MOODY'S INDUCTION THEOREM¹

BY

GERALD CLIFF AND ALFRED WEISS

Dedicated to the Memory of Irving Reiner

1. Introduction

Our purpose is to give a proof of the recent remarkable induction theorem of John Moody [1], a proof that is straightforward and more or less self contained. Let Γ be a finitely generated abelian by finite group, and let $S * \Gamma$ be a crossed product of a left noetherian ring S with Γ . Let $G_0(S * \Gamma)$ denote the Grothendieck group of the category of all finitely generated $S * \Gamma$ -modules. For any subgroup F of Γ , there is a map $G_0(S * F) \to G_0(S * \Gamma)$ given by sending the class [M] of an S * F-module M to the class $[S * \Gamma \otimes_{S * F} M]$ of the induced module.

MOODY'S THEOREM. Let α be the sum of the maps from $\sum G_0(S * F)$ to $G_0(S * \Gamma)$, where F varies over all finite subgroups of Γ . Then α is surjective.

As an application to G_0 of group rings, let H be a polycyclic by finite group, and let k be a noetherian ring.

MOODY'S THEOREM FOR POLYCYCLIC BY FINITE GROUPS. The map from $\Sigma G_0(kF)$ to $G_0(kH)$, given by the sum of inductions from finite subgroups F of H, is surjective.

To prove this, let H_1 be a normal subgroup of H of smaller Hirsch length than H, such that $H/H_1 = \Gamma$ is abelian by finite, and write the group ring kH as a crossed product $(kH_1) * (H/H_1)$. Then use induction on the Hirsch length.

Here is an outline of our proof of Moody's Theorem. Let A be a finitely generated free abelian normal subgroup of Γ of finite index, and let G denote

© 1988 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received September 2, 1987.

¹Research supported in part by NSERC of Canada.

the factor group Γ/A . Suppose that $\mathbf{Q} \otimes_{\mathbf{Z}} A$ is a free QG-module. Then A is contained as a subgroup of finite index n in a group B which is a free **Z**G-module. In Section 2 we show that the matrix ring $M_n(S * A)$ is graded by B, in a way which is compatible with the action of G; then, picking a positive cone B_+ in B, we define a certain subring R of $M_n(S * \Gamma)$ generated by G and B_+ , and R is then graded by the non-negative integers. Moreover we can identify R_0 as a direct sum of full matrix rings over certain finite subgroups of Γ . That $G_0(R) \cong G_0(R_0)$ follows from work of Quillen [3]. In Section 3 we show that our map $\alpha: \Sigma G_0(S * F) \to G_0(S * \Gamma)$ is the composition of four other maps, two of which come from Morita equivalences, one from Quillen's theorem, and one from localization. In Section 4 we give a proof of Quillen's theorem; we are able to avoid the use of Quillen's topological machinery, since we are only interested in G_0 , and not in higher K-theory. At this point, Moody's theorem will follow, under the assumption that $\mathbf{Q} \otimes_{\mathbf{Z}} A$ is a free QG-module; if not, we form a semi-direct product of Γ with a free abelian group N to get a group Γ_1 for which Moody's theorem will have been proved, and then show in Section 5 that we can reduce back to Γ . In Section 6 we deal with the Goldie rank problem for the group ring of a polycyclic by finite group over a division ring k.

We would like to thank John Moody for sending us a copy of his thesis.

2. The grading on $M_n(S * \Gamma)$

Let S be a ring and Γ a group. (All rings here are associative with 1.) Suppose that for each $\gamma \in \Gamma$ there is an automorphism of S, denoted $s \mapsto \gamma s$ for $s \in S$. A ring is called a *crossed product* of S with Γ , denoted $S * \Gamma$, if it has a basis as a left S-module $\{\overline{\gamma}: \gamma \in \Gamma\}$ indexed by Γ , with multiplication given by $\overline{\gamma}s = \gamma s \overline{\gamma}$ for $s \in S$ and $\gamma \in \Gamma$, and $\overline{\gamma}\overline{\delta} = f(\gamma, \delta)\overline{\gamma}\overline{\delta}$ for $\gamma, \delta \in \Gamma$, where $f(\gamma, \delta)$ is some unit of S.

