MOODY'S INDUCTION THEOREM ${ }^{1}$

BY
Gerald Cliff and Alfred Weiss
Dedicated to the Memory of Irving Reiner

1. Introduction

Our purpose is to give a proof of the recent remarkable induction theorem of John Moody [1], a proof that is straightforward and more or less self contained. Let Γ be a finitely generated abelian by finite group, and let $S * \Gamma$ be a crossed product of a left noetherian ring S with Γ. Let $G_{0}(S * \Gamma)$ denote the Grothendieck group of the category of all finitely generated $S * \Gamma$-modules. For any subgroup F of Γ, there is a map $G_{0}(S * F) \rightarrow G_{0}(S * \Gamma)$ given by sending the class [M] of an $S * F$-module M to the class [$S * \Gamma \otimes_{S * F} M$] of the induced module.

Moody's Theorem. Let α be the sum of the maps from $\Sigma G_{0}(S * F)$ to $G_{0}(S * \Gamma)$, where F varies over all finite subgroups of Γ. Then α is surjective.

As an application to G_{0} of group rings, let H be a polycyclic by finite group, and let k be a noetherian ring.

Moody's Theorem for Polycyclic by Finite Groups. The map from $\Sigma G_{0}(k F)$ to $G_{0}(k H)$, given by the sum of inductions from finite subgroups F of H, is surjective.

To prove this, let H_{1} be a normal subgroup of H of smaller Hirsch length than H, such that $H / H_{1}=\Gamma$ is abelian by finite, and write the group ring $k H$ as a crossed product $\left(k H_{1}\right) *\left(H / H_{1}\right)$. Then use induction on the Hirsch length.

Here is an outline of our proof of Moody's Theorem. Let A be a finitely generated free abelian normal subgroup of Γ of finite index, and let G denote

Received September 2, 1987.
${ }^{1}$ Research supported in part by NSERC of Canada.
the factor group Γ / A. Suppose that $\mathbf{Q} \otimes_{\mathbf{z}} A$ is a free $\mathbf{Q} G$-module. Then A is contained as a subgroup of finite index n in a group B which is a free $\mathbf{Z} G$-module. In Section 2 we show that the matrix ring $M_{n}(S * A)$ is graded by B, in a way which is compatible with the action of G; then, picking a positive cone B_{+}in B, we define a certain subring R of $M_{n}(S * \Gamma)$ generated by G and B_{+}, and R is then graded by the non-negative integers. Moreover we can identify R_{0} as a direct sum of full matrix rings over certain finite subgroups of Γ. That $G_{0}(R) \cong G_{0}\left(R_{0}\right)$ follows from work of Quillen [3]. In Section 3 we show that our map $\alpha: \Sigma G_{0}(S * F) \rightarrow G_{0}(S * \Gamma)$ is the composition of four other maps, two of which come from Morita equivalences, one from Quillen's theorem, and one from localization. In Section 4 we give a proof of Quillen's theorem; we are able to avoid the use of Quillen's topological machinery, since we are only interested in G_{0}, and not in higher K-theory. At this point, Moody's theorem will follow, under the assumption that $\mathbf{Q} \otimes_{\mathbf{Z}} A$ is a free Q G-module; if not, we form a semi-direct product of Γ with a free abelian group N to get a group Γ_{1} for which Moody's theorem will have been proved, and then show in Section 5 that we can reduce back to Γ. In Section 6 we deal with the Goldie rank problem for the group ring of a polycyclic by finite group over a division ring k.

We would like to thank John Moody for sending us a copy of his thesis.

2. The grading on $M_{n}(S * \Gamma)$

Let S be a ring and Γ a group. (All rings here are associative with 1.) Suppose that for each $\gamma \in \Gamma$ there is an automorphism of S, denoted $s \mapsto{ }^{\gamma_{S}}$ for $s \in S$. A ring is called a crossed product of S with Γ, denoted $S * \Gamma$, if it has a basis as a left S-module $\{\bar{\gamma}: \gamma \in \Gamma\}$ indexed by Γ, with multiplication given by $\bar{\gamma} s={ }^{\gamma} s \bar{\gamma}$ for $s \in S$ and $\gamma \in \Gamma$, and $\bar{\gamma} \bar{\delta}=f(\gamma, \delta) \overline{\gamma \delta}$ for $\gamma, \delta \in \Gamma$, where $f(\gamma, \delta)$ is some unit of S.

