
ILLINOIS JOURNAL OF MATHEMATICS
Volume 32, Number 3, Fall 1988

SWAN MODULES AND ELLIPTIC FUNCTIONS

BY

ANUPAM SRIVASTAV

Dedicated to the memory of Irving Reiner

I. Introduction

The normal basis theorem for a finite Galois extension N/L states that N
as an L-vector space has a basis of the form (a ), where a is a fixed dement
of N and , runs over the Galois group Gal(N/L) I’. In other words, N is a
free rank one LF-module. The analogous question for the rings of algebraic
integers, (9N in N and L in L, is the well-known normal integral basis
problem. In fact, t is an -module where

s’= ( x LF" (gux
_
ON ),

the associated order of the extension NIL in LF. Thus the best possible result
would be that #s is -free.

Abelian extensions of Q are contained in cyclotomic extensions. Leopoldt
[4] has shown that in the case that L Q and F is abelian, 0s is, indeed,
-free. Furthermore, he has described the order g explicitly. In the relative
case, where both L and N are cyclotomic fields we have the following result
[1, Chapter I].

PROPOSITION (1.1). Let m, r be positive integers such that m divides r. Let
N Q(’), L Q(.m) where is a primitive mr-th root of unity in C. Let
F Gal(N/L) and zg be the associated order of N/L in LF. Then, (9 is a

free rank one -module.
Abelian extensions of a quadratic imaginary number field are obtained by

adjoining singular values of certain elliptic functions. In [10], M.J. Taylor has
obtained elliptic analogues of (1.1) for certain Kummer extensions with
respect to an elliptic group law. Taylor showed that the ring of algebraic
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integers is free over the associated order if, and only if, a certain elliptic
analogue of a Swan module is a principal ideal of the associated order. In this
paper we use transcendental means to settle the algebraic question of the
freeness of this elliptic Swan module. We find an explicit generator for the
square of this elliptic Swan module in quite a general case. This generator is a
product of elliptic resolvent elements.
For a number field M, we continue to write (.0M for its ring of algebraic

integers. Let K be a quadratic imaginary number field with discriminant less
than -4. Moreover, assume the prime 2 splits in K/Q. Let ; ,(.0: denote a
non-ramified, principal prime ideal of 0r, where 1 mod 4(.0r. We fix
positive integers r >. m and let N (respectively, L) denote K ray classfield

mod4?m+r (respectively, 4r). As before, we write F Gal(N/L) and
denotes the associated order of N/L in LF.
We remark at the outset that F is an abelian group so that LF is a

commutative L-algebra. The restriction on the discriminant implies that the
group of units Oc of K is ( + 1 ). Moreover, the restriction on implies that/
is completely split in K(4), the K ray classfield mod 4r. In [1], Ph. Cassou-
Nogurs and Taylor have described N as a Kummer extension over L with
respect to an elliptic group law.
For any commutative ring R we write (a, b)R for the ideal aR + bR. Let

,h n Z (p) for an odd rational.prime p. For s Z with p s, we define a
locally free ag-ideal, I (s, k-mE)M, where E Every/. The ideal I is
called an elliptic Swan module since it is a natural elliptic analogue of the
Swan module (s, E)ZF for the integral group ring ZF. In [10], Taylor has
shown that d)v is at-free if, and only if, the elliptic Swan module 12 is a
principal M-ideal.

In case the prime p splits in K/Q Taylor showed in [9] that dN is a free
ag-module of rank one. The main result of this paper is:

THEOREM (1.2). If p is inert in K/Q and p-- _lmod8 then 12 is a

principal ideal of the associated order .
Remark (1.3). In general, whether or not 12 is a principal ’-ideal in the

case that p is inert and p +_ 3 mod 8 remains an open question. The only
two cases known to the author for which there is a definite answer are:

(i) m 1.
(ii) m- 2, and p2 is a Wieferich square, i.e., 2 p-l= l modp2. An

example of such a prime is p 1093.
In both cases 12 is a principal at-ideal. Also see (2.3).