Let A be a finitely generated free abelian group, contained as a normal subgroup of finite index in the group Γ , and let G denote the factor group Γ/A . Then A is a ZG-module. Suppose, for now, that $\mathbf{Q} \otimes_{\mathbf{Z}} A$ is a free QG-module. Let B be a free ZG-module containing A as a submodule of finite index n. (Explicitly, one may take a QG-basis of $\mathbf{Q} \otimes_{\mathbf{Z}} A$ contained in $1 \otimes A$ and let A_1 be the ZG span of this basis; then multiply A_1 by a rational number so that it contains $1 \otimes A$, letting the result be B, and identify $1 \otimes A$ with A.) The extension Γ of G by A leads to an extension Δ of G by B. Since B is a free ZG-module, the extension Δ splits, and we shall regard G as a subgroup of Δ .

Let X be a set of representatives of right cosets of A in B. Then X has cardinality n, and is also a set of representatives of the right cosets of Γ in Δ . Let V be a free right $S * \Gamma$ -module with basis $\{v_x : x \in X\}$ indexed by X. Let $\mathscr{E} = \operatorname{End}_{S * \Gamma}(V)$. Then using the basis $\{v_x : x \in X\}$, \mathscr{E} is isomorphic to $M_n(S * \Gamma)$, and is therefore an $(S * \Gamma, S * \Gamma)$ -bimodule. We shall show that \mathscr{E} is a **Z**-graded ring.

For $x, y \in X$, let $\sigma_{x, y} \in \mathscr{E}$ be the map which sends v_x to v_y and which sends v_z to 0 for $z \in X$, $z \neq x$, so \mathscr{E} is a free $S * \Gamma$ -module with basis $\{\sigma_{x, y}\}$. Let $e_x = \sigma_{x, x}$. For $\delta \in \Delta$, define $\phi(\delta) \in \mathscr{E}$ as follows:

$$\phi(\delta)(v_x) = v_y \overline{\gamma}$$
, where $\delta x = y\gamma$ for some $y \in X, \gamma \in \Gamma$.

From this definition, it follows that

$$e_{v}\phi(\delta) = \phi(\delta)e_{x}.$$
 (1)

For $x, y \in X$, let $\delta = yx^{-1} \in \Delta$; then $\delta x = y$, and $\sigma_{x, y}\overline{1} = \phi(\delta)e_x$, so it follows that

$$\big\{\phi(\delta)e_x\colon\delta\in\Delta,\,x\in X\big\}$$

is an S-basis of \mathscr{E} .

For $\delta_1, \delta_2 \in \Delta$, to form the product $\phi(\delta_1)\phi(\delta_2)$, take $x \in X$ and write $\delta_2 x = y\gamma_1$, for some $y \in X$ and $\gamma_1 \in \Gamma$; then write $\delta_1 y = z\gamma_2$ for some $z \in X$ and $\gamma_2 \in \Gamma$. From the definition of ϕ , we find that

$$\phi(\delta_1)\phi(\delta_2)(v_x) = v_z\overline{\gamma_2}\overline{\gamma_1}, \quad \phi(\delta_1\delta_2)(v_x) = v_z\overline{\gamma_2}\overline{\gamma_1},$$

which implies that

$$\phi(\delta_1)\phi(\delta_2)e_x = \phi(\delta_1\delta_2)se_x \text{ for some } s \in S \text{ which depends on } x. (2)$$

Let $\mathscr{B} = \{b_1, b_2, \dots, b_m\}$ be a G-invariant basis of the free abelian group B. Define

$$d\big(\prod b_i^{n_i}\big)=\sum n_i,$$

so it follows that for $b, b' \in B$ we have d(bb') = d(b) + d(b') and for $g \in G$ we have $d(gbg^{-1}) = d(b)$. For $\delta \in \Delta$, we may write δ uniquely in the form $\delta = bg$, for some $b \in B$, $g \in G$. Then define

$$\deg(\phi(bg)e_xs) = d(b), \quad b \in B, \ g \in G, \ x \in X, \ s \in S.$$

It follows from formulas (1) and (2) that this makes $\mathscr E$ into a Z-graded ring. Let

$$B_{+} = \left\{ b = \prod b_{i}^{n_{i}} \in B: n_{i} \ge 0, i = 1, \dots, m \right\}$$

and let R be the subring of \mathscr{E} given by

$$R = \left\{ \sum s\phi(bg)e_x : s \in S, b \in B_+, g \in G, x \in X \right\}.$$

Then R is N-graded. Let

$$\mathscr{T}=\Big\{\sum s\phi(b)e_x: s \text{ a unit of } S, b\in B_+, x\in X\Big\}.$$

Then \mathcal{T} is a multiplicatively closed set of elements of R invertible in \mathscr{E} , and is an Ore set by formulas (1) and (2). Moreover every element of \mathscr{E} is of the form $t^{-1}r$ for some $t \in \mathcal{T}$ and $r \in R$.