Let A be a finitely generated free abelian group, contained as a normal subgroup of finite index in the group Γ, and let G denote the factor group Γ / A. Then A is a $\mathbf{Z} G$-module. Suppose, for now, that $\mathbf{Q} \otimes_{\mathbf{Z}} A$ is a free $\mathbf{Q} G$-module. Let B be a free $\mathbf{Z} G$-module containing A as a submodule of finite index n. (Explicitly, one may take a $\mathbf{Q} G$-basis of $\mathbf{Q} \otimes_{\mathbf{Z}} A$ contained in $1 \otimes A$ and let A_{1} be the $\mathbf{Z} G$ span of this basis; then multiply A_{1} by a rational number so that it contains $1 \otimes A$, letting the result be B, and identify $1 \otimes A$ with A.) The extension Γ of G by A leads to an extension Δ of G by B. Since B is a free $\mathbf{Z} G$-module, the extension Δ splits, and we shall regard G as a subgroup of Δ.

Let X be a set of representatives of right cosets of A in B. Then X has cardinality n, and is also a set of representatives of the right cosets of Γ in Δ. Let V be a free right $S * \Gamma$-module with basis $\left\{v_{x}: x \in X\right\}$ indexed by X. Let $\mathscr{E}=\operatorname{End}_{S * \Gamma}(V)$. Then using the basis $\left\{v_{x}: x \in X\right\}, \mathscr{E}$ is isomorphic to
$M_{n}(S * \Gamma)$, and is therefore an $(S * \Gamma, S * \Gamma)$-bimodule. We shall show that \mathscr{E} is a \mathbf{Z}-graded ring.

For $x, y \in X$, let $\sigma_{x, y} \in \mathscr{E}$ be the map which sends v_{x} to v_{y} and which sends v_{z} to 0 for $z \in X, z \neq x$, so \mathscr{E} is a free $S * \Gamma$-module with basis $\left\{\sigma_{x, y}\right\}$. Let $e_{x}=\sigma_{x, x}$. For $\delta \in \Delta$, define $\phi(\delta) \in \mathscr{E}$ as follows:

$$
\phi(\delta)\left(v_{x}\right)=v_{y} \bar{\gamma} \text {, where } \delta x=y \gamma \text { for some } y \in X, \gamma \in \Gamma \text {. }
$$

From this definition, it follows that

$$
\begin{equation*}
e_{y} \phi(\delta)=\phi(\delta) e_{x} \tag{1}
\end{equation*}
$$

For $x, y \in X$, let $\delta=y x^{-1} \in \Delta$; then $\delta x=y$, and $\sigma_{x, y} \overline{1}=\phi(\delta) e_{x}$, so it follows that

$$
\left\{\phi(\delta) e_{x}: \delta \in \Delta, x \in X\right\}
$$

is an S-basis of \mathscr{E}.
For $\delta_{1}, \delta_{2} \in \Delta$, to form the product $\phi\left(\delta_{1}\right) \phi\left(\delta_{2}\right)$, take $x \in X$ and write $\delta_{2} x=y \gamma_{1}$, for some $y \in X$ and $\gamma_{1} \in \Gamma$; then write $\delta_{1} y=z \gamma_{2}$ for some $z \in X$ and $\gamma_{2} \in \Gamma$. From the definition of ϕ, we find that

$$
\phi\left(\delta_{1}\right) \phi\left(\delta_{2}\right)\left(v_{x}\right)=v_{z} \overline{\gamma_{2}} \overline{\gamma_{1}}, \quad \phi\left(\delta_{1} \delta_{2}\right)\left(v_{x}\right)=v_{z} \overline{\gamma_{2} \gamma_{1}}
$$

which implies that

$$
\begin{equation*}
\phi\left(\delta_{1}\right) \phi\left(\delta_{2}\right) e_{x}=\phi\left(\delta_{1} \delta_{2}\right) s e_{x} \text { for some } s \in S \text { which depends on } x \tag{2}
\end{equation*}
$$

Let $\mathscr{B}=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ be a G-invariant basis of the free abelian group B. Define

$$
d\left(\prod b_{i}^{n_{i}}\right)=\sum n_{i}
$$

so it follows that for $b, b^{\prime} \in B$ we have $d\left(b b^{\prime}\right)=d(b)+d\left(b^{\prime}\right)$ and for $g \in G$ we have $d\left(g b g^{-1}\right)=d(b)$. For $\delta \in \Delta$, we may write δ uniquely in the form $\delta=b g$, for some $b \in B, g \in G$. Then define

$$
\operatorname{deg}\left(\phi(b g) e_{x} s\right)=d(b), \quad b \in B, g \in G, x \in X, s \in S
$$

It follows from formulas (1) and (2) that this makes \mathscr{E} into a Z-graded ring. Let

$$
B_{+}=\left\{b=\prod b_{i}^{n_{i}} \in B: n_{i} \geq 0, i=1, \ldots, m\right\}
$$

and let R be the subring of \mathscr{E} given by

$$
R=\left\{\sum s \phi(b g) e_{x}: s \in S, b \in B_{+}, g \in G, x \in X\right\}
$$

Then R is \mathbf{N}-graded. Let

$$
\mathscr{T}=\left\{\sum s \phi(b) e_{x}: s \text { a unit of } S, b \in B_{+}, x \in X\right\}
$$

Then \mathscr{T} is a multiplicatively closed set of elements of R invertible in \mathscr{E}, and is an Ore set by formulas (1) and (2). Moreover every element of \mathscr{E} is of the form $t^{-1} r$ for some $t \in \mathscr{T}$ and $r \in R$.

