SOME GEOMETRIC CONSEQUENCES OF THE WEITZENBÖCK FORMULA ON RIEMANNIAN ALMOST-PRODUCT MANIFOLDS; WEAK-HARMONIC DISTRIBUTIONS

BY
A.H. Rocamora ${ }^{1}$

0. Introduction

In this paper, we prove some geometric consequences obtained from certain linear relations among linear invariants of Riemannian almost-product manifolds. We also define and study weak-harmonic distributions.

In Section 1, we obtain a consequence of the Weitzenböck formula, (Theorem 1.2), which will be used in the next section.

Section 2 begins with general concepts on Riemannian almost-product manifolds.

A Riemannian almost-product manifold is a triplet (\mathscr{M}, g, P), where (\mathscr{M}, g) is a Riemannian manifold and P is a (1,1)-tensor field on \mathscr{M} satisfying $P^{2}=I$ and $g(P M, P N)=g(M, N), M, N \in \mathscr{X}(\mathscr{M})$. The eigenspaces of P corresponding to the eigenvalues 1 and -1 , at each point, determine two distributions \mathscr{V} and \mathscr{H}, respectively called vertical and horizontal.

Next, we get a linear relation among linear invariants of Riemannian almost-product manifolds, (Theorem 2.8), by using Theorem 1.2, from which we deduce some geometric consequences. Among these it is necessary to note that:

Theorem. A Riemannian almost-product manifold (\mathscr{M}, g, P) with nonnegative sectional curvature in which \mathscr{V} and \mathscr{H} are foliations whose mean curvatures, restricted to each horizontal and vertical leaf respectively, have zero divergence, is necessarily locally a product.

[^0]One thus generalizes two results obtained in [1], where this conclusion is proved, when \mathscr{V} and \mathscr{H} are both foliations with minimal leaves, or both totally umbilical foliations with mean curvatures as in the theorem.

It is shown in [12] that one cannot find two complementary and orthogonal totally umbilical foliations on compact Riemannian manifolds with non-positive sectional curvature, unless each one of them is 1-dimensional or a totally geodesic foliation. As a consequence of Theorem 2.8, we get, in Corollary 2.11, an improvement of this result for non-integrable distributions.

In the last section we generalize the concept of harmonic foliation that appears in [7] and [8]. The distribution \mathscr{V} of a Riemannian almost-product manifold is said to be weak-harmonic if the canonical projection $h: T \mathscr{M} \rightarrow \mathscr{H}$ from the tangent bundle onto horizontal bundle is an \mathscr{H}-valued 1-form orthogonal to $\Delta^{\mathscr{H}} h$, with $\Delta^{\mathscr{H}}$ the Laplacian operator induced by the following connection on \mathscr{H} :

$$
\begin{aligned}
& \nabla_{A}^{\mathscr{H}} X=h[A, X], \quad A \in \mathscr{V}, X \in \mathscr{H}, \\
& \nabla_{Y}^{\mathscr{H}} X=h\left(\nabla_{Y} X\right), \quad X, Y \in \mathscr{H},
\end{aligned}
$$

where ∇ is the Levi-Civita connection of \mathscr{M}.
We prove that some of the main results of [8] on harmonic foliations (Corollary 2.27, Theorem 2.34) remain valid for weak-harmonic distributions. (On the other hand, these results are consequences of Theorem 2.8.) Furthermore, we show some new results about weak-harmonicity, among which are the following:
(i) A weak-harmonic distribution with the property AF (Definition 2.3) is a totally geodesic foliation.
(ii) Let (\mathscr{M}, g, P) be a Riemannian almost-product manifold with nonnegative sectional curvature in which the horizontal distribution is a foliation with minimal leaves. Then, if the distribution \mathscr{V} is weak-harmonic, the manifold is locally a product.

All geometric objects considered throughout the paper will be of class C^{∞}.
The author wishes to thank V. Miquel and A.M. Naveira for useful comments.

1. A consequence of the Weitzenböck formula

Let (\mathscr{M}, g) be an n-dimensional Riemannian manifold and \mathscr{E} a vector bundle over \mathscr{M} with a covariant differentiation D.

We shall denote $\Lambda^{p}(\mathscr{E}, \mathscr{M})$ the vector space of all \mathscr{E}-valued differential p-forms on \mathscr{M}.

It is a well known fact that the covariant differentiation D induces the following operators on \mathscr{E}－valued p－forms：the covariant differential acting on forms，D ，the exterior differential operator，d^{D} ，the exterior codifferential， δ^{D} ，and the Laplacian operator，Δ^{D} ．

Furthermore，if \mathscr{E} is a vector bundle over \mathscr{M} with a metric $\langle, \quad\rangle$ ，we have on $\Lambda^{p}(\mathscr{E}, \mathscr{M})$ the metric induced by the metrics \langle,$\rangle and g$ ：

If $\theta, \eta \in \Lambda^{p}(\mathscr{E}, \mathscr{M})$ ，then $\langle\theta, \eta\rangle$ is the function on \mathscr{M} given by

$$
\langle\theta, \eta\rangle(x)=\frac{1}{p!} \sum_{i_{1}, \ldots, i_{p}=1}^{n}\left\langle\theta\left(e_{i_{1}}, \ldots, e_{i_{p}}\right), \eta\left(e_{i_{1}}, \ldots, e_{i_{p}}\right)\right\rangle
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ denote an orthonormal basis of $T_{x} \mathscr{M}$ ．
Let \mathscr{E} be a vector bundle over \mathscr{M} with a metric 〈，〉 and a metric covariant differentiation D ．If the manifold \mathscr{M} is compact and oriented，we can define the inner product

$$
(\theta, \eta)=\int_{\mathscr{M}}\langle\theta, \eta\rangle * 1, \quad \theta, \eta \in \Lambda^{p}(\mathscr{E}, \mathscr{M})
$$

for which the operator δ^{D} is the adjoint operator of d^{D} ；that is，

$$
\left(d^{D} \theta, \eta\right)=\left(\theta, \delta^{D} \eta\right), \quad \forall \theta \in \Lambda^{p}(\mathscr{E}, \mathscr{M}), \eta \in \Lambda^{p+1}(\mathscr{E}, \mathscr{M})
$$

