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Throughout this work, R denotes a commutative noetherian complete local
ring and R its maximal ideal. We will assume that the residue field k :--

is algebraically dosed. Let A be a basic and indecomposable R-algebra, we
will always assume that A is finitely generated as R-module. We will be
concerned with the estimation of the global dimension of A(gl dim A). Our
methods will be of diagrammatical nature: associated with the k-algebra
A A/rA we have a quiver Q (i.e., an oriented graph) such that A is a
quotient of the path algebra R[Q-]. We will derive properties of gldim A
from the geometric structure of Qx.
In Section 1 we show that for any R-algebra A, with Qx without oriented

cycles, a necessary and sufficient condition for gldim A < o is that
gl dim eiAe < o, for a complete set ex,..., e. of pairwise orthogonal primi-
tive idempotents of A (observe that the tings eAe are quotients of R since
Qs has no oriented cycles).

In Section 2 we consider the case where R is a discrete valuation domain
and A is a Schurian order (tiled order in the notation of [8]). The problem of
determining gldimA in this case has been considered before. In [8],
Jategaonkar shows that for a triangular Schurian order, gl dim A < o iff
gl dim A < n 1, with n as above. In [9], this result is generalized to the case
where R is a commutative noetherian domain. In [10], among other things,
a necessary condition for gldim A < oo is given. This condition plays
an important role in our approach, see (2.1). In [21], Roggenkamp and
Wiedemann give a more or less complete description of all Schurian orders of
global dimension two. They use quiver methods.

For a Schurian order A, we relate the problem of evaluating gl dim A to a
problem of posets and their representations. We use some arguments of [22]
and covering techniques ([3] and [14]). We give a sample of our results: Let
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GLOBAL DIMENSION OF ALGEBRAS

R k[[t]] (the power series ring in one variable). Assume that at each vertex
of Qs at least two arrows start and at least two end, then gl dim A > 3. This
result is related with recent research in [27] and old conjectures in [10] and
[26]; see (2.9).
By Mod A (resp. mod A) we denote the category of left A-modules (resp.

finitely generated A-modules). Modules will be sometimes treated as represen-
tations (for example, see [6]). In particular, A will be considered also as an
R-category (this is necessary when quivers are infinite). Some special modules
(or representations) are S and P, the simple and projective module associ-
ated with the vertex x of Qs, respectively.
We denote by p dimAM the projective dimension of a A-module M and we

let

gl dim A sup{p dim M’M Mod A }.

When R is a local noetherian ring and A is an f.g. R-algebra (our case),

gl dim A sup {p dimAS" S is a simple A-module}

(see [25], Cor 4.6).
We thank L. Salmer6n for profitable discussions.

1. Algebras whose quiver has no oriented cycle

1.1. Let A be a basic R-algebra finitely generated as R-module. Consider
A A/RA. Then A is a basic finite-dimensional k-algebra. Associated with
A we have the quiver Qs (for instance, see [6]). Consider the path algebra
R[Q-x] and define a morphism : R[Q-x] A as follows: let J rad A and
1 e +... +en be a decomposition of 1 as a sum of primitive pairwise
orthogonal idempotents. Choose a basis { y) of e.iJ/(J 2 + A)e, where a
runs over the arrows of Qs with starting point and target point j. Let
x ejJe be a representative of y and set q(a) J. Furthermore, q sends
the trivial path at the vertex to the idempotent e for all i. By [19, (6,iii)], we
know that tp is surjective. We are interested in the ideal ker q0.

DEFINITION. Let Q be any quiver. Let M be the ideal of R[Q] generated
by the arrows. A two sided ideal I of R[Q] is said to be admissible iff:

(A1) I c )2R[Q] + M2.
(A2) There are natural numbers 1, m satisfying

Mt c I + R[Q] and R[Q] c M + I,

where Mm denotes the R-submodule of R[Q] spanned by the paths of length
at most m.
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The following result is straightfoward.