Remark (1.4). The author would like to thank M.J. Taylor and S.V. Ullom
for their kind help and suggestions. The author is also grateful to D.R.
Grayson for pointing out the geometry of the Fueter model (cf. 4).
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2. Swan modules

We keep the notation of 1 and view s as a Z-order in the Q-algebra LI’.
For each integer s relatively prime to p, the usual Swan module for the

integral group ring ZI’ is defined to be the ZF-ideal (s, X)ZI’. Since I’ is a
p-group and (s, Y.)ZpF ZpI’, (s, X)ZF is a locally free ZF-ideal. Thus
(s, E)ZF determines a class [s, ] in gd(ZI’), the locally free class group of
ZI’. In fact, the Swan classes lie in the kernel group D(ZI’), and the set of all
Swan classes [s, ] with p s, s Z forms a subgroup T(ZI’) of cgd(ZI’). We
call T(ZF) the Swan subgroup of cgd(ZI’). We refer the reader to [13] and [8]
for the properties of the Swan subgroup. Swan modules were first considered
in [6].
The elliptic Swan module I and the usual Swan module (s, Y.)ZF are

related by the following.

LEMMA (2.1). Ifp S for s Z, then I

Proof. Since I
__

(s, Y.)M’, it suffices to show the equality locally at each
prime ? of d9L. Let ? be a prime of dPL. Then

z if s,
(Is)= (s, Y.) if 9’Is.

On the other hand, (s, E)z q if ? s.

The change of rings ZF --, induces a group homomorphism cgd(ZF) ---,

Wd(). The kernel group D(ZF) is mapped into the kernel group D(..)
under this homomorphism. We set T(ec, Z) to be the image of the Swan
subgroup under this map. We call T(s’,Z) the elliptic Swan subgroup of
cgd(). Let us denote by [Is] the class determined by the elliptic Swan
module I in d(). By (2.1) we see that T(C,Z) is the subgroup of all
elliptic Swan classes in cgd(). The addition in T(ZF) is given by [s1, Y.] +
[s2, X] [sls2, Y.] for s1, s2 Z with p SlS2. Therefore, [Isx] + [Is2] [Isxs2]
in T(, Z). We note that since is a commutative order an -ideal I is
principal if, and only if, [Is] 0 in T(, Z).

PROPOSITION (2.2). (i) Ifp splits in K/Q, then T(, Z) 0. In particu-
lar, I2 is a principal -ideal.

(ii) Ifp is inert in K/Q, then T(s/, Z) is a p-group and lT(d, Z)I _< pEru-1.

Proof. (i) In this case F is a cyclic group and by [6] we obtain
T(, Z) 0.

(ii) In this case F is a non-cyclic p-group of order p2m; by Taylor’s
theorem (cf. [9]) we obtain T(ZI’)I p2’-.
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Remark (2.3). In fact, in case p is inert in K/Q it can be shown that
IT(, Z) < pm-1. This is the basis for (1.3).

3. Galois module structure

We continue to keep the notation of {}1. From (26.3) in [2] we know that an
order in an algebra is determined by all its localizations (completions). In [10]
Taylor has described all the localizations of the (.0L-order s/ in LF. Forany
non-zero prime ideal of dL with ’n Z (l), we fix an embedding of Q, a
fixed algebraic closure of Q, in Qz, a fixedalgebraic closure of Qt, so that_it
corresponds to g’ for L. For a fixed M c Q we write M’ for its closure in Qt-

In case ’1, the local associated order has been shown by Taylor to be
amenable to the description in [11] by a Lubin-Tate formal group law. To be
precise, there is a Lubin-Tate formal group law F over dr, so that L’ K’(or),
N’ g’(gOm+r) where 0n denotes a primitive fin-division point of F for each
n>0.
The Artin map of global class field theory induces a group homomorphism

(3.) r _-- 1 +/k’dc, ,"
1 + )’m+rK, m+r

Let G be the group of fire-division points of F. Then there is a group
isomorphism

(3.2) a )-m/K.

We set E )K/)/tm, a finite ring. We view F and G as E-modules via (3.1) and
(3.2). Both are free E-modules of rank one. We write the E-actions on F and
G exponentially as ,Iel, gtel for TF, g G and eE. Let T be an
E-generator of F and 0 om a primitive fire-division point of F, i.e., an
E-generator of G. From [11] and [12] we see that ’N’/Z’, the associated order
of N’/L’, can be described as an dPz,-module by

qm--2

(3.3) N’/’ Oz," 1r +
i--0

where

(3.4) [e]_ lr ) "/N’/L’ for > 0,

and q IOK/I.
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We obtain the following characterisation of z’ from [10].