Let us now consider the degree 0 part R_{0} of R. From the definition of the grading, R_{0} has S-basis

$$
\left\{\phi(g) e_{x}: g \in G, x \in X\right\}
$$

It follows from (1) and (2) that G permutes the set of orthogonal idempotents $\left\{e_{x}: x \in X\right\}$ via ϕ. For $x \in X$, let G_{x} denote the stabilizer of e_{x} in G and let T_{x} be a set of representatives of the left cosets of G_{x} in G. Let $\varepsilon_{x}=$ $\sum_{g \in T x} \phi(g) e_{x} \phi(g)^{-1}$ be the sum of the idempotents in the G-orbit of e_{x}. Then R_{0} is the direct sum of the two-sided ideals $R_{0} \varepsilon_{x}$ as x varies over a set \mathscr{X} of representatives of the distinct G-orbits of X. From the definition of ϕ, if $g \in G_{x}$ then $g x=x \gamma_{g}$ for some $\gamma_{g} \in \Gamma$; let F_{x} denote the set of all the resulting elements γ_{g} as g varies over G_{x}. Then $x^{-1} G_{x} x=F_{x}$, so F_{x} is a finite subgroup of Γ. Moreover, since $\phi(g) e_{x}=e_{x} \bar{\gamma}_{g}$ for $g \in G_{x}$, it follows that $R_{0} e_{x}$ is closed under right multiplication by $S * F_{x}$, and $R_{0} e_{x}$ is an ($R_{0} \varepsilon_{x}, S * F_{x}$)-bimodule. We have $\left\{\phi(\underline{g}) e_{x}: g \in G\right\}$ as a basis of $R_{0} e_{x}$ as a right S-module, and since $\phi(g) e_{x}=e_{x} \overline{\gamma_{g}}$ for $g \in G_{x}$, we see that

$$
\left\{\phi(g) e_{x}: g \in T_{x}\right\}
$$

is a basis of $R_{0} e_{x}$ as a right $S * F_{x}$-module. Then left multiplication by $R_{0} \varepsilon_{x}$ on the $\left(R_{0} \varepsilon_{x}, S * F_{x}\right)$-bimodule $R_{0} e_{x}$ shows that $R_{0} \varepsilon_{x}$ is isomorphic to $\operatorname{End}_{S * F_{x}}\left(R_{0} e_{x}\right)$ which in turn is isomorphic to the full matrix ring of degree $\left|G: G_{x}\right|$ over $S * F_{x}$.

Returning to R, we see that R is finitely generated as an R^{\prime}-module over the subring R^{\prime} generated over S by

$$
\left\{\phi(b) e_{x}: b \in B_{+}, x \in X\right\}
$$

Then R^{\prime} is a skew polynomial ring over $R_{0}^{\prime}=\Sigma_{x \in X} S e_{x}$ in the variables $\left\{\phi\left(b_{1}\right), \ldots, \phi\left(b_{m}\right)\right\}$, so R^{\prime} and hence R are noetherian. We shall need to know that R_{0} has finite projective dimension as a right R-module. Using a skew version of Hilbert's syzygy theorem, (see [2, 13.4.4]) we see that R_{0}^{\prime} has finite
projective dimension as a right R^{\prime}-module. Take a finite projective right R^{\prime}-resolution $\left\{P_{i}\right\}$ of R_{0}^{\prime} and apply the functor $-\otimes_{R^{\prime}} R$, which is exact since R is a free left R^{\prime}-module, having basis $\mathscr{G}=\{\phi(g): g \in G\}$. Since \mathscr{G} is also a left basis of R_{0} over R_{0}^{\prime}, then R is a crossed product $R^{\prime} * G$ and R_{0} is a crossed product $R_{0}^{\prime} * G$. Then

$$
R_{0}^{\prime} \otimes_{R^{\prime}} R \cong R_{0}^{\prime} \otimes_{R^{\prime}}\left(R^{\prime} * G\right) \cong R_{0}^{\prime} * G=R_{0}
$$

so R_{0} has finite projective dimension as a right R-module, as desired.

3. The commutative diagram

We shall keep the same notation as in the previous section.
We recall that G_{0} of a ring R is defined by taking the free abelian group on the isomorphism classes [M] of finitely generated R-modules, and factoring out the relations $[M]=\left[M^{\prime}\right]+\left[M^{\prime \prime}\right]$ for any short exact sequence $0 \rightarrow M \rightarrow$ $M^{\prime} \rightarrow M^{\prime \prime} \rightarrow 0$. In this section we consider the following diagram.