Consequently，for $\theta \in \Lambda^{p}(\mathscr{E}, \mathscr{M})$ ，

$$
\left(\Delta^{D} \theta, \theta\right)=\left(d^{D} \theta, d^{D} \theta\right)+\left(\delta^{D} \theta, \delta^{D} \theta\right)
$$

Theorem 1.1 （Weitzenböck＇s Formula）．Let \mathscr{E} be a vector bundle over \mathscr{M} with a metric 〈 ，〉 and a metric covariant differentiation D ．If θ is an E゚－valued 1－form，then

$$
\left\langle\Delta^{D} \theta, \theta\right\rangle=\frac{1}{2} \Delta\langle\theta, \theta\rangle+\langle\stackrel{*}{D} \theta, \stackrel{*}{D} \theta\rangle+A
$$

where Δ is the Laplacian operator of the Riemannian manifold \mathscr{M} and A is a function on \mathscr{M} defined by

$$
A(x)=\sum_{i=1}^{n}\left\langle\theta\left(S\left(e_{i}\right)\right), \theta\left(e_{i}\right)\right\rangle-\sum_{i, j=1}^{n} R^{D}\left(e_{i}, e_{j}, \theta\left(e_{i}\right), \theta\left(e_{j}\right)\right)
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis for $T_{x} \mathscr{M}, S$ is the endomorphism of $T_{x} \mathscr{M}$ defined by Ricci tensor of \mathscr{M}, that is, $S\left(e_{i}\right)=\sum_{k=1}^{n} S_{k i} e_{k}$, and

$$
\begin{aligned}
& R^{D}(M, N, \phi, \psi)=\left\langle D_{[M, N]} \phi-D_{M}\left(D_{N} \phi\right)+D_{N}\left(D_{M} \phi\right), \psi\right\rangle \\
& M, N \in \mathscr{X}(\mathscr{M}), \phi, \psi \in \Gamma(\mathscr{E}) .
\end{aligned}
$$

Theorem 1.2. Let \mathscr{E} be a vector bundle over the Riemannian manifold (\mathscr{M}, g), with a metric \langle,$\rangle , and a metric covariant differentiation D$. If θ is an \mathscr{E}-valued 1-form satisfying

$$
\langle\theta(M), \theta(N)\rangle=g(M, N), \quad M, N \in \mathscr{X}(\mathscr{M})
$$

then

$$
\tau-\tau^{\theta}=2 \delta \mu^{\theta}+\left\langle d^{D} \theta, d^{D} \theta\right\rangle+\left\langle\delta^{D} \theta, \delta^{D} \theta\right\rangle-\langle\stackrel{*}{D} \theta, \stackrel{*}{D} \theta\rangle
$$

where μ^{θ} is the 1 -form defined by $\mu^{\theta}(M)=-\left\langle\delta^{D} \theta, \theta(M)\right\rangle, \tau$ is the scalar curvature of \mathscr{M} and τ^{θ} the function on \mathscr{M} given by

$$
\tau^{\theta}(x)=\sum_{i, j=1}^{n} R^{D}\left(e_{i}, e_{j}, \theta\left(e_{i}\right), \theta\left(e_{j}\right)\right)
$$

with $\left\{e_{i}\right\}_{i=1}^{n}$ an orthonormal basis of $T_{x} \mathscr{M}$.
Proof. First, we will prove that

$$
\left\langle\Delta^{D} \theta, \theta\right\rangle=2 \delta \mu^{\theta}+\left\langle d^{D} \theta, d^{D} \theta\right\rangle+\left\langle\delta^{D} \theta, \delta^{D} \theta\right\rangle
$$

Since $\langle\theta(M), \theta(N)\rangle=g(M, N), M, N \in \mathscr{X}(\mathscr{M})$, we have

$$
\left\langle\left(\stackrel{*}{D}_{L} \theta\right)(M), \theta(N)\right\rangle=-\left\langle\left(\stackrel{*}{D}_{L} \theta\right)(N), \theta(M)\right\rangle, \quad L, M, N \in \mathscr{X}(\mathscr{M})
$$

Let $\left\{E_{i}\right\}_{i=1}^{n}$ be a local orthonormal frame of $T \mathscr{M}$. Then,

$$
\left\langle\Delta^{D} \theta, \theta\right\rangle=-\sum_{i, k=1}^{n}\left\langle\left(\stackrel{*}{D}_{E_{k}} d^{D} \theta\right)\left(E_{k}, E_{i}\right), \theta\left(E_{i}\right)\right\rangle+\sum_{i=1}^{n}\left\langle D_{E_{i}}\left(\delta^{D} \theta\right), \theta\left(E_{i}\right)\right\rangle
$$