PROPOSITION (3.5). The associated order t is described locally for each
prime of (.9L as follows:

co,,r if#,= u,/, if

where N’/L’ is as in (3.3).

As a corollary, in [10] it is shown that 60N is a locally free -module.
Moreover, it is easy to see that X-mE a so that the elliptic Swan module
is an -ideal for each s Z, p s.

For an element x Earaaa LF we define its antipode by Y
y,.a va8-x. From (3.5) we obtain as in [12]"

COROLLARY (3.6). If x sel, then f.

Next, we set N (-’0L + 2dgN, an C0L-order in N. From [10] we obtain that
U is a free ’-module of rank one. In addition, U (’0L" 12" Therefore, we
have the following (of. [10]).

PROPOSITION (3.7). The ring of algebraic integers 0N is a free t-module if,
and only if, 12 is a principal -ideal.

4. Fueter’s elliptic functions

Let f Z0 + Z2 be a lattice in the complex plane with im(l/2) > 0.
Let us denote by n the usual Weierstrass -function (for f):

(4.1) n(z) =z-9-+ E {(z-0) -2-w-2}.
of\0

We shall simply write for whenever f is clear from the context. Let us
fix 2.
The Weierstrass -function and its derivative ’ are elliptic functions (for

f) and there is an isomorphism called the Weierstrass model

(4.2)

where 6: y2= 4x g2x_ g3 is an elliptic curve and the above isomor-
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phism is given by

[ ((z): ’(z)" 1),
z

(0" 1: 0),

and g2 g2(), g3 g3() are defined as usual.
Let c, d be two constants satisfying

(4.3) 4d3 g2d g3 0, 4c4= 12d 2

Then c 4:0 and we get f 12dc -2. The change of variables

(x, y) (c2x + d, c3y)

on the affine equation of o gives an elliptic curve dl y
and there is an isomorphism

’:’-= 4x + fx 2 + 4x,

(4.4)

given by

-2(#(z)-d)’c-3’(z)’l), z q ft,
z

(0" 1 0), zeg.

The addition formula on the elliptic curve 1 (cf. [5]), shows that there is a
non-zero point Q of order 4 in d’l such that

(4.5) x(Q) 1, x(2[Q]) 0.

Moreover, for any point P in 31, P 4: 0, 2[Q],

(4.6) x(P + 2[Q]) (x(P)) -1,

y(P + 2[Q]) -y(P)(x(P)) -2.

We let P P + 2[Q] on 31. This induces a change of variables

(x, y) (x -1, -yx-2).

Therefore, we obtain an isomorphism

C/a _7, do(f)
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given by

-’
z

(0" 1 0),
-c#’(z)((z)-d) -2"1), #(z) 4:d,

where d(f) y2 4x + fx 2 + 4x is an elliptic curve with the identity of the
group law at the origin 0 (0" 0" 1).

Let k be a primitive 4-division point of C/f that corresponds to Q in 31.
Then from (4.4) and (4.5) we obtain

(4.8) d (2q), c2 9(k) 9(2).

Conversely, let 6 be any primitive 4-division point of C/ft. We set c and d to
be constants given by (4.8), then c and d satisfy (4.3).

Let us now fix a primitive 4-division point tk of C/f. Let c and d be given
by (4.8). We set a complex number ’ f. We define the Fueter elliptic
functions T, T1, by

(4.9) T ( z ) ,() ,(2q,)

Fueter first defined these functions in [3].
Let oq, y2 4x + qx + 4x be an elliptic curve with identity of the

group law at the origin 0 (0" 0"1). From (4.7) and (4.8) we obtain an
isomorphism called the Fueter model,

(4.10) " C/f $o,,

given by

li(z) { (T+(z)" 1’(z)
1"0)

We also note the j-invariant,

(A(o+) + 16)

where A(gq,) #- 26. Moreover, the discriminant is 4A(q,). In the sequel
we shall write ’ gq,, T T+ etc. whenever p is clear from the context. We
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now fix q. We set

We note the following properties of Fueter functions.
First, from (4.6) we obtain

(4.11) (inversion formula) T(z)T(z + 2q)= 1.