Let us now consider the degree 0 part R_0 of R. From the definition of the grading, R_0 has S-basis

$$\{\phi(g)e_x:g\in G, x\in X\}.$$

It follows from (1) and (2) that G permutes the set of orthogonal idempotents $\{e_x: x \in X\}$ via ϕ . For $x \in X$, let G_x denote the stabilizer of e_x in G and let T_x be a set of representatives of the left cosets of G_x in G. Let $\varepsilon_x = \sum_{g \in Tx} \phi(g) e_x \phi(g)^{-1}$ be the sum of the idempotents in the G-orbit of e_x . Then R_0 is the direct sum of the two-sided ideals $R_0 \varepsilon_x$ as x varies over a set \mathscr{X} of representatives of the distinct G-orbits of X. From the definition of ϕ , if $g \in G_x$ then $gx = x\gamma_g$ for some $\gamma_g \in \Gamma$; let F_x denote the set of all the resulting elements γ_g as g varies over G_x . Then $x^{-1}G_x x = F_x$, so F_x is a finite subgroup of Γ . Moreover, since $\phi(g)e_x = e_x\overline{\gamma_g}$ for $g \in G_x$, it follows that R_0e_x is closed under right multiplication by $S * F_x$, and R_0e_x is an $(R_0\varepsilon_x, S * F_x)$ -bimodule. We have $\{\phi(g)e_x: g \in G\}$ as a basis of R_0e_x as a right S-module, and since $\phi(g)e_x = e_x\overline{\gamma_g}$ for $g \in G_x$, we see that

$$\{\phi(g)e_x:g\in T_x\}$$

is a basis of R_0e_x as a right $S * F_x$ -module. Then left multiplication by R_0e_x on the $(R_0e_x, S * F_x)$ -bimodule R_0e_x shows that R_0e_x is isomorphic to End_{$S * F_x$} (R_0e_x) which in turn is isomorphic to the full matrix ring of degree $|G: G_x|$ over $S * F_x$.

Returning to R, we see that R is finitely generated as an R'-module over the subring R' generated over S by

$$\{\phi(b)e_x: b \in B_+, x \in X\}.$$

Then R' is a skew polynomial ring over $R'_0 = \sum_{x \in X} Se_x$ in the variables $\{\phi(b_1), \ldots, \phi(b_m)\}$, so R' and hence R are noetherian. We shall need to know that R_0 has finite projective dimension as a right R-module. Using a skew version of Hilbert's syzygy theorem, (see [2, 13.4.4]) we see that R'_0 has finite

projective dimension as a right R'-module. Take a finite projective right R'-resolution $\{P_i\}$ of R'_0 and apply the functor $-\otimes_{R'} R$, which is exact since R is a free left R'-module, having basis $\mathscr{G} = \{\phi(g): g \in G\}$. Since \mathscr{G} is also a left basis of R_0 over R'_0 , then R is a crossed product R' * G and R_0 is a crossed product $R'_0 * G$. Then

$$R'_0 \otimes_{R'} R \cong R'_0 \otimes_{R'} (R' * G) \cong R'_0 * G = R_0$$

so R_0 has finite projective dimension as a right *R*-module, as desired.

3. The commutative diagram

We shall keep the same notation as in the previous section.