Now,

$$
\begin{aligned}
& \sum_{i, k=1}^{n}\left\langle\left(\stackrel{*}{D}_{E_{k}} d^{D} \theta\right)\left(E_{k}, E_{i}\right), \theta\left(E_{i}\right)\right\rangle \\
& =\sum_{i, k=1}^{n}\left\{\left\langle D_{E_{k}}\left(\left({ }^{*} D_{E_{k}} \theta\right)\left(E_{i}\right)\right), \theta\left(E_{i}\right)\right\rangle\right. \\
& -\left\langle D_{E_{k}}\left(\left(\stackrel{*}{D}_{E_{i}} \theta\right)\left(E_{k}\right)\right), \theta\left(E_{i}\right)\right\rangle+\left\langle\left(\stackrel{*}{D}_{E_{t}} \theta\right)\left(\nabla_{E_{k}} E_{k}\right), \theta\left(E_{i}\right)\right\rangle \\
& -\left\langle\left(\stackrel{*}{D}_{E_{k}} \theta\right)\left(\nabla_{E_{k}} E_{i}\right), \theta\left(E_{i}\right)\right\rangle \\
& \left.+\left\langle\left(\stackrel{*}{D}_{\nabla_{E_{k}} E_{i}} \theta\right)\left(E_{k}\right), \theta\left(E_{i}\right)\right\rangle\right\} \\
& =\sum_{i, k=1}^{n}\left\{-\left\langle\left(\stackrel{*}{D}_{E_{k}} \theta\right)\left(E_{i}\right),\left(\stackrel{*}{D}_{E_{k}} \theta\right)\left(E_{i}\right)\right\rangle-\left\langle\left(\stackrel{*}{D}_{E_{k}} \theta\right)\left(E_{i}\right), \theta\left(\nabla_{E_{k}} E_{i}\right)\right\rangle\right. \\
& -E_{k}\left\langle\left(\stackrel{*}{D}_{E_{i}} \theta\right)\left(E_{k}\right), \theta\left(E_{i}\right)\right\rangle+\left\langle\left(\stackrel{*}{D}_{E_{i}} \theta\right)\left(E_{k}\right),\left(\stackrel{*}{D}_{E_{k}} \theta\right)\left(E_{i}\right)\right\rangle \\
& +\left\langle\left(\stackrel{*}{D}_{E_{i}} \theta\right)\left(E_{k}\right), \theta\left(\nabla_{E_{k}} E_{i}\right)\right\rangle-\left\langle\left(\stackrel{*}{D}_{E_{i}} \theta\right)\left(E_{i}\right), \theta\left(\nabla_{E_{k}} E_{k}\right)\right\rangle \\
& \left.+\left\langle\left({ }^{*}{ }_{E_{k}} \theta\right)\left(E_{i}\right), \theta\left(\nabla_{E_{k}} E_{i}\right)\right\rangle-\left\langle\left(\stackrel{*}{D}_{\nabla_{E_{k}} E_{i}} \theta\right)\left(E_{i}\right), \theta\left(E_{k}\right)\right\rangle\right\} \\
& =-\left\langle d^{D} \theta, d^{D} \theta\right\rangle+\sum_{k=1}^{n}\left\{-E_{k}\left\langle\delta^{D} \theta, \theta\left(E_{k}\right)\right\rangle+\left\langle\delta^{D} \theta, \theta\left(\nabla_{E_{k}} E_{k}\right)\right\rangle\right\}
\end{aligned}
$$

since,

$$
\begin{aligned}
\sum_{i, k=1}^{n} & \left\{\left\langle\left(\stackrel{*}{D}_{E_{k}} \theta\right)\left(E_{i}\right),\left(\stackrel{*}{D}_{E_{k}} \theta\right)\left(E_{i}\right)\right\rangle-\left\langle\left(\stackrel{*}{D}_{E_{i}} \theta\right)\left(E_{k}\right),\left(\stackrel{*}{D}_{E_{k}} \theta\right)\left(E_{i}\right)\right\rangle\right\} \\
& =\left\langle d^{D} \theta, d^{D} \theta\right\rangle
\end{aligned}
$$

and,

$$
\begin{aligned}
\sum_{i, k=1}^{n} & \left\{\left\langle\left(\stackrel{*}{D}_{E_{i}} \theta\right)\left(\nabla_{E_{k}} E_{i}\right), \theta\left(E_{k}\right)\right\rangle+\left\langle\left(\stackrel{*}{D}_{\nabla_{E_{k}} E_{i}} \theta\right)\left(E_{i}\right), \theta\left(E_{k}\right)\right\rangle\right\} \\
& =\sum_{i, k, j=1}^{n} g\left(\nabla_{E_{k}} E_{i}, E_{j}\right)\left\{\left\langle\left(\stackrel{*}{D}_{E_{i}} \theta\right)\left(E_{j}\right), \theta\left(E_{k}\right)\right\rangle+\left\langle\left(\stackrel{*}{D}_{E_{j}} \theta\right)\left(E_{i}\right), \theta\left(E_{k}\right)\right\rangle\right\} \\
& =\sum_{i, k, j=1}^{n}\left\langle\left(\stackrel{*}{D}_{E_{i}} \theta\right)\left(E_{j}\right), \theta\left(E_{k}\right)\right\rangle\left\{g\left(\nabla_{E_{k}} E_{i}, E_{j}\right)+g\left(\nabla_{E_{k}} E_{j}, E_{i}\right)\right\} \\
& =0
\end{aligned}
$$

It follows that

$$
\begin{aligned}
&\left\langle\Delta^{D} \theta, \theta\right\rangle=\left\langle d^{D} \theta, d^{D} \theta\right\rangle+\sum_{i=1}^{n}\left\{E_{i}\left\langle\delta^{D} \theta, \theta\left(E_{i}\right)\right\rangle-\left\langle\delta^{D} \theta, \theta\left(\nabla_{E_{i}} E_{i}\right)\right\rangle\right. \\
&\left.+\left\langle D_{E_{i}}\left(\delta^{D} \theta\right), \theta\left(E_{i}\right)\right\rangle\right\} \\
&=\left\langle d^{D} \theta, d^{D} \theta\right\rangle-\left\langle\delta^{D} \theta, \delta^{D} \theta\right\rangle+2 \sum_{i=1}^{n}\left\langle D_{E_{i}}\left(\delta^{D} \theta\right), \theta\left(E_{i}\right)\right\rangle .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\delta \mu^{\theta} & =-\sum_{i=1}^{n}\left(\nabla_{E_{i}} \mu^{\theta}\right)\left(E_{i}\right)=-\sum_{i=1}^{n}\left\{\nabla_{E_{i}}\left(\mu^{\theta}\left(E_{i}\right)\right)-\mu^{\theta}\left(\nabla_{E_{i}} E_{i}\right)\right\} \\
& =-\sum_{i=1}^{n}\left\{-E_{i}\left\langle\delta^{D} \theta, \theta\left(E_{i}\right)\right\rangle+\left\langle\delta^{D} \theta, \theta\left(\nabla_{E_{i}} E_{i}\right)\right\rangle\right\} \\
& =\sum_{i=1}^{n}\left\langle D_{E_{i}}\left(\delta^{D} \theta\right), \theta\left(E_{i}\right)\right\rangle-\left\langle\delta^{D} \theta, \delta^{D} \theta\right\rangle .
\end{aligned}
$$