PROPOSITION. Let p: R[Q-] A be as above. Then ker tp is admissible.
Conversely, given an admissible ideal I of R[Q], the R-algebra A R[Q]/I is
finitely generated as R-module and Q- Q. v1

1.2. Let Q be the quiver of A A/A as above, denote by Qo the set of
vertices of Q.

LEMMA. Assume gl dim A < o.
(i) If b is a source of Q and e Z,o, Qoex then gl dim(eAe) < o

(ii) If Q has no oriented cycle then gl dim(exAex) < o for each x Qo.

Proof (i) Let x 4: b. Since b is a source, the minimal A-projective
resolution of Sx is also an eAe-projective resolution of S,.

(ii) Induction on the number of vertices n. The case n 1 is trivial. Thus
assume n > 1 and take b a source of Q. Let e Ex,0e as in i. Hence
gl dim(eAe)< o and by induction hypothesis gl dim(e,Aex)< o for all
x b. Now, consider the simple A-module So keb. Consider a minimal
A-projective resolution for So, 0 Qz ---> Qo Sb -> O. As Q has no
oriented cycle and b is a source, ebQ eoQieb. Therefore we get the ebAeb-
projective resolution

0 eoQ ebQo Sb O.

Since So is the unique simple e0Ae0-module, we have

gldim(ebAeo) < pdimASo < .
1.3. THEOREM. Let A be a basic finitely generated R-algebra. Assume that

the quiver Q of A A/A has no oriented cycle. Assume that

n max(gl dim(exAex)" x Qo }

is finite. Let m be the maximal possible length ofpaths in Q. Then

gldimA < n + nm + m.

Proof We proceed by induction on m. When m 0 the result is trivial.
For each x Qo, let

Rx AeJ(M + I)Aex
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(notice that Rx exAex). We claim that p dimA(Rx) < nm + m. Consider
the canonical exact A-sequence

Then, for any source b of Q, ebg-- 0: if b : x, then ebP 0 and ebg 0;
if b x, then

is an isomorphism and ebK 0. Hence, K is a A/Ae-module where e

’b sourceeb AS the maximal possible lengths of paths in QA is m- 1, by
induction hypothesis we get p dimA/AeK < n + n(m 1) + m 1 =nm +
m- 1. But any projective A/Ae-module is also A-projective, therefore
p dimAK _< p dimA/AeK. Hence,

p dimAR < p dimAK + 1 < nm + m

as desired. On the other hand, gl dim R p dimRxSx Thus

pdimASx<pdimAR+n <nm+m+n.

Since gl dim A sup(p dimAS: x Q0 } we are done. []

1.4. In some cases our bound (1.3) may be improved. We need the
following"

LEMMA. Let N be a finitely generated R-module with depth N > O. Then
there exists an element r f 2 which is not a zero divisor in N.

Proof. Let Ass(N) (1,---, } be the set of associated prime ideals of
N. Then U"

_
1; is the set of all non zero divisors in N. As depth N > 0 then

CUmi 932. By Nakayama’s lemma, i (i + 9322)/2_g )2/2. As
93/r/2 is a k-vector space and k is infinite (since k k), we obtain
U’mi /922. Hence, we may choose an element r 2 such that
U, which implies r Ui. t3

1.5. PROPOSITION. Let R be a regular ring with n gl dim R. Assume that
A is an R-algebra such that the quiver Q of A has no oriented cycle and
eAe R for each x Qo (i.e., 1 c fM + M2 in the notation of 1.1). Let
m be the maximal possible length ofpaths in Q and d depth A. Then,

dm + gl dim A < n + nm + m.
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Proof. By induction on d. The case d 0 follows from (1.3). Let d > 0
and take r 932 2, a non-zero divisor in A (1.4). Then, A’ A/rA is an
R’ R/rR-algebra with the same quiver Q and exA’e R’ for all x Q0.
Therefore R’ is regular and gl dim R’= n- 1. As depth A’= d- 1, we
obtain

gldimA’< (n- 1) + (n- 1)m+m- (d- 1)m=n+nm+m-dm- 1.