We recall that G_0 of a ring R is defined by taking the free abelian group on the isomorphism classes [M] of finitely generated R-modules, and factoring out the relations [M] = [M'] + [M''] for any short exact sequence $0 \to M \to$ $M' \to M'' \to 0$. In this section we consider the following diagram.

$$\sum_{x \in \mathscr{X}} G_0(S * F_x) \xrightarrow{\alpha} G_0(S * \Gamma)$$

$$\beta \downarrow \qquad \qquad \uparrow^{e}$$

$$G_0(R_0) \xrightarrow{\gamma} G_0(R) \xrightarrow{\delta} G_0(\mathscr{E})$$

We first define the maps. In this section, we only deal with the generators of G_0 , so we shall suppress the brackets around our modules. The top horizontal map α comes from sending a left $S * F_x$ -module M to $S * \Gamma \otimes_{S * F_x} M$, and is well defined since $S * \Gamma$ is free over $S * F_x$. The left vertical map β comes from Morita equivalence, but we need a precise version. For $x \in \mathcal{X}$ we have the $(R_0, S * F_x)$ -bimodule $R_0 e_x$, which is free as a right $S * F_x$ -module, and we define β by sending a left $S * F_x$ -module M to $R_0 e_x \otimes_{S * F_x} M$. The ring R is a free right R_0 -module with basis $\{\phi(b): b \in B_+\}$, and we get the map γ by sending a left R-module M to $R \otimes_{R_0} M$. The ring \mathcal{E} is gotten from R by localizing at the Ore set \mathcal{T} , so \mathcal{E} is flat as a right R-module, and δ is defined by sending a left R-module M to $\mathcal{E} \otimes_R M$. Fix an element y of X. Then $e_y \mathcal{E}$ is an $(S * \Gamma, \mathcal{E})$ -bimodule, and since e_y is idempotent, then $e_y \mathcal{E}$ is projective as a right \mathcal{E} module, so we get the map ε by sending a left \mathcal{E} -module M to the left $S * \Gamma$ -module M to the left $S * \Gamma$ -module M.

Next we prove that the diagram commutes. Starting with the left $S * F_x$ -module M, β sends M to $R_0 e_x \otimes_{S * F_x} M$ and γ sends this to

$$R \otimes_{R_0} R_0 e_x \otimes_{S * F_x} M \cong R e_x \otimes_{S * F_x} M.$$

Then δ sends this to $\mathscr{E} \otimes_R Re_x \otimes_{S * F_x} M \cong \mathscr{E}e_x \otimes_{S * F_x} M$ and ε maps this to

$$e_{y}\mathscr{E}\otimes_{\mathscr{E}}\mathscr{E}e_{x}\otimes_{S*F_{x}}M\cong e_{y}\mathscr{E}e_{x}\otimes_{S*F_{x}}M.$$

Since $e_v \mathscr{E} e_x \cong S * \Gamma$ as an $(S * \Gamma, S * F_x)$ -bimodule, then

$$e_{y} \mathscr{E} e_{x} \otimes_{S * F_{x}} M \cong S * \Gamma \otimes_{S * F_{x}} M$$

We have therefore proved that the diagram commutes.

To prove Moody's Theorem, we must show that α is surjective. To do this, we shall show that β , γ , δ , and ε are surjective. Indeed β and ε are isomorphisms since they come from Morita equivalences. We shall prove that γ is an isomorphism in the next section. For δ , let M be a finitely generated left \mathscr{E} -module, with a finite set of generators Y. Then let M' be the R-submodule of M generated by Y, and it is clear that $\mathscr{E} \otimes_R M' \cong M$.

4. Quillen's Theorem

In this section we prove the following result.

THEOREM. Let R be a left noetherian graded ring such that R is flat as a right R_0 -module and such that for each left R-module M there exists a positive integer m such that $\operatorname{Tor}_i^R(R_0, M) = 0$ for all $i \ge m$. Then the map $\gamma: G_0(R_0) \to G_0(R)$ given by sending the class [M] of a left R_0 -module M to $[R \otimes_{R_0} M]$ is an isomorphism.

This is a special case of Quillen's Theorem 7 in [3]. Quillen considers all higher K groups of the category of finitely generated R-modules, not just G_0 . For Moody's Theorem, we only need surjectivity of γ ; the ring R in the previous section satisfies the Tor hypothesis above since R_0 has finite projective dimension as a right R-module.

Before giving the proof, we shall consider two lemmas, the first of which will also be needed in the next section.

LEMMA 1. Let R_0 be a subring of a ring R, such that R is flat as a right R_0 -module. Further, let R' be another ring and let ϕ . $R \to R'$ be a ring homomorphism, so R' is then a right R-module. If M is a left R_0 -module, then $\operatorname{Tor}_i^R(R', R \otimes_{R_0} M) \cong \operatorname{Tor}_i^{R_0}(R', M)$ for all i > 0.