Therefore, we have

$$
\left\langle\Delta^{D} \theta, \theta\right\rangle=2 \delta \mu^{\theta}+\left\langle d^{D} \theta, d^{D} \theta\right\rangle+\left\langle\delta^{D} \theta, \delta^{D} \theta\right\rangle .
$$

Now, by using the Weitzenböck formula, and considering that, in this case, $A=\tau-\tau^{\theta}$ and $\Delta\langle\theta, \theta\rangle=0$, we have the required result.

2. A linear relation among linear invariants of Riemannian almost-product manifolds: geometric consequences

A Riemannian almost-product manifold is a triplet (\mathscr{M}, g, P), where (\mathscr{M}, g) is a Riemannian manifold and P is a (1,1)-tensor field on \mathscr{M} satisfying

$$
P^{2}=I \quad \text { and } \quad g(P M, P N)=g(M, N) \text { for } M, N \in \mathscr{X}(\mathscr{M}) .
$$

A Riemannian almost-product structure P, determines two distributions \mathscr{V} and \mathscr{H} corresponding to the eigenvalues of $P, 1$ and -1 , respectively called vertical and horizontal. In turn, a distribution \mathscr{D} determines, on a Riemannian manifold, a complementary distribution \mathscr{D}^{\perp}, and hence, a Riemannian al-most-product structure whose vertical and horizontal distributions are \mathscr{D} and \mathscr{D}^{\perp} respectively; this structure will be called Riemannian almost-product structure associated to \mathscr{D}.

Lemma 2.1 [11]. In any Riemannian almost-product manifold (\mathscr{M}, g, P), we have
(i) $g\left(\left(\nabla_{L} P\right) M, N\right)=g\left(\left(\nabla_{L} P\right) N, M\right)$ and
(ii) $g\left(\left(\nabla_{L} P\right) P M, P N\right)=-g\left(\left(\nabla_{L} P\right) M, N\right)$
for $L, M, N \in \mathscr{X}(\mathscr{M})$.
The proof is immediate.
It is shown in [11] that there are 36 different classes of Riemannian almost-product manifolds, each one of which is characterized by some algebraic condition on ∇P. This classification was obtained by decomposition of the space of covariant tensors of order 3 that have the same algebraic properties as the tensor γ, given by $\gamma(L, M, N)=g\left(\left(\nabla_{L} P\right) M, N\right)$ (Lemma 2.1), under the action of the structural group of $(\mathscr{M}, g, P), 0(p) \times 0(q)$, where p and $q=n-p$ are the respective dimensions of the distributions \mathscr{V} and \mathscr{H}. Some non-trivial examples for every one of these classes are given in [10]; and in [4] the algebraic conditions, which define the classes, are interpreted in terms of geometric properties of the vertical and horizontal distributions.

In Definition 2.3, we describe the algebraic conditions on ∇P which characterize the properties of \mathscr{V} and \mathscr{H} in the different classes of Riemannian almost-product manifolds.

Definition 2.2. A foliation \mathscr{D} on a Riemannian manifold (\mathscr{M}, g) is said to be a totally geodesic or totally umbilical foliation if all the maximal integral manifolds of \mathscr{D} are totally geodesic or totally umbilical submanifolds of \mathscr{M} respectively.

Definition 2.3 [4], [11]. Let \mathscr{D} be a distribution on a Riemannian manifold and P the almost-product structure associated to \mathscr{D}.
(i) \mathscr{D} is a foliation (property F) if and only if $\left(\nabla_{A} P\right) B=\left(\nabla_{B} P\right) A$, $A, B \in \mathscr{D}$.
(ii) \mathscr{D} is a distribution with the property ${ }_{\mathrm{A}} \mathrm{F}$ if $\left(\nabla_{A} P\right) A=0, A \in \mathscr{D}$.
(iii) A foliation with the property AF is a totally geodesic foliation (property TGF).
(iv) \mathscr{D} is a totally umbilical foliation (property F_{2}) if and only if

$$
\left(\nabla_{A} P\right) B=\frac{1}{p} g(A, B) \alpha^{\mathscr{D}}, \quad A, B \in \mathscr{D}
$$

where $\alpha^{\mathscr{D}}=\sum_{a=1}^{p}\left(\nabla_{E_{a}} P\right) E_{a},\left\{E_{a}\right\}_{a=1}^{p}$ is a local orthonormal reference of \mathscr{D}.
(v) \mathscr{D} is a distribution with the property D_{2} if

$$
\left(\nabla_{A} P\right) B+\left(\nabla_{B} P\right) A=\frac{2}{p} g(A, B) \alpha^{\mathscr{D}}, \quad A, B \in \mathscr{D} .
$$

If \mathscr{D} is a foliation on a Riemannian manifold, it is obvious that $\alpha^{\mathscr{D}}$ is, up to a constant, its mean curvature. So:
(vi) A foliation \mathscr{D} is a foliation with minimal leaves (property F_{1}) if and only if $\alpha^{\mathscr{D}}=0$.
(vii) A distribution \mathscr{D} which satisfies $\alpha^{\mathscr{D}}=0$ will be said to be a distribution with the property D_{1}.

It is evident that a distribution has the property AF if and only if it has the properties D_{1} and D_{2}.

A Riemannian almost-product manifold (\mathscr{M}, g, P) will be said to be of type (α, β) if the vertical distribution has the property α and the horizontal one has the property β.