We first define the maps. In this section, we only deal with the generators of G_{0}, so we shall suppress the brackets around our modules. The top horizontal map α comes from sending a left $S * F_{x}$-module M to $S * \Gamma \otimes_{S * F_{x}} M$, and is well defined since $S * \Gamma$ is free over $S * F_{x}$. The left vertical map β comes from Morita equivalence, but we need a precise version. For $x \in \mathscr{X}$ we have the ($R_{0}, S * F_{x}$)-bimodule $R_{0} e_{x}$, which is free as a right $S * F_{x}$-module, and we define β by sending a left $S * F_{x}$-module M to $R_{0} e_{x} \otimes_{S * F_{x}} M$. The ring R is a free right R_{0}-module with basis $\left\{\phi(b): b \in B_{+}\right\}$, and we get the map γ by sending a left R_{0}-module M to $R \otimes_{R_{0}} M$. The ring \mathscr{E} is gotten from R by localizing at the Ore set \mathscr{T}, so \mathscr{E} is flat as a right R-module, and δ is defined by sending a left R-module M to $\mathscr{E} \otimes_{R} M$. Fix an element y of X. Then $e_{y} \mathscr{E}$ is an $(S * \Gamma, \mathscr{E})$-bimodule, and since e_{y} is idempotent, then $e_{y} \mathscr{E}$ is projective as a right \mathscr{E} module, so we get the map ε by sending a left \mathscr{E}-module M to the left $S * \Gamma$-module $e_{y} \mathscr{E} \otimes_{\mathscr{E}} M$.

Next we prove that the diagram commutes. Starting with the left $S * F_{x}-$ module M, β sends M to $R_{0} e_{x} \otimes_{S * F_{x}} M$ and γ sends this to

$$
R \otimes_{R_{0}} R_{0} e_{x} \otimes_{S * F_{x}} M \cong R e_{x} \otimes_{S * F_{x}} M
$$

Then δ sends this to $\mathscr{E} \otimes_{R} \operatorname{Re}_{x} \otimes_{S * F_{x}} M \cong \mathscr{E} e_{x} \otimes_{S * F_{x}} M$ and ε maps this to

$$
e_{y} \mathscr{E} \otimes_{\delta} \mathscr{E} e_{x} \otimes_{S * F_{x}} M \cong e_{y} \mathscr{E} e_{x} \otimes_{S * F_{x}} M
$$

Since $e_{y} \mathscr{E} e_{x} \cong S * \Gamma$ as an $\left(S * \Gamma, S * F_{x}\right)$-bimodule, then

$$
e_{y} \mathscr{E} e_{x} \otimes_{S * F_{x}} M \cong S * \Gamma \otimes_{S * F_{x}} M
$$

We have therefore proved that the diagram commutes.
To prove Moody's Theorem, we must show that α is surjective. To do this, we shall show that β, γ, δ, and ε are surjective. Indeed β and ε are isomorphisms since they come from Morita equivalences. We shall prove that γ is an isomorphism in the next section. For δ, let M be a finitely generated left \mathscr{E}-module, with a finite set of generators Y. Then let M^{\prime} be the R-submodule of M generated by Y, and it is clear that $\mathscr{E} \otimes_{R} M^{\prime} \cong M$.

4. Quillen's Theorem

In this section we prove the following result.
Theorem. Let R be a left noetherian graded ring such that R is flat as a right R_{0}-module and such that for each left R-module M there exists a positive integer m such that $\operatorname{Tor}_{i}^{R}\left(R_{0}, M\right)=0$ for all $i \geq m$. Then the map $\gamma: G_{0}\left(R_{0}\right) \rightarrow G_{0}(R)$ given by sending the class [M] of a left R_{0}-module M to $\left[R \otimes_{R_{0}} M\right.$] is an isomorphism.

This is a special case of Quillen's Theorem 7 in [3]. Quillen considers all higher K groups of the category of finitely generated R-modules, not just G_{0}. For Moody's Theorem, we only need surjectivity of γ; the ring R in the previous section satisfies the Tor hypothesis above since R_{0} has finite projective dimension as a right R-module.

Before giving the proof, we shall consider two lemmas, the first of which will also be needed in the next section.

Lemma 1. Let R_{0} be a subring of a ring R, such that R is flat as a right R_{0}-module. Further, let R^{\prime} be another ring and let $\phi . R \rightarrow R^{\prime}$ be a ring homomorphism, so R^{\prime} is then a right R-module. If M is a left R_{0}-module, then $\operatorname{Tor}_{i}^{R}\left(R^{\prime}, R \otimes_{R_{0}} M\right) \cong \operatorname{Tor}_{i}^{R_{0}}\left(R^{\prime}, M\right)$ for all $i>0$.