Proof. Take a projective left R_0 -resolution $\{P_i\}$ of M. To compute Tor ${}^{R_0}(R', M)$, apply the functor $R' \otimes_{R_0} -$ obtaining the complex $\{R' \otimes_{R_0} P_i\}$ and take homology. Since R is flat as an R_0 -module, $\{R \otimes_{R_0} P_i\}$ is a

projective R-resolution of $R \otimes_{R_0} M$. To compute

Tor
$$R(R', R \otimes_{R_0} M)$$
,

apply the functor $R' \otimes_R -$ to this resolution, obtaining

$$\left\{ R' \otimes_{R} R \otimes_{R_{0}} P_{i} \cong R' \otimes_{R_{0}} P_{i} \right\}.$$

It is now clear that $\operatorname{Tor}_i^R(R', R \otimes_{R_0} M) \cong \operatorname{Tor}_i^{R_0}(R', M)$ for all i > 0, and the proof is complete.

LEMMA 2. Let R be a left noetherian graded ring, and let M be a finitely generated graded left R-module. Suppose that there is an integer j such that M is generated by its j-th homogeneous component, i.e., $M = RM_j$. Suppose further that $\operatorname{Tor}_1^R(R_0, M) = 0$. Then $M \cong R \otimes_{R_0} M_j$.

Proof. Let $I = \sum_{i>0} R_i$ be the ideal of R generated by the elements of positive degree. Then $R_0 \otimes_R M$ is naturally isomorphic to M/IM. We have a graded map ψ from $R \otimes_{R_0} M_j$ onto M given by $\psi(r \otimes m) = rm$ for $r \in R$ and $m \in M_j$, hence an exact sequence

$$0 \to \ker \psi \to R \otimes_{R_i} M_i \to M \to 0.$$

Applying $R_0 \otimes_R -$ yields

$$0 \rightarrow \ker \psi/I \ker \psi \rightarrow M_i \rightarrow M/IM \rightarrow 0$$

since $\operatorname{Tor}_1^R(R_0, M) = 0$ and $R_0 \otimes_R R \otimes_{R_0} M_j \cong M_j$. Since $M = \sum_{i=j}^{\infty} M_i$, then $M_j \cap IM = 0$, so we deduce that $M_j \cong M/IM$ and therefore ker ψ/I ker $\psi = 0$. Then ker $\psi = I$ ker ψ , from which it follows that ker $\psi = 0$, since ker ψ is graded and finitely generated (because R is noetherian.) Then $R \otimes_{R_0} M_j \cong M$. This completes the proof.

Proof of Theorem. Let M be a finitely generated left R-module. We first assume that M is graded, and we shall prove that [M] is in the image of γ . We have a positive integer i such that $\operatorname{Tor}_{i}^{R}(R_{0}, M) = 0$. If i > 1, let σ be a graded homomorphism from a finitely generated free R-module F onto M, and let M' be the kernel of σ , giving us the short exact sequence

$$0 \to M' \to F \to M \to 0.$$

Since [F] is in the image of γ , in order to prove that [M] is in the image of γ , it suffices to prove that [M'] is. But $\operatorname{Tor}_{i-1}^{R}(R_0, M') = \operatorname{Tor}_{i}^{R}(R_0, M) = 0$. Then by induction, we may assume that $\operatorname{Tor}_{1}^{R}(R_0, M) = 0$. Next, write $M = \sum_{i=j}^{\infty} M_i$ for some integer *j*, with $M_j \neq 0$. If $M = RM_j$, then Lemma 2 tells us that [M] is in the image of γ . If $M \neq RM_j$, define $M(l) = \sum_{i=j}^{l} RM_i$. Since *M* is finitely generated, there is an integer l > j with the property that M = M(l) but $M \neq M(l-1)$. We shall show that [M] is in the image of γ , for graded *R*-modules *M* satisfying $\operatorname{Tor}_1^R(R_0, M) = 0$, by induction on l - j. We have the exact sequence

$$0 \to M(l-1) \to M \to M/M(l-1) \to 0.$$
(3)