By [11, III Theorem 10], gl dim A gl dim A’ + 1 and the result follows.

COROLLARY. Let R and A be as abooe. Assume that A is a free R-algebra.
Then gl dim A _< n + m.

Proof. In this case, depth A n. t3

Remark. The argument in the proposition above may be used to show the
following.

Let R be regular with gl dim R n. Assume that A is a free R-algebra and
that A A/932A is a k-algebra with d gl dim A < o. Then gl dim A n
+ d. Observe that the corollary also follows from this remark.

1.6. The bound given in Theorem 1.3 is the best possible. In fact, let R be
a regular local ring with n gl dim R. Consider the quiver

and the admissible ideal I ffJ2a of R[Q] and let A R[Q]/I. Notice that

We shall prove that gl dim A 2n + 1.
Let (xx,..., xn) be a regular system of parameters of R generating .

Consider the R-modules M R/ml,... mi) for 0,..., n. Then Mie is
a A-module if we set aMie 0. For 0, 0 ka P1 Moe 0 is
exact and ka - ke2. Thus p dimAM0e n + 1. For > 0 let

and

OR(I’)q R(I)R(lo q.%o MO

be minimal projective resolutions in mod R. Let N ker Ps and K
in particular N_ k. We shall construct a minimal projective resolution for
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Mie in mod A. As Ko c rad R(to) (rad R) (1), then Koe as submodule of
Pt(zo satisfies aKoe 0. Hence, we have an exact A-sequence

)(/o) Pl(lO) Mie .--> O,0 "-> Koe (N_e2

where is only an R-direct sum. Assume that the j th-syzygy of the minimal
projective resolution of Mie is

Let m Y’.s+t_j_lmslt Then we have the exact sequence

0--) (Kj.+e (ka)<1)) ( tjjs+ "-1
N,(l+,)te) P(t/x) $ P --> L --) O.

As aKj+et 0 in p(lj/x), then Lj+I has the desired form. Thus, Ln+i+ -%

P2(t’) is the first Lj which is A-projective. Hence, p dimAMie n + + 1. In
particular p dimAke 2n + 1 and gl dim A 2n + 1.

1.7. In general there is no strong relation between gl dim A and gl dim A,
where A A/!IRA. For instance, if A is any non-trivial hereditary algebra
over a discrete valuation domain R, then gl dim A o0.

Now consider a discrete valuation domain R with maximal ideal rR.
Let Q be the quiver

1---%2

and let I--(fla, c$/fl)+ 992M2, an admissible ideal of R[Q]. Let A
R Q]/I. Then

A - k[Q]/(flo, 8f),

with gl dim A 3. On the other hand p dimARe .
2. Schurian orders

Let R be a complete valuation domain with maximal ideal rR, and K
the quotient field of R. Let A be an R-order in the full n n-matrix algebra
(K), contained in (R),, containing a complete set of pairwise orthogonal
primitive idempotents (ei: 1,..., n }. We may assume that ei e, are the
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usual matrix idempotents. Then, A (miJ), rnij N t2 (0) such that rnii
0 and mik + mkj > mi, for all i, j, k 1,..., n. Following [22], we call A a
Schurian order. We also assume that A is basic, by [9] Lemma 1.6, this means
that m. + m. > 1 whenever j. In this situation the radical of A is
j (m,’.j) with mi= 1 and m= m. for ij (see [9], Lemma 1.3).
Finally, A is indecomposable as a ring, i.e., Qx is connected.

2.1. DEFINITION. A is said to satisfy the Jategaonkar condition iff for each
1 < < n, there exists 1 _< : g(i) _< n such that m,(0 + m(,i 1.

PROPOSITION. (i) If gl dim A < o, then A satisfies the Jategaonkar condi-
tion.

(ii) Assume A satisfies the Jategaonkar condition. Then:
(a) Pi is not isomorphic to a direct summand of P(radPi), i= 1,..., n.

(Here P(M) denotes the projective cover of M).
(b) Qx has no loops and no double arrows.