Proof. Take a projective left R_{0}-resolution $\left\{P_{i}\right\}$ of M. To compute $\operatorname{Tor}^{R_{0}}\left(R^{\prime}, M\right)$, apply the functor $R^{\prime} \otimes_{R_{0}}$ - obtaining the complex $\left\{R^{\prime} \otimes_{R_{0}} P_{i}\right\}$ and take homology. Since R is flat as an R_{0}-module, $\left\{R \otimes_{R_{0}} P_{i}\right\}$ is a
projective R-resolution of $R \otimes_{R_{0}} M$. To compute

$$
\operatorname{Tor}^{R}\left(R^{\prime}, R \otimes_{R_{0}} M\right)
$$

apply the functor $R^{\prime} \otimes_{R}$ - to this resolution, obtaining

$$
\left\{R^{\prime} \otimes_{R} R \otimes_{R_{0}} P_{i} \cong R^{\prime} \otimes_{R_{0}} P_{i}\right\} .
$$

It is now clear that $\operatorname{Tor}_{i}^{R}\left(R^{\prime}, R \otimes_{R_{0}} M\right) \cong \operatorname{Tor}_{i}^{R_{o}}\left(R^{\prime}, M\right)$ for all $i>0$, and the proof is complete.

Lemma 2. Let R be a left noetherian graded ring, and let M be a finitely generated graded left R-module. Suppose that there is an integer j such that M is generated by its j-th homogeneous component, i.e., $M=R M_{j}$. Suppose further that $\operatorname{Tor}_{1}^{R}\left(R_{0}, M\right)=0$. Then $M \cong R \otimes_{R_{0}} M_{j}$.

Proof. Let $I=\Sigma_{i>0} R_{i}$ be the ideal of R generated by the elements of positive degree. Then $R_{0} \otimes_{R} M$ is naturally isomorphic to $M / I M$. We have a graded map ψ from $R \otimes_{R_{0}} M_{j}$ onto M given by $\psi(r \otimes m)=r m$ for $r \in R$ and $m \in M_{j}$, hence an exact sequence

$$
0 \rightarrow \operatorname{ker} \psi \rightarrow R \otimes_{R_{0}} M_{j} \rightarrow M \rightarrow 0 .
$$

Applying $R_{0} \otimes_{R}$ - yields

$$
0 \rightarrow \operatorname{ker} \psi / I \operatorname{ker} \psi \rightarrow M_{j} \rightarrow M / I M \rightarrow 0
$$

since $\operatorname{Tor}_{1}^{R}\left(R_{0}, M\right)=0$ and $R_{0} \otimes_{R} R \otimes_{R_{0}} M_{j} \cong M_{j}$. Since $M=\sum_{i=j}^{\infty} M_{i}$, then $M_{j} \cap I M=0$, so we deduce that $M_{j} \cong M / I M$ and therefore ker ψ / I ker $\psi=$ 0 . Then $\operatorname{ker} \psi=I \operatorname{ker} \psi$, from which it follows that $\operatorname{ker} \psi=0$, since $\operatorname{ker} \psi$ is graded and finitely generated (because R is noetherian.) Then $R \otimes_{R_{0}} M_{j} \cong M$. This completes the proof.

Proof of Theorem. Let M be a finitely generated left R-module. We first assume that M is graded, and we shall prove that $[M]$ is in the image of γ. We have a positive integer i such that $\operatorname{Tor}_{i}^{R}\left(R_{0}, M\right)=0$. If $i>1$, let σ be a graded homomorphism from a finitely generated free R-module F onto M, and let M^{\prime} be the kernel of σ, giving us the short exact sequence

$$
0 \rightarrow M^{\prime} \rightarrow F \rightarrow M \rightarrow 0 .
$$

Since [F] is in the image of γ, in order to prove that [M] is in the image of γ, it suffices to prove that $\left[M^{\prime}\right]$ is. But $\operatorname{Tor}_{i-1}^{R}\left(R_{0}, M^{\prime}\right)=\operatorname{Tor}_{i}^{R}\left(R_{0}, M\right)=0$. Then by induction, we may assume that $\operatorname{Tor}_{1}^{R}\left(R_{0}, M\right)=0$.