Let N = M/M(l-1). Apply $R \otimes_{R_0}$, obtaining the exact sequence

$$\rightarrow \operatorname{Tor}_{2}^{R}(R_{0}, N) \rightarrow \operatorname{Tor}_{1}^{R}(R_{0}, M(l-1)) \rightarrow \operatorname{Tor}_{1}^{R}(R_{0}, M) \rightarrow \operatorname{Tor}_{1}^{R}(R_{0}, N) \rightarrow M(l-1)/IM(l-1) \rightarrow M/IM \rightarrow N/IN \rightarrow 0.$$
(4)

We claim that

$$M(l-1)/IM(l-1) \rightarrow M/IM$$

is injective. To prove this, we must show that if $x \in M(l-1) \cap IM$ then $x \in IM(l-1)$. We have

$$M(l-1) = \sum_{i=j}^{l-1} RM_i = \sum_{i=j}^{l-1} (R_0 + I)M_i = \sum_{i=j}^{l-1} M_i + IM(l-1).$$

Then x = y + z where $y \in \sum_{i=j}^{l-1} M_i$ and $z \in IM(l-1)$. But x and z are in *IM*, so y is too, hence $y \in \sum_{i=j}^{l} IM_i$ for some t. Since $y \in \sum_{i=j}^{l-1} M_i$ it follows that t < l-1, so

$$y \in \sum_{i=j}^{l-1} IM_i,$$

and the claim holds. Since $M(l-1)/IM(l-1) \rightarrow M/IM$ is injective and $\operatorname{Tor}_1^R(R_0, M) = 0$, it follows from (4) that $\operatorname{Tor}_1^R(R_0, N) = 0$. Since M = M(l) and N = M/M(l-1), we have $N = RN_l$. Then Lemma 2 implies that $N \cong R \otimes_{R_0} N_l$, and Lemma 1, with $R' = R_0$, gives

$$\operatorname{Tor}_{2}^{R}(R_{0}, N) \cong \operatorname{Tor}_{2}^{R_{0}}(R_{0}, N_{l}) = 0$$

(since R_0 is a flat R_0 -module.) Since $\operatorname{Tor}_1^R(R_0, M) = 0$, it now follows from (4) that

$$\operatorname{Tor}_{1}^{R}(R_{0}, M(l-1)) = 0,$$

so the induction hypothesis applies to M(l-1). Therefore [M(l-1)] is in the

image of γ . Since [N] is as well, we deduce from (3) that [M] is in the image of γ , as desired.

For a non-graded module M, we shall proceed (as does Quillen) as in Swan [4, p. 131]. Let z be an indeterminate, and consider the polynomial ring R[z], which is graded by assigning the monomial $r_i z^j$ the degree i + j, for $r_i \in R_i$, so $(R[z])_0 = R_0$. We shall check that R[z] satisfies the hypotheses of the theorem. It is noetherian by Hilbert's basis theorem, and it is free over R, hence flat over R_0 . Let L denote a left R[z]-module. We have the short exact sequence

$$0 \to R[z] \xrightarrow{\kappa} R[z] \xrightarrow{\lambda} R \to 0$$

where κ is left multiplication by z and λ sends z to 0. We then have the short exact sequence

$$0 \to R[z] \otimes_R L \to R[z] \otimes_R L \to L \to 0.$$

Therefore, in order to prove that $\operatorname{Tor}_{i}^{R[z]}(R_{0}, L) = 0$ for all sufficiently large *i*, it suffices to show that

$$\operatorname{Tor}_{i}^{R[z]}(R_{0}, R[z] \otimes_{R} L) = 0.$$

But Lemma 1 tells us that $\operatorname{Tor}_i^{R[z]}(R_0, R[z] \otimes_R L) \cong \operatorname{Tor}_i^R(R_0, L)$, which is 0 for large *i* by hypothesis. Thus R[z] satisfies the hypotheses of the theorem.

Let us return to our *R*-module *M*, and let *F* be a free *R*-module of finite rank which maps onto *M*, with *K* being the kernel of this map. Then *F* is a graded *R*-module, by assigning the free generators any convenient degree. Fix a finite set *Y* of generators of *K*. Take $y \in Y$ and write *y* in the form

$$y = \sum_{i=j}^{l} f_i, \quad f_i \in F_i.$$

Then define $\hat{y} \in F[z]$ by

$$\hat{y} = \sum_{i=j}^{l} f_i z^{l-i}$$

so \hat{y} is a homogeneous element of the graded R[z]-module F[z]. Let \hat{K} be the graded R[z]-submodule of F[z] generated by the set $\{\hat{y}: y \in Y\}$. If L is a graded R[z]-module, then left multiplication on L by 1 - z is injective, so the functor Φ which assigns L the R-module L/R[z](1-z)L is exact. It follows that $\Phi(F[z]/\hat{K}) \cong M$. We have already proved that $F[z]/\hat{K}$ is in the image of the map $G_0(R_0) \to G_0(R[z])$. Then apply the functor Φ , to see that γ is surjective.