Second, we note from [1, Chapter IV] that

(4.12) (addition formula)

r(u+ o)= [D-(u) + D-(o)]2T(u)T(o)
411- T(u)T(o)]

and

(4.13) (difference formula)
[T(u) T(o)12[T(u + o) T(u- o)] T(u + o)T(u- O)Tl(U)Tx(o ).

From now on we shall take f d9r. Then o, has complex multiplication
by dgzc. From [1] we know that ’ is an algebraic integer. Since 2 splits in K/Q,
there is a primitive 4-division point k on C/tPr such that 2k has annihilator
2tOzc. We shall take this particular 4-division point k in defining o,, ’,, T,
etc.. In this case from [1, Chapter IX] we know that ,2 26 is a unit in K(4),
the K ray classfield mod 4dzc and K(’) K(4).
We next note the following result on the singular values of T and T1 (cf. [1,

Chapter IX]).

PROPOSITION (4.14). Let fl be a primitive S-dioision point of C/F, where s
is a positive integer. Then"

(i) T(/) z,,.
(ii) T(fl) K(8fs).
(iii) Gx4,) + +)]. Moreover, T(fl + ) is a unit in K(4;ks).
(iv) TI(fl + ) is a unit in Q.

Remark (4.15). For (4.14) (iv) we need the fact that ,2 26 is a unit.

5. The resolvent element

We keep the earlier notation. From now on we shall also assume that/ is
inert in K/Q, so that we may take , p. The group of p"-division points of
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C/f is a rank one free E-module. We again write the E-action on this group
exponentially. Let us denote by ot, 0.2 the non-zero 2odivision points of
distinct from 2
We define a group homomorphism ,It given by the composite

(5.1) E+ ( (Z//pmZ) + exp

where exp(k mod pro) e2ri(k/pm) for k Z.
Abel’s resolvent function R, for # E is defined by

(5.2) R,(z) Z D(z + ae)xp(2#e)
eE

for z C.

We set A p-m and view q (respectively, 0.t, 0"2) as a 4-division point
(respectively, 2-division points) of C/A. There is an elliptic analogue of the
Gauss sum conductor formula (cf. [1, Chapter VI]):

PROPOSITION (5.3). Let I E.
(i) If O, then Ro(z ) pmD(pmz).
(ii) If 4: O, then

R.(z)R
2 A(Z + 2kq)- A(0)_,(z) p2mD2( pmz ) I-I

where 0 is a non-zero pro-division point of C/A and depends on Ix.

Let 7 be an E-generator of F.

DEFINITION (5.4).
by

We define the resolvent element p associated with a and

p=p eE D ( Ole " ) [e]
D ( pmp ) "Y

We shall call the element p the conductor element (associated with a and 7).
We note the following instance of Shimura’s reciprocity law (cf. [10]).

PROPOSITION (5.5). Let (-, K) denote the Artin map of the global class
field theory. Let fit, fiE be points offinite order of C/ which are not 2-division
points. Then for a unit idele u K with u I mod 4Ok,

(u-1, K) D(u. th)
D(u" fl )

with the natural action of unit ideles of K on points offinite order of
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COROLLARY (5.6). With the above notation, for each e E,

+ ,I,)
D(q,,)’ D(pmr,)

From (4.14) we deduce that D(ae+ k) is a unit in Q for each e E.
Moreover, since

xD2(p"k) D2(k) (’+ 8) -1 (.0K(4)

in view of the above corollary we obtain:

LEMMA (5.7). The resolvent element p is such that prop d?LF"

We shall now define an irreducible character of the abelian group F for each
/ E. Let/ E. We define a group homomorphism

(5.8) X.: F --* C x

by

X(ytel) =q(2e) foreE.

Since K/Qp is unramified, it follows that the irreducible characters of F
are precisely X, E. Next, we note that for any x F, we have

(5.9) x E X(X)ex,
/E

where ex, is the idempotent associated to X given by

ex, P-" E Xt,(8-) 8.