Observe that in a Riemannian almost-product manifold (\mathscr{M}, g, P), the almost-product structure associated to \mathscr{V} is P, and the one associated to \mathscr{H} is $-P$.

Definition 2.4 [5], [13]. We define the configuration tensors T and O of a Riemannian almost-product manifold (\mathscr{M}, g, P) by

$$
T_{M} N=\frac{1}{2}\left(\nabla_{\nu M} P\right) P N, \quad O_{M} N=\frac{1}{2}\left(\nabla_{\hbar M} P\right) P N
$$

for $M, N \in \mathscr{X}(\mathscr{M})$, where $v=1 / 2(I+P)$ and $h=1 / 2(I-P)$ are the projectors onto \mathscr{V} and \mathscr{H} respectively.

It is obvious that T (resp. O) vanishes if and only if \mathscr{V} (resp. \mathscr{H}) is a totally geodesic foliation.

Definition 2.5. On a Riemannian almost-product manifold we can define

$$
S_{1}(M, N)=h[v M, v N], \quad S_{2}(M, N)=v[h M, h N]
$$

for $M, N \in \mathscr{X}(\mathscr{M})$.
Evidently, $S_{1}\left(\right.$ resp. $\left.S_{2}\right)$ vanishes if and only if $\mathscr{V}($ resp. $\mathscr{H})$ is a foliation.
Lemma 2.6. In any Riemannian almost-product manifold we have:

$$
\begin{align*}
& \|T\|^{2}=\frac{1}{2} \sum_{a, b=1}^{p} g\left(\left(\nabla_{E_{a}} P\right) E_{b},\left(\nabla_{E_{a}} P\right) E_{b}\right), \tag{i}\\
& \|O\|^{2}=\frac{1}{2} \sum_{u, v=p+1}^{n} g\left(\left(\nabla_{E_{u}} P\right) E_{v},\left(\nabla_{E_{u}} P\right) E_{v}\right)
\end{align*}
$$

$\|\nabla P\|^{2}=4\left(\|T\|^{2}+\|O\|^{2}\right) ;$
(iii)

$$
\begin{equation*}
4\left\|S_{1}\right\|^{2}=2\|T\|^{2}-A_{1}, \quad 4\left\|S_{2}\right\|^{2}=2\|O\|^{2}-A_{2} \tag{ii}
\end{equation*}
$$

where A_{1} and A_{2} are the linear invariants [1] given by
$A_{1}=\sum_{a, b=1}^{p} g\left(\left(\nabla_{E_{a}} P\right) E_{b},\left(\nabla_{E_{b}} P\right) E_{a}\right), A_{2}=\sum_{u, v=p+1}^{n} g\left(\left(\nabla_{E_{u}} P\right) E_{v},\left(\nabla_{E_{v}} P\right) E_{u}\right) ;$
(iv)

$$
\begin{align*}
\|\nabla P\|^{2}-\|d P\|^{2} & =A_{1}+A_{2} \\
\|d P\|^{2} & =\frac{1}{2}\|\nabla P\|^{2}+4\left(\left\|S_{1}\right\|^{2}+\left\|S_{2}\right\|^{2}\right) \tag{v}
\end{align*}
$$

$$
\begin{equation*}
\|\delta P\|^{2}=\left\|\alpha^{\mathscr{V}}\right\|^{2}+\left\|\alpha^{\mathscr{H}}\right\|^{2} ; \tag{vi}
\end{equation*}
$$

where $\left\{E_{a}\right\}_{a=1}^{p}$ and $\left\{E_{u}\right\}_{u=p+1}^{n}$ are local orthonormal frames of \mathscr{V} and \mathscr{H} respectively.

The proof is immediate.
Definition 2.7. On a Riemannian almost-product manifold (\mathscr{M}, g, P), we can define

$$
\begin{aligned}
\tau^{\mathscr{V}} & =\sum_{a, b=1}^{p} R\left(E_{a}, E_{b}, E_{a}, E_{b}\right), \\
\tau^{\mathscr{H}} & =\sum_{u, v=p+1}^{n} R\left(E_{u}, E_{v}, E_{u}, E_{v}\right), \\
\tau^{\mathscr{H}} & =\sum_{a=1}^{p} \sum_{u=p+1}^{n} R\left(E_{a}, E_{u}, E_{a}, E_{u}\right)
\end{aligned}
$$

where R is the Riemannian curvature operator of the manifold, and $\left\{E_{a}\right\}_{a=1}^{p}$ and $\left\{E_{u}\right\}_{u=p+1}^{n}$ are local orthonormal frames of \mathscr{V} and \mathscr{H} respectively.

It is obvious that the scalar curvature of $(\mathscr{M}, g, P), \tau$, can be written as

$$
\tau=\tau^{\mathscr{V}}+2 \tau^{\mathscr{V} \mathscr{H}}+\tau^{\mathscr{H}} .
$$

Theorem 2.8. Let (\mathscr{M}, g, P) be a Riemannian almost-product manifold. Then

$$
4 \tau^{\mathscr{H} \mathscr{H}}=\|d P\|^{2}-\|\nabla P\|^{2}+2 \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}+2 \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}
$$

where $\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}=\sum_{a=1}^{p} g\left(\nabla_{E_{a}} \alpha^{\mathscr{H}}, E_{a}\right), \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}=\sum_{u=p+1}^{n} g\left(\nabla_{E_{u}} \alpha^{\mathscr{V}}, E_{u}\right)$, and $\left\{E_{a}\right\}_{a=1}^{p}$ and $\left\{E_{u}\right\}_{u=p+1}^{n}$ are local orthonormal frames of \mathscr{V} and \mathscr{H} respectively.