Proof. (i) This is Lemma 2.7 of [10].
(ii) (a) This is Lemma 2.3 of [21].
(ii) (b) Since I2A c j2, (a) implies that ej/j2e 0. Therefore, Qx has

no loops. The second assertion is Lemma 1.3 of [21]. []

2.2. Let A be as before and satisfy Jategaonkar condition. By (2.1), (Qs)p
coincides with the quiver Q(A) constructed in [21], Section 2. As there, we can
provide Qx with a valuation v, such that r(a)= mi for an arrow a: j.
We extend r to a valuation in all the walks (i.e., non oriented paths) of Q-x.
(Thus, r(afl-t3,) r(a) r(fl) + r(-/)). We denote by L the ideal of k[Qx]
generated by the differences 3’ of paths with the same extremal points and
such that r(3,) r(8). Clearly, L radk[Qx].
Now, let P(A) denote the poset associated to A in the following form (see

[131 or [221): the vertices of P(A) are {1,..., n } Z and the order in P(A) is
generated by (i, a) < (j,/3) iff (i j and a _</3 _< a + 1) or (/3 a + m).

Associated with P(A) we have a quiver A (A0 P(A) and there is an arrow
p --, q in A whenever p < q and there is no v P(A) with p < o < q). Let I
be the ideal generated by all commutativity relations in k[A]. Let kIP(A)]
k[A]/I.

2.3. For the notions used in the next proposition the reader is referred to
[3] and [14].

PROPOSITION. Assume A satisfies the Jategaonkar condition. Then there is a
Galois covering r: k[P(A)] ---, k[Qx]/L with group Z.
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Proof Fix a vertex x0 Qs and let W be the set of all walks starting at
xo. Let be the equivalence relation in W defined by 3’ 8 iff 3’, i have the
same extremal vertices and 1,(3’) 1,(8). Consider the quiver Q with vertices
Qo W/..- and arrows a" [3’] [a3’] for a an arrow in Qs. Let A be the
quotient k[Q]/L, where L is the ideal generated by all possible commutativity
relations. Then

c" fk k[Qx ]/L, 3’ e (3’) ending point of 3’

yields a coveting in the sense of [14]. As Q has no oriented cycles (indeed, if

is an oriented cycle’in Qx with ,(8) 0, then

n-1

mxxx2 0 and mx2xt <_ mxixi+t
i=2

contradicting the fact that A is basic) there is an associated poset A with
k[z - . We shall prove that P(A) .

Define tp: A P(A), 3’ (e(3’), 1,(3’)). Clearly, tp is an injective order-pre-
serving map.

It is not hard to see that for any two vertices i, j 1,..., n, there is a path
8 from to j with 1,(8) mji. For the surjectivity of tp, let (i, a) be a vertex
of P(A). As Qs is connected, there is a vertex [3’] Q0 with e(3’)= i. By
Jategaonkar condition there is some j Q0 with m ia. + m 1. Therefore,
from our claim above we get a closed path i at with 1,(8)= 1. Let
fl a 1,(3’) Z and consider the point [i/3’] Q0. Then we have

(i, 1,(3’)), where 1,(t3’) fl1,(i) + 1,(3’) a.
Let 8: P(A) --) z be the inverse map of (p. We just have to show that /9 is

an order preserving map. Let us consider the case (i, a) < (j, fl) with fl
+ mj., the other case being similar. There is a path ( from to j with
1’(8) mji. Let O(i, a) [3’1; then O(j, fl) [83’] and O(i, a) < O(j, fl). Fi-
nally the automorphisms of k[P(A)] preserving r are the T, given by

(i, fl)--+ (i,a+fl) fora Z.

Hence, k[P(A)] is a Galois covering of k[Qs]/L with group Z.

2.4. We make now a strong restriction, namely, we assume that R k[[t]]
is the power series ring in one variable. (Therefore, tR). In this section
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we show that

gl dim kIP(A)] gl dim A.