To show that γ is injective, we construct a left inverse. For a finitely generated left *R*-module *L*, define $\tau[L] = \sum_{i=0}^{\infty} (-1)^{i} [\operatorname{Tor}_{i}^{R}(R_{0}, L)]$. Using the fact that *R* is noetherian, it follows that $\operatorname{Tor}_{i}^{R}(R_{0}, L)$ is finitely generated as an R_{0} -module. The long exact Tor sequence shows that τ respects the relations of G_{0} , and the sum is finite by hypothesis, so τ is indeed a homomorphism. For a finitely generated left *R*-module *M*, it follows from Lemma 1 that

$$\operatorname{Tor}_{i}^{R}(R_{0}, R \otimes_{R_{0}} M) = 0 \quad \text{for } i > 0,$$

so $\tau \gamma[M] = [R_0 \otimes_R R \otimes_{R_0} M] = [M]$. Thus τ is a left inverse for γ , and the proof is complete.

5. The second commutative diagram

We have completed the proof of Moody's Theorem under the assumption that $\mathbf{Q} \otimes_{\mathbf{Z}} A$ is a free $\mathbf{Q}G$ -module. We now discuss the general case. Since $\mathbf{Q} \otimes_{\mathbf{Z}} A$ is projective as a $\mathbf{Q}G$ -module, there exists a finitely generated $\mathbf{Z}G$ module N such that $\mathbf{Q} \otimes_{\mathbf{Z}} (A \oplus N)$ is a free $\mathbf{Q}G$ -module. Let Γ_1 denote the semidirect product $N \rtimes \Gamma$. Then we have the crossed product $S * \Gamma_1$, which may be considered as the crossed product $(SN) * \Gamma$, where SN denotes the group ring of N over S. Moreover Moody's Theorem has been proved for $S * \Gamma_1$. We have the following diagram:

$$\begin{array}{cccc}
\sum G_0(S * F) & \xrightarrow{\alpha_1} & G_0(S * \Gamma_1) \\
\downarrow & & & \downarrow^\eta \\
\sum G_0(S * FN/N) & \xrightarrow{\alpha} & G_0(S * \Gamma)
\end{array}$$

In the upper left corner, F varies over finite subgroups of Γ_1 , and α_1 is the sum of inductions, which we have proved surjective. Since N is torsion-free, we have $FN/N \cong F$; then if M is an S * F-module, we define $\zeta[M] = [M]$, where the M on the right is considered as an S * FN/N-module. The map α is the sum of inductions. For an $S * \Gamma_1$ -module M, we define $\eta[M]$ to be

$$\sum_{i=0}^{\infty} (-1)^{i} \big[\operatorname{Tor}_{i}^{S*\Gamma_{1}}(S*\Gamma, M) \big],$$

analogous to the left inverse map defined in the proof of Quillen's Theorem. Since $S * \Gamma_1$ is noetherian, in order to show that η is well defined we must only check that this sum of Tors is a finite sum. By Hilbert's syzygy theorem, S has finite projective dimension as an SN-module. Then it follows by inducing that $S * \Gamma$ has finite projective dimension as an $SN * \Gamma$ -module, and $SN * \Gamma = S * \Gamma_1$. Thus η is well defined.

We now prove that the diagram commutes. Let M be a finitely generated S * F-module, where F is a finite subgroup of Γ_1 . We apply Lemma 1 of the previous section, with $R = S * \Gamma_1$, $R_0 = S * F$, and $R' = S * \Gamma$, with the ring homomorphism ϕ coming from the natural homomorphism $\Gamma_1 \to \Gamma$. We find that $\operatorname{Tor}_i^{S * \Gamma_1}(S * \Gamma, S * \Gamma_1 \otimes_{S * F} M) = 0$ for all i > 0, so

$$\eta \alpha[M] = [S * \Gamma \otimes_{S * F} M] = \alpha \zeta[M],$$

and the diagram commutes.