Next, write $M=\sum_{i=j}^{\infty} M_{i}$ for some integer j, with $M_{j} \neq 0$. If $M=R M_{j}$, then Lemma 2 tells us that [M] is in the image of γ. If $M \neq R M_{j}$, define $M(l)=\sum_{i=j}^{l} R M_{i}$. Since M is finitely generated, there is an integer $l>j$ with the property that $M=M(l)$ but $M \neq M(l-1)$. We shall show that [M] is in the image of γ, for graded R-modules M satisfying $\operatorname{Tor}_{1}^{R}\left(R_{0}, M\right)=0$, by induction on $l-j$. We have the exact sequence

$$
\begin{equation*}
0 \rightarrow M(l-1) \rightarrow M \rightarrow M / M(l-1) \rightarrow 0 \tag{3}
\end{equation*}
$$

Let $N=M / M(l-1)$. Apply $R \otimes_{R_{0}}$, obtaining the exact sequence

$$
\begin{align*}
\rightarrow \operatorname{Tor}_{2}^{R}\left(R_{0}, N\right) \rightarrow & \operatorname{Tor}_{1}^{R}\left(R_{0}, M(l-1)\right) \rightarrow \operatorname{Tor}_{1}^{R}\left(R_{0}, M\right) \rightarrow \operatorname{Tor}_{1}^{R}\left(R_{0}, N\right) \\
& \rightarrow M(l-1) / I M(l-1) \rightarrow M / I M \rightarrow N / I N \rightarrow 0 . \tag{4}
\end{align*}
$$

We claim that

$$
M(l-1) / I M(l-1) \rightarrow M / I M
$$

is injective. To prove this, we must show that if $x \in M(l-1) \cap I M$ then $x \in I M(l-1)$. We have

$$
M(l-1)=\sum_{i=j}^{l-1} R M_{i}=\sum_{i=j}^{l-1}\left(R_{0}+I\right) M_{i}=\sum_{i=j}^{l-1} M_{i}+I M(l-1) .
$$

Then $x=y+z$ where $y \in \sum_{i=j}^{l-1} M_{i}$ and $z \in I M(l-1)$. But x and z are in $I M$, so y is too, hence $y \in \sum_{i=j}^{t} I M_{i}$ for some t. Since $y \in \sum_{i=j}^{l-1} M_{i}$ it follows that $t<l-1$, so

$$
y \in \sum_{i=j}^{l-1} I M_{i}
$$

and the claim holds. Since $M(l-1) / I M(l-1) \rightarrow M / I M$ is injective and $\operatorname{Tor}_{1}^{R}\left(R_{0}, M\right)=0$, it follows from (4) that $\operatorname{Tor}_{1}^{R}\left(R_{0}, N\right)=0$. Since $M=M(l)$ and $N=M / M(l-1)$, we have $N=R N_{l}$. Then Lemma 2 implies that $N \cong$ $R \otimes_{R_{0}} N_{l}$, and Lemma 1, with $R^{\prime}=R_{0}$, gives

$$
\operatorname{Tor}_{2}^{R}\left(R_{0}, N\right) \cong \operatorname{Tor}_{2}^{R_{0}}\left(R_{0}, N_{l}\right)=0
$$

(since R_{0} is a flat R_{0}-module.) Since $\operatorname{Tor}_{1}^{R}\left(R_{0}, M\right)=0$, it now follows from (4) that

$$
\operatorname{Tor}_{1}^{R}\left(R_{0}, M(l-1)\right)=0
$$

so the induction hypothesis applies to $M(l-1)$. Therefore $[M(l-1)]$ is in the
image of γ. Since [N] is as well, we deduce from (3) that [M] is in the image of γ, as desired.

For a non-graded module M, we shall proceed (as does Quillen) as in Swan [4, p. 131]. Let z be an indeterminate, and consider the polynomial ring $R[z$], which is graded by assigning the monomial $r_{i} z^{j}$ the degree $i+j$, for $r_{i} \in R_{i}$, so $(R[z])_{0}=R_{0}$. We shall check that $R[z]$ satisfies the hypotheses of the theorem. It is noetherian by Hilbert's basis theorem, and it is free over R, hence flat over R_{0}. Let L denote a left $R[z]$-module. We have the short exact sequence

$$
0 \rightarrow R[z] \xrightarrow{\kappa} R[z] \xrightarrow{\lambda} R \rightarrow 0
$$

where κ is left multiplication by z and λ sends z to 0 . We then have the short exact sequence

$$
0 \rightarrow R[z] \otimes_{R} L \rightarrow R[z] \otimes_{R} L \rightarrow L \rightarrow 0
$$

Therefore, in order to prove that $\operatorname{Tor}_{i}^{R[z]}\left(R_{0}, L\right)=0$ for all sufficiently large i, it suffices to show that

$$
\operatorname{Tor}_{i}^{R[z]}\left(R_{0}, R[z] \otimes_{R} L\right)=0
$$

But Lemma 1 tells us that $\operatorname{Tor}_{i}^{R[z]}\left(R_{0}, R[z] \otimes_{R} L\right) \cong \operatorname{Tor}_{i}^{R}\left(R_{0}, L\right)$, which is 0 for large i by hypothesis. Thus $R[z]$ satisfies the hypotheses of the theorem.