For this purpose we need some notation and results from [22]. Let R(P(A))
be the category of bounded representations of the poset P(A) (i.e., V
R(P(A)) iff here is a finite dimensional k-vector space V(0) such that
V(i, a) 0 and V(i, fl) V(o) for a sufficiently small and /3 sufficiently
large, moreover V(i, a) c V(j, fl) provided (i, a) _< (j, fl)). Let hl0 denote
the category of left A-lattices. Consider the functor

r. R(P(A)) --, A93

defined on objects as follows" for V= (V(o),(V(i, a))(i,,)
have

R(P(A)) we

F(V)(j) t"V(j, a), j Qo.
aZ

We concentrate some information about P in the following:

PROPOSITION [22, (1.10) and (3.1)]. (i) F is an exact functor.
(ii) If X R(P(A)) is indeeomposable, then FX is indecomposable.
(iii) X R(P(A)) is indecomposable projective iff FX is indecomposable

projective (furthermore, FP(i,)= Pi and F rad P(i,) rad Pi for every (i, a)
e P(A)).

(iv) For each M A
, a representation Y/’(M) R(P(A)) is given such

that:
(a) Y/’(FV) - Vfor each V R(P(A)).
(b) IfM’ c M in A O, then there is an induced monomorphism Y/’(M’) -,

Y/’(M) in R(P(A)).

LEMMA. gl dim k[P(A)] gl dim R(P(A)) + 1.

Proofi For q, q’ e P(A), let Pq ( , P(A)" q < , ), Pq’ ( ;, P(A):, < q’) and Pqq’= Pq P’. As a P(A)-module M is projective iff M[Pq is
Pq-projective for each q (see [4], 1.4), then

gl dim P(A) sup(gl dim Pq" q P(A) }.

By duality,

gl dim Pq sup{ gl dim Pqq’" q’ Pq )
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and

gl dim P(A ) sup { gl dim Pqq’" q, q’ P(A) }.
Therefore,

gl dim P(A ) sup ( p dim1,(h)S" x P(A ) ).
For x P(A), consider the exact P(A)-sequence 0 K Px Sx 0.
Clearly, K R(P(A)) and therefore

gl dim P(A) < gl dim R(P(A)) + 1.

Now, let V R(P(A)). We shall prove that

p dimo(v(A))V + 1 < gl dim P(A ).

As gl dim P(A) > 1, we may assume that V is not projective. By [20, Theorem
10.6], there is a projective A-lattice P A such that FV c P. By (iii) in the
proposition, there is a projective P(A)-representation Q R(P(A)) with
FQ P. Therefore, FV FQ and V - ’FV c ’FQ - Q which implies the
desired inequality, ra

THEOREM. gl dim k[P(A)] gl dim A.

Proof. Since gl dim A gl dimA + 1, then by the lemma, it is enough
to show that

gl dim R (V(A)) gl dimA0.

Assume first that gl dim R(P(A)) m < c. Take Qo and V rad P(i,o).
Consider a R(P(A))-projective resolution 0 Qm Q0 ---> v ---> 0.
Thus,

O- FQm ...-FQo->radPi-> 0

is a Aff)2-projective resolution and

gl dim A92 sup( p dim Ao rad Pi" Qo } < gl dim R(P(A)).

The converse inequality follows similarly from (iii) in the proposition.

2.5. To get some applications we need to determine gl dim P for some
posets P.
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The poset Bin, pictured below is called a (m, n)-braid.

P1,1

P2,1

"P0
Pl,

(arrows going up, n > 2)
Pro, Pro,

If we add an infinum o to B,,, we obtain a complete braid m, ,,"

LENNA. gl dim Bin, m + 1.

