M,(F/,), fl 1
is nilpotent and therefore (/3 1) 0. Using (ii), we have (fl 1)p-= 0 and
so flPk 1, as desired. Thus, we can conclude as before that N is divisible by
p-t/l, and the theorem follows. Q.E.D.

3. Applications

In this section, we shall show how Theorems (2.1) and (2.2) can be used to
obtain some generalizations of (1.2) and (1.3). To put the results in better
focus, we shall now specialize to p-groups. The following is our generalization
of (1.2).

(3.1) THEOREM. Let G be a finite non-cyclic p-group, where p > 2. Let
a G and k be any positive integer. Then the number N of solutions of the

pkequation x a in G is divisible by p2.

Proof. Under the given assumptions on G, it is well-known that G contains
a normal subgroup H Zp Z [14, pp. 58-59]. Thus, the theorem follows
by applying the second conclusion of (2.2) with r 2. Q.E.D.

In the situation of (3.1), if a 1 and p < [G[, then Kulakoff has proved
that N is divisible by pk+l [7, Satz 2]. However, Kulakoff’s counting methods
do not extend to the case where a G is arbitrary. On the other hand, using
deeper tools from the structure theory of p-groups, P. Hall has proved a much

pmore precise theorem concerning the number of solutions of x a [5, Th.
(2.6)]. Our Theorem (3.1) lacks the depth of Hall’s result, but its proof is
completely elementary. Note also that the key case in (3.1) is when k 1,
because, as is easily seen, the conclusion in this case implies that in the general
case.
The case when p 2 is harder and considerably more subtle. It is known

that, if a 2-group G is not cyclic, dihedral, semi-dihedral or generalized
quaternion, then G has a normal subgroup H -= Z2 Z2 [14, pp. 58-59]. For
these groups G, a result of Alperin, Feit and Thompson (see, for example, [10,
Th. (6.1)]) states that the number of solutions of the equation x 2 1 in G is
divisible by 4. (An equivalent statement is that, for any normal subgroup
H --- Z 2 Z2 as above, the number of (normal) subgroups K H isomorphic
to the dihedral group of order 8 is even.) It seems likely that, more generally,
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for any central element a Z(G), the number of solutions of X 2 a in G is
divisible by 4, but we have not been able to find a proof.

In order to get from (2.1) and (2.2) a corresponding counting theorem
modulo p3, we would need the existence of a normal p-elementary abelian
subgroup H_ G of order p3. Fortunately, such a result is available in the
literature. (We mention in passing the curious fact that, for p >_ 3, a p-group
G has a p-elementary abelian subgroup of order p3 iff it has a normal
p-elementary abelian subgroup of order p3; see [14, p. 63].)

(3.2) PROPOSITION. Let G be a finite p-group where p > 3. If G is not
regular, then G has a normal p-elementary abelian subgroup H of order p3.

This can be seen by using the short argument from the first part of the proof
of Satz 12.4 in [6, p. 344], due to Blackburn. In fact, if G does not have a
(normal) p-elementary abelian subgroup of order p3 (p >_ 3), the structure of
G has been completely determined by Blackburn. However, we only need to
know that such G must be regular when p > 3, for which the beginning part
of the proof of Satz 12.4 suffices. Note also that Prop. (3.2) does not hold for
the prime p 3; in fact, there exists an irregular 3-group of order 34 for
which x3= 1 has exactly nine solutions, so clearly G has no subgroup
isomorphic to Z Z Z (see [6, Bem. (11.7), p. 339], or [14, Ex. 9, p. 99]).
With the aid of Prop. (3.2), we can now generalize the theorem of Huppert

and Berkovich stated in (1.3).

(3.3) THEOREM. Let G be a finite p-group which is not metacyclic, a G,
and k be a positive integer. Assume that (i) p > 3, or (ii) p 3, k >_ 2, and G
is not one of the 3-groups determined by Blackburn which do not have a normal
subgroup -= Z Z Z3. Then the number N of solutions of the equation
xp a in G is divisible by p3.

Proof. First assume that G is regular. Then I(G) (y G: yP I) is
a subgroup of G. If Ifx(a)l _< p2, then G has at most p + 1 subgroups of
order p (since these subgroups must all lie in fl(G)). By [6, (11.6), p. 338], G
is then metacyclic, a contradiction. Thus, II(G)I > p3. Fix an element b G
such that b ’k a. (We may assume that b exists, for otherwise N 0 and we
have nothing to prove.) For any x G, the regularity of G implies that
x ek a bp iff (b-ix) 1 (see [14, p. 47]). Thus,

N Ifk(G)l where fk(G)= (y G" yP= 1).
Since k(G) is a subgroup of G containing, fI(G), we have N pm for some
m>3.
Now let us treat case (i), where p > 3. By the above, we may assume that G

is irregular. Then by (3.2) G has a normal p-elementary abelian subgroup H
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of order p3. If p 3, we simply assume that such an H exists, as in case (ii).
In either case, taking r 3 in (2.2), we are in the situation pk > r. Applying
the second conclusion of Theorem (2.2), we see that N is divisible by p3.
Q.E.D.

To conclude this paper, let us make some remarks about the case when
p 3 and k 1. We shall limit ourselves to the situation a 1. In this case,
we claim the following:

(A) The theorem need not hoM for 3-groups of order 34.
(B) But the theorem remains valid for all 3-groups (as in (3.3)(ii)) of order

> 34.
An example for (A) is provided by the regular wreath product group

Z Z3. As we have mentioned earlier, this 3-group has a maximal (normal)
subgroup -= Z Z Z3, but the number of solutions for x 1 is 32(6
1) 45 which is not divisible by 27. As for (B), we do not have a direct proof,
but it is a special case of the following much more general statement (cf. [1])"

(3.4) THEOREM (Blackburn). Let G be a p-group which has a normal
subgroup H of order p p and exponent p. If G[ > p p + 2, then the number of
solutions of the equation xp 1 in G is divisible by pP.

This theorem is not explicitly stated in [1], but a careful analysis of the
proofs of Corollary 2 and Theorem 6 in [1] shows that (3.4) is, in fact, what
Blackburn has proved. This theorem applies, in particular, to p-groups which
are neither regular nor of maximal class, because such groups always have
order > pp/2 [6, (10.11), p. 331], and Blackburn has shown earlier that they
always have normal subgroups of order p P and exponent p. Also, it is worth
noting that, for p 2, (3.4) essentially coincides with the theorem of Alperin,
Feit and Thompson referred to earlier in the remark following the proof of
(3.1).

Note added in proof The method of proof of Theorems (2.1) and (2.2) in
this paper is already applicable under the more general assumption that a G
gives a p-element in the quotient group G/C(H), say of order pm. In
this case, our method can be used to show that the number N of solutions of

pkthe equation x a in G is divisible by pd where d is an integer
> r(pk- 1)/pk+m. For m 0, this gives back the estimate in (2.1). In any
case, it is straightforward to show that N is always divisible by pmin(r, p*-l)
independently of m; this subsumes (2.2) as well as the last conclusion of (2.1).
The nilpotency argument used in the proof of (2.2) can thus be avoided.
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