Proof. By applying Theorem 1.2 to the $T \mathscr{M}$-valued 1-form P, we obtain

$$
\tau-\tau^{P}=2 \delta \mu^{P}+\|d P\|^{2}+\|\delta P\|^{2}-\|\nabla P\|^{2}
$$

Now, $\tau-\tau^{P}=4 \tau^{\mathscr{\mathscr { H }}}$, and

$$
\begin{aligned}
\delta \mu^{P}+\|\delta P\|^{2}= & \sum_{i=1}^{n} g\left(\nabla_{E_{i}}(\delta P), P E_{i}\right) \\
= & -\sum_{a=1}^{p} g\left(\nabla_{E_{a}} \alpha^{\mathscr{V}}, E_{a}\right)+\sum_{a=1}^{p} g\left(\nabla_{E_{a}} \alpha^{\mathscr{H}}, E_{a}\right) \\
& +\sum_{u=p+1}^{n} g\left(\nabla_{E_{u}} \alpha^{\mathscr{V}}, E_{u}\right)-\sum_{u=p+1}^{n} g\left(\nabla_{E_{u}} \alpha^{\mathscr{H}}, E_{u}\right) \\
= & \frac{1}{2} \sum_{a=1}^{p} g\left(\left(\nabla_{E_{a}} P\right) E_{a}, \alpha^{\mathscr{V}}\right)+\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}} \\
& +\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}-\frac{1}{2} \sum_{u=p+1}^{n} g\left(\left(\nabla_{E_{u}} P\right) E_{u}, \alpha^{\mathscr{H}}\right) \\
= & \frac{1}{2}\left\|\alpha^{\mathscr{V}}\right\|^{2}+\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}+\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}+\frac{1}{2}\left\|\alpha^{\mathscr{H}}\right\|^{2}
\end{aligned}
$$

which implies the result.
Corollary 2.9. Let (\mathscr{M}, g, P) be a Riemannian almost-product manifold.
(i) If (\mathscr{M}, g, P) is of type (AF, AF), then

$$
\tau^{\mathscr{\mathscr { H }}}=\frac{1}{8}\|\nabla P\|^{2}
$$

(ii) If (\mathscr{M}, g, P) is of type ($\mathrm{F}, \mathrm{F})$, then

$$
4 \tau^{\mathscr{H} \mathscr{H}}=-\frac{1}{2}\|\nabla P\|^{2}+2 \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}+2 \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}
$$

(iii) If (\mathscr{M}, g, P) is of type $\left(\mathrm{F}_{1}, \mathrm{~F}_{1}\right)$, then

$$
\tau^{\mathscr{H}}=-\frac{1}{8}\|\nabla P\|^{2} .
$$

(iv) If (\mathscr{M}, g, P) is of type $(\mathrm{F}, \mathrm{AF})$, then

$$
2 \tau^{\mathscr{H} \mathscr{H}}=-\|T\|^{2}+\|O\|^{2}+\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{Y}} .
$$

(v) If (\mathscr{M}, g, P) is of type $\left(\mathrm{D}_{2}, \mathrm{D}_{2}\right)$, then

$$
2 \tau^{\mathscr{V} \mathscr{H}}=\frac{1}{4}\|\nabla P\|^{2}-\frac{1}{p}\left\|\alpha^{\mathscr{V}}\right\|^{2}-\frac{1}{q}\left\|\alpha^{\mathscr{H}}\right\|^{2}+\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}+\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} .
$$

(vi) If (\mathscr{M}, g, P) is of type (AF, $\left.\mathrm{D}_{2}\right)$, then

$$
2 \tau^{\mathscr{H} \mathscr{H}}=\frac{1}{4}\|\nabla P\|^{2}-\frac{1}{q}\left\|\alpha^{\mathscr{H}}\right\|^{2}+\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}} .
$$

(vii) If (\mathscr{M}, g, P) is of type $\left(\mathrm{F}, \mathrm{D}_{2}\right)$, then

$$
2 \tau^{\mathscr{V} \mathscr{H}}=-\frac{1}{q}\left\|\alpha^{\mathscr{H}}\right\|^{2}-\|T\|^{2}+\|O\|^{2}+\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}+\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} .
$$

Proof. Results (i) through (iv) follow immediately from Theorem 2.8 and Lemma 2.6.

For the remaining results, it is sufficient to consider that if \mathscr{V} (resp. \mathscr{H}) is a distribution with the property D_{2}, then

$$
A_{1}=\frac{2}{p}\left\|\alpha^{\mathscr{V}}\right\|^{2}-2\|T\|^{2} \quad\left(\text { resp. } A_{2}=\frac{2}{q}\left\|\alpha^{\mathscr{H}}\right\|^{2}-2\|O\|^{2}\right) .
$$

Corollary 2.10. Let (\mathscr{M}, g, P) be a compact, oriented Riemannian al-most-product manifold. Then

$$
4 \int_{\mathscr{M}} \tau^{\mathscr{V} \mathscr{H}} * 1=\int_{\mathscr{M}}\|d P\|^{2} * 1+\int_{\mathscr{M}}\|\delta P\|^{2} * 1-\int_{\mathscr{M}}\|\nabla P\|^{2} * 1 .
$$

The proof follows from Theorem 2.8 by considering that

$$
\int_{\mathscr{M}} \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}} * 1=\frac{1}{2} \int_{\mathscr{M}}\left\|\alpha^{\mathscr{H}}\right\|^{2} * 1 \text { and } \int_{\mathscr{M}} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} * 1=\frac{1}{2} \int_{\mathscr{M}}\left\|\alpha^{\mathscr{V}}\right\|^{2} * 1
$$

Of course, the formulas of Corollary 2.10 which contain $\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}$ or $\operatorname{div}_{\mathscr{H}} \alpha^{\mathcal{V}}$, can be reformulated in compact manifolds.