By class field theory, L is a splitting field for F, i.e.,

LF= L.e

We now observe that

(5.10) X(P) =p-m D(p’)
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Therefore, from (5.3) we deduce

(5.11) fi #A(k + 2ktk) #A(0)

1 if/ =0

where 0 is a non-zero p’-division point of C/fl which depends on/.
In 6, using q-expansions, we shall show that

1 iI 9A(6+ 2kk)--#A(0) isaunitinO(5.12) a, "" A(Ok) iA( 0 )k=l

This implies that

(5.13) p ex0 + 4 a,ex,
EkO

where a, is a unit in L.
Let ’ be the unique maximal OL-order in LF. Then

(5.14) = OL.ex.
/E

PROPOSITION (5.15). For the maximal order all[ in LF, we have

(4, p-"X)t’ p/’.

Proof. From (5.13) and (5.14) we see that

pt’ (.0L. exo + 4

On the other hand,

(4, p-my)g (40L + pmOL).ex +4 (gL’eX

and 4d)L + pmOL (L"

For the next proposition let J_ denote the localization (not completion) of
an ideal J of ’ at prime ? of (L.
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PROPOSITION (5.16). If the conductor element p lies in s’ then 14 p’.

Proof Let p sO. Since 14, p’ are both ideals of it suffices to show
equality locally.

Let be a prime of 0L. If ? +/ then OL,F z so that z z, and the
equafity follows from (5.15).
Now assume that ?lfi. In ts case, (I4) _, and from (5.15) we obtain

x x implying that p .p. Therefore, p
v

COROLLARY (5.17).
principal -ideal.

If the conductor element p lies in , then 12 is a

Proof From (5.16) we see that the elliptic Swan class [/4] is trivial in the
elliptic Swan subgroup T(C,Z). Thus, the order of the Swan class [I2] is
either 1 or 2. By (2.2) T(, Z)I is odd, hence [I2] 0 in T(, Z).

In 8 we look at the question of the conductor element p being in the
associated order

6. q-expansions

Let be the upper half plane of complex numbers. We let/;* =/ U Q U
(o0 }, the completion of ,. Set I’ SL2(Z). We remark that in this section
only, F does not denote a Galois group. We view each F as a linear
fractional transformation on $* given by

az+b [ab]" ( z ) cz + d where,,=
c d

For a complex valued function f, , I’, z C we write

fir(z) f(,(z)).

DEFINITION (6.1). Let A be subgroup of F of finite index. Let f be a
meromorphic function on . We call f a modular function for A if

(i) fl- f for 8 A, and
(ii) f is meromorphic at every cusp of A.

For a fixed positive integer n we set

r(n)=( a b I F’a=-d---lmodn; b--c--0modn),
the principal congruence subgroup of level n. A meromorphic function f is a
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modular function for I’(n) if, and only if,

(6.2) fir is meromorphic at the standard cusp o for each 3’ F, and
(6.1)(i) holds.

Moreover, by standard theory, f is meromorphic at the cusp o if, and only if,
f has a Laurent series expansion with finitely many polar terms in q/" where
qz eg-iz- We call this Laurent series the q-expansion of f at the standard
cusp o. In general, the q-expansion of a modular function f for F(n) at a
cusp s is defined to be the q-expansion of fly at where ,/ F is such that

Let ’n be a primitive n-th root of unity in some fixed algebraic closure Q of
Q. We define the ring Sn by

S Z[’]((q/)).

We have the following q-expansion principle from [1, (5.5), Chapter VII].

PROPOSITION (6.3). Let and Z, + Z be a lattice with complex
multiplication. Let f be a modular function for l’(n) which is finite on .

(i) If the q-expansions off at all cusps of F(n) lie in S, then f(,) is an
algebraic integer.

(ii) Moreover, if the q-expansions__off at all cusps lie in Sx andf is non-zero
on , then f(,) is a unit in Q.