Proof. For n 2, a proof may be found in [15, IX, Theorems 10, 12]. We
recall here the argument. We denote by x (m) the elements of B,,,. By
induction on m, it is easy to see that gl dim Bin, < m. Clearly, gl dim Bm, <-
gl dim/, ,. Therefore, it is enough to show that p dimhm, nS,0(m m + 1. Let
m(m) md B,,n with (m)(x) k for all x and (m)(a) id for all arrows
a. Then, the sequences

m

0 (m) P(m) S(m) 0 and 0 (m-) p,( (m) 0

are exact. As the B_ x, -projectives are m, -projectives we get

p dim .h(m 1) p dim

_
.h -) p dim_ ,S(_) 1 m 1.

1,

Then p dim

2.6 THEOREM.
(i)
(ii)

Let R k [[t ]] and A a Schurian order in (R ).
If Bin, is a retract of P(A) then gl dim A > m + 1.
gl dim A > 2 iff Fig. 1 is a retract of P(A) iff P(A) is not linearly
ordered.

FIG. 1

(iii) gl dim A > 3 iff B2, is a retract of P(A), for some n > 2.
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Proof. (i) follows from (2.4) and (2.5). The remaining parts of (ii) and (iii)
follow from [4, Theorem 15 and Remark 2], and (2.4). t2

2.7. THEOREM. Let R k[[t]] and let A be a Schurian order in (R)n.
Assume that at each vertex of Q- at least 2 arrows start and at least two arrows
end (then we say that Q- is 2 edge connected). Then gl dim A >_ 3.

Proof. By (2.1) we can assume that A satisfies Jategaonkar condition. By
(2.3), there is a bijection x /- r(x) / (resp. x- r(x)-) where

x/= ( y P(A)" there exists an arrow x y)

(resp. x-= (y P(A): there exists an arrow y x)). It is easy to see that
P(A) satisfies the hypothesis of the next lemma and therefore

gl dim A gl dim P(A) >_ 3. t3

2.8. Let P be a poset. We recall that q is cover of p in P (dually, a
cocover) iff p < q and there is no v P with p < v < q.
We say that P is locally bounded iff for each finite family (Xl,..., X } C P

there are elements p, q P such that q _< x _< p, for every 1,..., m.
We recall that the width w(P) of P is the supremum of the cardinalities of

subsets of pairwise non-comparable dements of P.

LEMMA. Let P be a locally bounded-poset with w(P) < and such that each
x P has at least two cooers and at least two cocovers in P. Then"

(i) There is some n > 2 such that 2, n is a retract of P.
(ii) gl dim P > 3.

Proof Let x P and eq" x y be a cover of x in P. Take 1"
yx x2 a cover with xl 4: x2. (Therefore x and x2 are not comparable.)
Assume we have already constructed a sequence

X

such that each arrow represents a cover in P, Yi is only comparable with
xi, xi+ and x is only comparable with Yi-, Yi for each i. (These are the so
called fences; see [12].) As w(P) < oo we may assume that this sequence is
maximal with these properties. Therefore, taking a cover aj: xj yj with

yj_x yj, we have yj comparable with some x or y, < j. Without loss of
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generality, yj is comparable with x or Yx and not with x or y for I < < j.
Therefore, xx < y and not y < yj. The full subposet of P with vertices
{x, y, x2,... x, y} is

a

X1 X2 Xj

As P is locally bounded, there are points x, y P with x < x < y < y for
each i. Clearly, /, is a full subposet of P. If j > 2, /, i is a complete lattice
and then P contains B2, i as a retract [17, Proposition 1.2]. If. j 2, one must
add to the fullness condition that there is no element in P preceding both y
and Y2 and following both x and x2 [17, Lemma 35.6]. As al: x y is a
cover, this condition is trivially satisfied. Therefore, by [18, Itroduction]
(compare with [7] and [11, III Theorem 5]), gl dim P >_ gl dim BE, j and the
result follows from (2.6). rn

2.9. It would be interesting to get a better bound in Theorem 2.7. Re-
cently, Kirkman and Kuzmanovich [27] have given an example to show that
gl dim A may be finite under the hypothesis of Theorem 2.7. We thank the
referee for pointing out this paper to us.
These results seem to be related with earlier conjectures by Jategaonkar

[10, 5] and Tarsey [26]’.
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