Corollary 2.11. Let (\mathscr{M}, g, P) be a Riemannian almost-product manifold.
(i) If (\mathscr{M}, g, P) is of type (AF, AF), then $\tau^{\mathscr{H} \mathscr{H}} \geq 0$, with equality holding only if the manifold is locally a product.
(ii) If (\mathscr{M}, g, P) is of type (F, F) and the mean curvatures of the vertical and horizontal foliations, restricted to each horizontal and vertical leaf respectively, have zero divergence, then $\tau^{\mathscr{H}} \leq 0$, with equality holding only if (\mathscr{M}, g, P) is a locally-product manifold.
(iii) If (\mathscr{M}, g, P) is of type $\left(\mathrm{D}_{2}, \mathrm{D}_{2}\right)$, compact and oriented, then

$$
\int_{\mathscr{M}} \tau^{\mathscr{L} \mathscr{H}} * 1 \geq 0
$$

and the equality is satisfied if and only if each distribution, \mathscr{V} and \mathscr{H}, is of dimension one or a totally geodesic foliation.
(iv) If (\mathscr{M}, g, P) is compact and oriented, $\operatorname{dim} \mathscr{H}=1$ and \mathscr{V} is a foliation with minimal leaves, then $\int_{\mathscr{M}} \tau^{\mathscr{H}} * 1 \leq 0$, with equality holding if and only if \mathscr{V} is a totally geodesic foliation.

Proof. Results (i) and (ii) are deduced immediately from results (i) and (ii) of Corollary 2.10 respectively.
(iii) Considering that

$$
\begin{aligned}
& \int_{\mathscr{M}} \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}} * 1=\frac{1}{2} \int_{\mathscr{M}}\left\|\alpha^{\mathscr{H}}\right\|^{2} * 1 \\
& \int_{\mathscr{M}} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} * 1=\frac{1}{2} \int_{\mathscr{M}}\left\|\alpha^{\mathscr{V}}\right\|^{2} * 1
\end{aligned}
$$

and by using (v) of Corollary 2.10, we deduce

$$
2 \int_{\mathscr{M}} \tau^{\mathscr{V} \mathscr{H}} * 1=\frac{1}{4} \int_{\mathscr{M}}\|\nabla P\|^{2} * 1+\frac{p-2}{2 p} \int_{\mathscr{M}}\left\|\alpha^{\mathscr{V}}\right\|^{2} * 1+\frac{q-2}{2 q} \int_{\mathscr{M}}\left\|\alpha^{\mathscr{H}}\right\|^{2} * 1
$$

and so, if $\operatorname{dim} \mathscr{V} \geq 2$ and $\operatorname{dim} \mathscr{H} \geq 2$, we have $\int_{\mathscr{M}} \tau^{\mathscr{V} \mathscr{H}} * 1 \geq 0$, equality holding only if the manifold is locally a product.

If $\operatorname{dim} \mathscr{V}=1, \mathscr{V}$ is a totally umbilical foliation. Therefore

$$
2\|T\|^{2}=A_{1}=\frac{2}{p}\left\|\alpha^{\mathscr{V}}\right\|^{2}-2\|T\|^{2}
$$

and the last formula can be written in the following form:

$$
2 \int_{\mathscr{M}} \tau^{\mathscr{V} \mathscr{\mathscr { H }}} * 1=\int_{\mathscr{M}}\|O\|^{2} * 1+\frac{q-2}{2 q} \int_{\mathscr{M}}\left\|\alpha^{\mathscr{H}}\right\|^{2} * 1
$$

So, if $q \geq 2$, then $\int_{\mathscr{M}} \tau^{\mathscr{H}} * 1 \geq 0$, equality holding if and only if \mathscr{H} is a totally geodesic foliation. And if $q=1$, the integral vanishes.

For $\operatorname{dim} \mathscr{H}=1$, the argument is analogous.
(iv) If (\mathscr{M}, g, P) is of type $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$, compact and oriented, we have

$$
2 \int_{\mathscr{M}} \tau^{\mathscr{\mathscr { H }}} * 1=\frac{q-1}{2 q} \int_{\mathscr{M}}\left\|\alpha^{\mathscr{H}}\right\|^{2} * 1-\int_{\mathscr{M}}\|T\|^{2} * 1
$$

which implies the result.

Comments. Result (i) in Corollary 2.9 (and consequently the result (i) in Corollary 2.11) was obtained in [1] by using a different method.

Result (ii) in Corollary 2.11 generalizes two results obtained in [1]. There, it was shown for a manifold of type ($\mathrm{F}_{2}, \mathrm{~F}_{2}$) instead of (F, F). Furthermore, in [1], it was also shown that, on manifolds of type $\left(\mathrm{F}_{1}, \mathrm{~F}_{1}\right)$, we have $\tau^{\mathscr{H}} \leq 0$, the equality holding only if the manifold is locally a product.

Result (iii) in Corollary 2.11 generalizes a result obtained in [12]. There, the same conclusion is obtained for a manifold of type ($\mathrm{F}_{2}, \mathrm{~F}_{2}$).

3. Weak-harmonic distributions -

In [7], F.W. Kamber and Ph. Tondeur analyzed some properties of harmonic foliations and in [8] the same authors examined the relation between the harmonicity property of a foliation with bundle-like metric and the sectional curvature of the manifold, obtaining the following result: Let (\mathscr{M}, g, P) be a Riemannian almost-product manifold of type (F, TGF) with non-negative sectional curvature. If \mathscr{V} is a harmonic foliation, then it is a totally geodesic foliation [8, Corollary 2.27].

We shall begin this section by extending the concept of harmonicity which appears in [7] and [8], obtaining afterwards a generalization of the above result. Furthermore, we shall obtain, among other results, some generalizations of several other conclusions found in [8].