For f, g Sn, we write f- g whenever f gh, h Sx. Moreover, for two
modular functions f, g for F(n), we write f -- g whenever their q-expansions
at each cusp of F(n) are -equivalent. We note that both and -- are
equivalence relations on S, and modular functions for F(n) respectively.
Furthermore, if f-- g for F(n), then f g for F(nk), k > O.
We fix some notation. Let x (Q/Z)2. We view x as x (xl, x2) where

xi [0,1) for 1,2. For non-zero nZ-division points a (Q/Z)2, with
1 < < 4 and a + a 2, a +_ a a, we define a modular function for F(n)
which is non-zero and finite on by

(6.4) Fill, 112,113,114 ( , )
(11 [ tall

where z 1/2 ( , z fz and fz Z0 + Z2 is a lattice in C. Often
the function F(z) is called a Weierstrass modular unit.
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Next, let d (Q/Z)(2) be a primitive 4Z-division point. We set

(6.5) ’(z)

Then we define

(6.6) da(z ) 4(z) 26"

From (1.2), (1.7) of Chapter VIII of [1] we obtain"

PROPOSITION (6.7). Let d be a primitive 4Z-division point in (Q/Z)(2). Then
is a modular function for F(4). Moreover, the q-expansion of qa at is
-equivalent to

1 if 2d 4: 0,

212 if 2d 0.

Now we note the following result on the q-expansion of the Weierstrass
-function (cf. (3.2), Chapter VIII [1]).

PROPOSITION (6.8). Let a be a primitive n Z-division point in (Q/Z) (2). We
set , e2’i/". Then in the q-expansion of (2ri)-2z(a) 1/12, the leading
term is

nna2(1 nna2) -2
na2q al

,aq-a
(2naz "-I" nnaZ ) ql/2
-6q

if a O,
/f0<a1< 1/2,

if 1/2<a <1,

if a 1/2 and n 4: 4,

/fa 1/2 and n 4.

Moreover, all subsequent coefficients in this q-expansion lie in Z[’,,].

Let m > 0 be a fixed integer. Let b be a non-zero pmZ-division point of
(Q/Z) (2). Let d be a primitive 4Z-division point of (Q/Z)(2). Let c(1), c(2) be
non-zero 2Z-division points of (Q/Z)(2) distinct from 2d. We define a modular
function Ea, b for F(4pm) as follows"

2 2

(6.9) E,b I-I F+2k,,,c(k), I-I F+(k),,(k),,.
k--1 k=l
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We now use (6.8) to show the following.

PROPOSITION (6.10). Let b be a non-zero pmZ-division point of (Q/Z) (2)

and let d be a primitive 4Z-division point of (Q/Z) (2) Then E 2 = 2aq
Proof By abuse of notation, we shall write f for the q-expansion of a

modular function f at a given cusp. We must show that E 2 28qd at each
cusp. For 3’ F,

Ed, blr Ed-e,b, qbdlr d"

Moreover, d, is a primitive 4Z-division point and b, is a non-zero pmZ-divi-
sion point in (Q/Z) (2). Therefore, in view of (6.2), it suffices to show that for
all choices of primitive 4Z-division points d’ and non-zero pmZ-division points
b’ in (Q/Z) (2),

(6.11) En,,b, 28q at the standard cusp c.

For convenience we write d for d’ and b for b’. From now on a q-expansion
means a q-expansion at the cusp oo. From (6.8) we find the leading coefficient
in the q-expansion of (2ri)-2(z(d) z(b)) to be

(6.12)

1 if b 0, dl 0,
_

r/(1 )-2
12 if b O, dx O,

-n(1 n) - if b O, dx O,
root of unity in Z[i, n] if bl O, dl : O,

where rt 4:1 is a pm-th root of unity. Furthermore, all subsequent coefficients
are in Z[i, r/].

Similarly the leading coefficient in the q-expansion of (2ri)-2((t) (b))
for a non-zero 2Z-division point in (Q/Z) (2) (cf. (3.6), Chapter VIII [1]) is

(6.13)

(1 )--4- -rl if b O, fl= O,
_! ifbx : O, fl= 04

-(1 i) -2 if b O, f O,
root of unity in Z[rl] if bl : O, fl O.

We also note that all other coefficients are in Z[r/].
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From (6.12) and (6.13) we obtain

2

(6.14) I-I
k=l

4 if2d g: 0,

1/4 if d 0,

1 if d 1/2.

Now let e be a non-zero 2Z-division point in (Q/Z) (2) distinct from 2d. We
write h d + e. Then 2hl, 0 if, and only if, 2d 0. Moreover, h 0 if,
and only if, d 1/2. We also observe that the set (h, h + 2h) equals the set
(d + c(1), d + e(2)}. Therefore, using (6.14), we see that

2

(6.15) I-I Fa+<k),,,<k),t,
k=l

4 if2d #: 0,

1/4 ifd=1/2,
1 if dx 0.