Since we have proved that α_1 is surjective, and since ζ clearly is, in order to prove that α is surjective, we must prove that η is. Let M be a left $S * \Gamma$ -module; then we claim that $[M] = \eta[S * \Gamma_1 \otimes_{S * \Gamma} M]$. This follows from Lemma 1 once more, this time with $R' = S * \Gamma$ and R, R_0 , and ϕ as before. This completes the proof of Moody's Theorem.

6. Goldie ranks

In this section we use Moody's Theorem to solve the Goldie rank problem for the group ring kH of a polycyclic by finite group H over an arbitrary division ring k. (See also Rosset [4].) We assume that H has no finite normal subgroup. Then kH is a prime noetherian ring, and therefore has a classical (left) ring of quotients, which we shall denote by k(H), which is a simple artinian ring, isomorphic to the full matrix ring $M_n(D)$ over some division ring D. (This is proved in [2] for commutative k.) The size n of the matrix ring is called the Goldie rank of H.

THEOREM. The Goldie rank n of kH is equal to the least common multiple of the orders of the finite subgroups of H.

Proof. If M is a finitely generated left kH-module, then $k(H) \otimes_{kH} M$ is isomorphic to a direct sum of a certain number, say m, copies of the simple k(H)-module; let $r_H(M) = m/n$, so $r_H(kH) = 1$. Then r_H gives rise to a Q-valued function on $G_0(kH)$. Let H_1 be a torsion-free normal subgroup of H of finite index l; then kH is a free left kH_1 -module of rank l, and k(H) is a free $k(H_1)$ -module of rank l. It follows that

$$r_H(M) = r_{H_1}(M_{H_1}) / |H: H_1|,$$

where M_{H_1} denotes the restriction of M to kH_1 . Let F be a finite subgroup of

H and let L be a finitely generated left kF-module. From Mackey's formula,

$$(kH \otimes_{kF} L)_{H_1} \cong \sum_{x} kH_1 \otimes_{k(xFx^{-1} \cap H_1)} xL$$

where the sum is over representatives of the (H_1, F) -double cosets of H. Since F is finite and H_1 is torsion-free, $xFx^{-1} \cap H_1 = 1$, and since H_1 is normal, $H_1xF = xH_1F$. Then each summand on the right is isomorphic to $\dim_k L$ copies of $kH_1 \otimes_k k$, and there are $|H: H_1F|$ such summands. It follows that

$$r_{H}(kH \otimes_{kF} L) = \frac{1}{|H:H_{1}|} r_{H_{1}}((kH \otimes_{kF} L)_{H_{1}})$$
$$= \frac{|H:H_{1}F|}{|H:H_{1}|} \dim_{k} L$$
$$= \frac{\dim_{k} L}{|F|}.$$

Pick L to have k-dimension 1; then $r_H(kH \otimes_{kF} L) = 1/|F|$, and this is some multiple of 1/n, so n is divisible by the order of each finite subgroup. Let M be a kH-module with the property that $k(H) \otimes_{kH} M$ is a simple k(H)-module, so $r_H(M) = 1/n$. Moody's Theorem implies that

$$r_H(M) = \sum_i \pm r_H(kH \otimes_{kF_i} L_i),$$

for certain kF_i -modules L_i , where the F_i are finite subgroups of H. Then

$$1/n = \sum_{i} \pm \dim_{k} L_{i}/|F_{i}|,$$

and it follows that n divides $lcm|F_i|$. This completes the proof.

References

- 1. J.A. MOODY, Induction theorems for infinite groups, Ph.D. Thesis, Columbia University, 1986.
- 2. D.S. PASSMAN, The algebraic structure of group rings, Wiley-Interscience, New York, 1977.
- 3. D. QUILLEN, "Higher algebraic K-theory: I" in Algebraic K-theory I, Lecture Notes in Mathematics, no. 341, Springer, Berlin, 1973, pp. 77–139.
- S. ROSSET, "The Goldie rank of virtually polycyclic groups" in Groupe de Brauer, Lecture Notes in Mathematics, no. 844, Springer, Berlin, 1981, pp. 35-45.
- 5. R. SWAN, Algebraic K-theory, Lecture Notes in Mathematics, vol. 76, Springer, Berlin, 1968.

UNIVERSITY OF ALBERTA EDMONTON, CANADA