Let us return to our R-module M, and let F be a free R-module of finite rank which maps onto M, with K being the kernel of this map. Then F is a graded R-module, by assigning the free generators any convenient degree. Fix a finite set Y of generators of K. Take $y \in Y$ and write y in the form

$$
y=\sum_{i=j}^{l} f_{i}, \quad f_{i} \in F_{i}
$$

Then define $\hat{y} \in F[z]$ by

$$
\hat{y}=\sum_{i=j}^{l} f_{i} z^{l-i}
$$

so \hat{y} is a homogeneous element of the graded $R[z]$-module $F[z]$. Let \hat{K} be the graded $R[z]$-submodule of $F[z]$ generated by the set $\{\hat{y}: y \in Y\}$. If L is a graded $R[z]$-module, then left multiplication on L by $1-z$ is injective, so the functor Φ which assigns L the R-module $L / R[z](1-z) L$ is exact. It follows that $\Phi(F[z] / \hat{K}) \cong M$. We have already proved that $F[z] / \hat{K}$ is in the image of the map $G_{0}\left(R_{0}\right) \rightarrow G_{0}(R[z])$. Then apply the functor Φ, to see that γ is surjective.

To show that γ is injective, we construct a left inverse. For a finitely generated left R-module L, define $\tau[L]=\sum_{i=0}^{\infty}(-1)^{i}\left[\operatorname{Tor}_{i}^{R}\left(R_{0}, L\right)\right]$. Using the fact that R is noetherian, it follows that $\operatorname{Tor}_{i}^{R}\left(R_{0}, L\right)$ is finitely generated as an R_{0}-module. The long exact Tor sequence shows that τ respects the relations of G_{0}, and the sum is finite by hypothesis, so τ is indeed a homomorphism. For a finitely generated left R-module M, it follows from Lemma 1 that

$$
\operatorname{Tor}_{i}^{R}\left(R_{0}, R \otimes_{R_{0}} M\right)=0 \quad \text { for } i>0
$$

so $\tau \gamma[M]=\left[R_{0} \otimes_{R} R \otimes_{R_{0}} M\right]=[M]$. Thus τ is a left inverse for γ, and the proof is complete.

5. The second commutative diagram

We have completed the proof of Moody's Theorem under the assumption that $\mathbf{Q} \otimes_{\mathbf{Z}} A$ is a free $\mathbf{Q} G$-module. We now discuss the general case. Since $\mathbf{Q} \otimes_{\mathbf{Z}} A$ is projective as a $\mathbf{Q} G$-module, there exists a finitely generated $\mathbf{Z} G$ module N such that $\mathbf{Q} \otimes_{\mathbf{Z}}(A \oplus N)$ is a free $\mathbf{Q} G$-module. Let Γ_{1} denote the semidirect product $N \rtimes \Gamma$. Then we have the crossed product $S * \Gamma_{1}$, which may be considered as the crossed product $(S N) * \Gamma$, where $S N$ denotes the group ring of N over S. Moreover Moody's Theorem has been proved for $S * \Gamma_{1}$. We have the following diagram:

In the upper left corner, F varies over finite subgroups of Γ_{1}, and α_{1} is the sum of inductions, which we have proved surjective. Since N is torsion-free, we have $F N / N \cong F$; then if M is an $S * F$-module, we define $\zeta[M]=[M]$, where the M on the right is considered as an $S * F N / N$-module. The map α is the sum of inductions. For an $S * \Gamma_{1}$-module M, we define $\eta[M]$ to be

$$
\sum_{i=0}^{\infty}(-1)^{i}\left[\operatorname{Tor}_{i}^{S * \Gamma_{1}}(S * \Gamma, M)\right]
$$

analogous to the left inverse map defined in the proof of Quillen's Theorem. Since $S * \Gamma_{1}$ is noetherian, in order to show that η is well defined we must only check that this sum of Tors is a finite sum. By Hilbert's syzygy theorem, S has finite projective dimension as an $S N$-module. Then it follows by inducing that
$S * \Gamma$ has finite projective dimension as an $S N * \Gamma$-module, and $S N * \Gamma=$ $S * \Gamma_{1}$. Thus η is well defined.

We now prove that the diagram commutes. Let M be a finitely generated $S * F$-module, where F is a finite subgroup of Γ_{1}. We apply Lemma 1 of the previous section, with $R=S * \Gamma_{1}, R_{0}=S * F$, and $R^{\prime}=S * \Gamma$, with the ring homomorphism ϕ coming from the natural homomorphism $\Gamma_{1} \rightarrow \Gamma$. We find that $\operatorname{Tor}_{i}^{S * \Gamma_{1}}\left(S * \Gamma, S * \Gamma_{1} \otimes_{S * F} M\right)=0$ for all $i>0$, so

$$
\eta \alpha[M]=\left[S * \Gamma \otimes_{S * F} M\right]=\alpha \xi[M]
$$

and the diagram commutes.
Since we have proved that α_{1} is surjective, and since ζ clearly is, in order to prove that α is surjective, we must prove that η is. Let M be a left $S * \Gamma$-module; then we claim that $[M]=\eta\left[S * \Gamma_{1} \otimes_{S * \Gamma} M\right]$. This follows from Lemma 1 once more, this time with $R^{\prime}=S * \Gamma$ and R, R_{0}, and ϕ as before. This completes the proof of Moody's Theorem.