Combining (6.14) and (6.15), we obtain

2 if 2dl #: 0,
(6.16) Ed’b 2 -2. if 2d 0.

From (6.16) and (6.7), we immediately see that E 2

(6.11).
---28a-. This proves

COROLLARY (6.17). With the notation above, the q-expansions of

2-12 (2 )6k=l

at all cusps of F(4p’) lie in S4pm.

Proof. This follows from (6.14) and (6.7).

The purpose of q-expansion results (6.10) and (6.17) is to show (5.12).

THeOReM (6.18). With the notation of 5, we have

2 ( + 2k6)FI
k==l

where d) is the ring of integers of Q.
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Proof Let f 0r Zto + Zto2. Then A p-rod)K Zk + Zk2, where
Xk P-mtOk for k 1, 2. We make the following specialization in applying
the q-expansion principle (6.3) to (6.10) and (6.17)"

=,1/2, d,)
2

=k, b

Then

c(k) 2 ok for k 1,2;

this may require rearranging the ordering of (01, 0"2 }. Let h d + c(1). Then

(6.19) ,h(,r) d(r ) ,2_ 26"

We recall from 4 that since 2 splits in K/Q, the choice of k implies that
a(r) is a unit in Q.
Now, applying the q-expansion principle (6.3)(i) to (6.17) with 4-division

points d, h, we obtain

(6.20) I1 A( + 2kp) A(O) "A(6 + k) "A(e)
g=l A(%) "A(e) =1 A(Ok) A(e ) 45.

Similarly, applying the q-expansion principle (6.3)(ii) to (6.10) with the
above specializations, we obtain

(6.21)
2 A( + 2k) ,A(e) I A(6 + O,) A(e)rI

k=l

16(.0x.

We combine (6.20) and (6.21) to get the desired result.

7. The formal group associated with the Fueter model

We keep the notation of 3 and [}4. Let us consider the elliptic curve of the
Fueter model (4.10):

(7.1) +. y2 4x + x2 + 4x

where the identity on is taken to be the point at the origin 0 (0" 0"1).
We look at locally at ; and denote this elliptic curve by ’. We fix an

embedding of Q in Q, so that it corresponds to for K. For a field M __. Q
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we write M’ for its closure in Q,. We observe that K’= K(4)’, since is
completely split in K(4). We also recall that K(4). Now ’ admits
complex multiplication and has good reduction modulo
We shall simply write (x, y) for a point on g’ with projective coordinates

(x: y:l). Let us denote by ; the kernel of reduction of ’ modulo . We
know from [7] that there is a formal group law F on 0’ with the parameter

2x

on F associated with the point (x, y) of 0’- Moreover,

(7.3) x t2a(t2), y 2ta(t 2)

where a(t) d)r,[[t]] and a(0) 1. In [1] it is also shown that F is, in fact, a
Lubin-Tate formal group law defined over (PK, for a uniformizing parameter
p’

Let s be a positive integer and let /3 be a primitive p-division point of
C/dg:. Then:

(7.4) (T(fl), T(/3)) 600 and the parameter 2D(fl) on F associated with
this point is a primitive p-division point of F.

We recall from (4.14) that D(fl) K(8/s).

LEMMA (7.5). If p---- + 1 mod 8 and fl is a primitive pS-division point of
C/f for a positive integer s, then K’(D(fl)) K(4fi)’.

Proof. We know that

(gt(o())" gt) (p2 1)p2(S-1) (g(4]s)t" gt).

Furthermore, D(fl) K(8#) K(4//’)’, since p + 1 mod 8.

Remark (7.6). This lemma shows that for p + 1 mod 8 we can use the
Lubin-Tate formal group law associated with the Fueter model to describe the
local Galois module structure by (3.3). Moreover, for a primitive pm-division
point a of C/(.0r, 0 2D(a) is a primitive pro-division point of F.

PROPOSITION (7.7). Let a be a primitive pro-division point of C/(K. Then,
there exists b( X) dr,[[ X]] such that

D(ae + d/) b( D(ae)
D( d/ ) D( ) fore E.

Moreover, b(O)= 1.



480 ANUPAM SRIVASTAV

Proof. Let z C/ft be such that (T(z), Tl(z)) . We consider

and use the difference formula (4.13) with u z + and v q to obtain

(7.8) D(z+) T( z + / ) T( z ) T2( / )
[T(z + /)- 1][1 TZ(z)]

Expanding T(z + ) by the addition formula (4.12), and in view of (7.2), (7.3)
writing

(7.9) t(z) 2D(z), T(z) t2(z)a(t2(z))

where a(X) Or,[[X]] with a(0)= 1, we obtain

(7.10) D(z + ) f(t(z))
D() g(t(z))

where

f(X) 4T12(g/)X2a2(X2)[2 + Tl(q)X]Z[1 X2a(X2)],

g(X) [(2 + Tx(q)X}2- 4(1 X2a(X2)}21211 + X2a(X2)].

We now write

Then

D(z) and (t’) 2 (/+ 8) 2t’(z) D(/) 4

xSince /2 26 OK(4 and p is odd we see that (/+ 8)/4 (.9,. Therefore,

(7.11) f(t) 16(t’)Zfl(t’), g(t) 64(t’)v-gl(t ’)

where fl(X), g(X) 0/c,[[ X]] with fx(0) 4, g(0) 1.
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Taking the inverse of the formal power series g(X) in tVr,[[ X]] and noting
that 4 d.,, we have shown

where b(X) 0r,[[X]] and b(0) 1.
The proof is now completed on taking z ae for each e E.

8. p +lmod8

We keep the notation of earlier sections.

THEOREM (8.1).
associated order ’.

If p + 1 mod 8, then the resolvent element p lies in the

Proof From (5.7) it suffices to show that p aCz whenever ? is a prime of
0 such that

Let ? be a prime of (0z. such that ?1- We fix an embedding of Q in Qp so
that it corresponds to v over N where ?v is the unique prime of (9v with

?v tq Oz. ?. We see that this embedding corresponds to ? over L and over
L’ LK. With the notation of {}7 we have that N’ NzN z and K K,

Since p + 1 mod 8 we note from (7.6) that the local Galois module structur%
of N’/L’ can be described by the Lubin-Tate formal group law associated
with the Fueter model (4.10).

Let et be the primitive pm-division point of C/d)r and let 3’ be the
E-generator of F for which the resolvent element p is defined in (5.4). We
write

(8.2) o 2D(a).

Then oa [e] 2D(ete) for e E and oa is a primitive pm-division point in F.
From (3.3) and (3.5) we obtain

p2m 2

(8.3) agv’/z.’ Or" lr + E (Oz.’ "i
i--0

where

Oi =p-m E (td[e])i(’Y [e] lr)
eE

for >_ 0.
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Now

D( te + d/ ) Ro( d/ )eE )( -pm ) p -m D ( p )",l’
1o

Therefore,

p-1r eE D(te + if (t[e] lr)P " D(p%k)

Since D is an odd function and pm e(pm) in C/fa where e(pm) +__ 1,
we obtain

P- lr e(pm)p-m E
eE

D(ole + lit ) (.}t[e]- lr)D(q)

Using (7.7), we see that

(8.4) p- 1r
0ale )=e(pm)p-meEb 2D()(Y[e]--lr)

where b(X) (.OK,[[ XI] and b(0) 1.
Since D(a)/D() K(4#m) c_ L, D(a) L’ and D2(k) (g + 8)-

0(4) we see that 2D(k) 0,. Thus, we may rewrite (8.4) as

(8.5) O-lr=e(Pm) P-’( ESi(oote])i)([ re]- lr)
eE i>O

where s 0L, for > 0. Rearranging terms, we obtain

(8.6) 0- lr e(Pm) E SiOi
i>0

where si (_9L, for > 0. Since o sgz for > 0 and limn__,o % 0 in LF,
we see that p

Finally, we obtain the main result (1.2).

Proof of (1.2). In view of our previous results, in particular, (5.17) it
suffices to show that p a. In (8.1) we proved that p a/ for p
+ 1 mod 8. From (3.6) we deduce that in that case a/. This completes the
proof of (1.2).
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