6. Goldie ranks

In this section we use Moody's Theorem to solve the Goldie rank problem for the group ring $k H$ of a polycyclic by finite group H over an arbitrary division ring k. (See also Rosset [4].) We assume that H has no finite normal subgroup. Then $k H$ is a prime noetherian ring, and therefore has a classical (left) ring of quotients, which we shall denote by $k(H)$, which is a simple artinian ring, isomorphic to the full matrix ring $M_{n}(D)$ over some division ring D. (This is proved in [2] for commutative k.) The size n of the matrix ring is called the Goldie rank of H.

Theorem. The Goldie rank n of $k H$ is equal to the least common multiple of the orders of the finite subgroups of H.

Proof. If M is a finitely generated left $k H$-module, then $k(H) \otimes_{k H} M$ is isomorphic to a direct sum of a certain number, say m, copies of the simple $k(H)$-module; let $r_{H}(M)=m / n$, so $r_{H}(k H)=1$. Then r_{H} gives rise to a Q-valued function on $G_{0}(k H)$. Let H_{1} be a torsion-free normal subgroup of H of finite index l; then $k H$ is a free left $k H_{1}$-module of rank l, and $k(H)$ is a free $k\left(H_{1}\right)$-module of rank l. It follows that

$$
r_{H}(M)=r_{H_{1}}\left(M_{H_{1}}\right) /\left|H: H_{1}\right|
$$

where $M_{H_{1}}$ denotes the restriction of M to $k H_{1}$. Let F be a finite subgroup of
H and let L be a finitely generated left $k F$-module. From Mackey's formula,

$$
\left(k H \otimes_{k F} L\right)_{H_{1}} \cong \sum_{x} k H_{1} \otimes_{k\left(x F x^{-1} \cap H_{1}\right)} x L
$$

where the sum is over representatives of the $\left(H_{1}, F\right)$-double cosets of H. Since F is finite and H_{1} is torsion-free, $x F x^{-1} \cap H_{1}=1$, and since H_{1} is normal, $H_{1} x F=x H_{1} F$. Then each summand on the right is isomorphic to $\operatorname{dim}_{k} L$ copies of $k H_{1} \otimes_{k} k$, and there are $\left|H: H_{1} F\right|$ such summands. It follows that

$$
\begin{aligned}
r_{H}\left(k H \otimes_{k F} L\right) & =\frac{1}{\left|H: H_{1}\right|} r_{H_{1}}\left(\left(k H \otimes_{k F} L\right)_{H_{1}}\right) \\
& =\frac{\left|H: H_{1} F\right|}{\left|H: H_{1}\right|} \operatorname{dim}_{k} L \\
& =\frac{\operatorname{dim}_{k} L}{|F|}
\end{aligned}
$$

Pick L to have k-dimension 1 ; then $r_{H}\left(k H \otimes_{k F} L\right)=1 /|F|$, and this is some multiple of $1 / n$, so n is divisible by the order of each finite subgroup. Let M be a $k H$-module with the property that $k(H) \otimes_{k H} M$ is a simple $k(H)$-module, so $r_{H}(M)=1 / n$. Moody's Theorem implies that

$$
r_{H}(M)=\sum_{i} \pm r_{H}\left(k H \otimes_{k F_{i}} L_{i}\right)
$$

for certain $k F_{i}$-modules L_{i}, where the F_{i} are finite subgroups of H. Then

$$
1 / n=\sum_{i} \pm \operatorname{dim}_{k} L_{i} /\left|F_{i}\right|
$$

and it follows that n divides $\operatorname{lcm}\left|F_{i}\right|$. This completes the proof.

References

1. J.A. Moody, Induction theorems for infinite groups, Ph.D. Thesis, Columbia University, 1986.
2. D.S. Passman, The algebraic structure of group rings, Wiley-Interscience, New York, 1977.
3. D. Quillen, "Higher algebraic K-theory: I" in Algebraic K-theory I, Lecture Notes in Mathematics, no. 341, Springer, Berlin, 1973, pp. 77-139.
4. S. Rosset, "The Goldie rank of virtually polycyclic groups" in Groupe de Brauer, Lecture Notes in Mathematics, no. 844, Springer, Berlin, 1981, pp. 35-45.
5. R. Swan, Algebraic K-theory, Lecture Notes in Mathematics, vol. 76, Springer, Berlin, 1968.

University of Alberta

Edmonton, Canada