Definition 3.1. Let (\mathscr{M}, g, P) be a Riemannian almost-product manifold. We define the following connection on the vector bundle \mathscr{H} :

$$
\begin{aligned}
& \nabla_{A}^{\mathscr{H}} X=h[A, X], \quad A \in \mathscr{V}, X \in \mathscr{H} \\
& \nabla_{Y}^{\mathscr{H}} X=h\left(\nabla_{Y} X\right), X, Y \in \mathscr{H} .
\end{aligned}
$$

Its torsion, $T^{\mathscr{H}}$, is the \mathscr{H} valued 2 -form on \mathscr{M} defined by

$$
T^{\mathscr{H}}(M, N)=\nabla_{M}^{\mathscr{H}}(h N)-\nabla_{N}^{\mathscr{H}}(h M)-h[M, N], \quad M, N \in \mathscr{X}(\mathscr{M}) .
$$

Writing this expression for vertical and horizontal vector fields, we have

$$
T^{\mathscr{H}}(A, B)=-h[A, B], \quad T^{\mathscr{H}}(A, X)=0, \quad T^{\mathscr{H}}(X, Y)=0
$$

with $A, B \in \mathscr{V}, X, Y \in \mathscr{H}$.
It is evident that $\nabla^{\mathscr{H}}$ is torsion free if and only if \mathscr{V} is integrable, and in this case, $\nabla^{\mathscr{H}}$ is the basic connection which is used in [7] to define the concept of harmonic foliation.

Proposition 3.2. $\nabla^{\mathscr{H}}$ is a metric connection (with respect to the metric induced by g in \mathscr{H}) if and only if \mathscr{H} is a distribution with the property AF.

The proof is immediate.
The connection $\nabla^{\mathscr{H}}$ determines the operators $\nabla^{*}, d^{\mathscr{H}}, \delta^{\mathscr{H}}$ and $\Delta^{\mathscr{H}}$ on \mathscr{H}-valued forms, which, in this section, will be applied to the \mathscr{H}-valued 1-form h.

Lemma 3.3

$$
\begin{align*}
& \left(\nabla_{A}^{*} h\right) B=-\frac{1}{2}\left(\nabla_{A} P\right) B, \quad A, B \in \mathscr{V} \tag{i}\\
& \left(\stackrel{\nabla}{*}_{A}^{\mathscr{H}} h\right) X=\left(\stackrel{\nabla}{X}_{X}^{\mathscr{H}} h\right) A=-\frac{1}{2}\left(\nabla_{X} P\right) A, \quad A \in \mathscr{V}, X \in \mathscr{H} ; \\
& \left(\nabla_{X}^{*} \neq \mathscr{\mathscr { H }}\right) Y=0, \quad X, Y \in \mathscr{H} .
\end{align*}
$$

(ii) $\delta^{\mathscr{H}} h=\frac{1}{2} \alpha^{\mathscr{V}}$.
(iii) $d^{\mathscr{H}} h(M, N)=T^{\mathscr{H}}(M, N), M, N \in \mathscr{X}(\mathscr{M})$.

The proof is immediate.
Definition 3.4. (i) We will say that the distribution \mathscr{V} is harmonic if the \mathscr{H}^{-}valued 1-form h is $\nabla^{\mathscr{H}}$-closed and $\nabla^{\mathscr{H}}$-coclosed, that is, $d^{\mathscr{H}} h=\delta^{\mathscr{H}} h=0$.
(ii) We will say that \mathscr{V} is a weak-harmonic distribution if the \mathscr{H}-valued 1 -form h satisfies $g\left(\Delta^{\mathscr{H}} h, h\right)=0$.

It is evident that if \mathscr{V} is a harmonic distribution, then it is a weak-harmonic distribution.

TheOrem 3.5. (i) h is $\nabla^{\mathscr{H}}$-coclosed if and only if \mathscr{V} is a distribution with the property D_{1}.
(ii) $\quad h$ is $\nabla^{\mathscr{H}}$-closed if and only if \mathscr{V} is a foliation.
(iii) \mathscr{V} is a harmonic distribution if and only if it is a foliation with minimal leaves.

The proof follows immediately from Lemma 3.3.
Theorem 3.6. Let (\mathscr{M}, g, P) be a Riemannian almost-product manifold. Then:
(i) $g\left(\Delta^{\mathscr{*}} h, h\right)=\frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{\gamma}}+\left\|S_{1}\right\|^{2}$.
(ii) $g\left(\Delta^{\mathscr{H}} h, h\right)=\frac{1}{8}\|\nabla P\|^{2}-\left\|S_{2}\right\|^{2}-\frac{1}{2} \operatorname{div}_{\mathscr{\gamma}} \alpha^{\mathscr{H}}+\tau^{\mathscr{H}}$.
(iii) If (\mathscr{M}, g, P) is of type $(-, \mathrm{AF})$, then

$$
g\left(\Delta^{\mathscr{H}} h, h\right)=\frac{1}{2}\|T\|^{2}-\frac{1}{2}\|O\|^{2}+\tau^{\mathscr{H}}
$$

Proof. (i) Let $\left\{E_{a}\right\}_{a=1}^{p}$ and $\left\{E_{u}\right\}_{u=p+1}^{n}$ be local orthonormal frames of \mathscr{V} and \mathscr{H} respectively.

$$
\begin{aligned}
g\left(\Delta^{\mathscr{H}} h, h\right)= & \sum_{u=p+1}^{n} g\left(\left(\Delta^{\mathscr{H}} h\right) E_{u}, E_{u}\right) \\
= & -\sum_{i=1}^{n} \sum_{u=p+1}^{n} g\left(\left(\nabla_{E_{i}}^{\mathscr{H}} d^{\mathscr{H}} h\right)\left(E_{i}, E_{u}\right), E_{u}\right)+\frac{1}{2} \sum_{u=p+1}^{n} g\left(\nabla_{E_{u}}^{\mathscr{H}} \alpha^{\mathscr{V}}, E_{u}\right) \\
= & \sum_{a=1}^{p} \sum_{u=p+1}^{n} g\left(d^{\mathscr{H}} h\left(E_{a}, थ \nabla_{E_{a}} E_{u}\right), E_{u}\right)+\frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} \\
= & \sum_{a=1}^{p} \sum_{u=p+1}^{n}\left\{-\frac{1}{2} g\left(\left(\nabla_{E_{a}} P\right) \nabla_{E_{a}} E_{u}, E_{u}\right)+\frac{1}{2} g\left(\left(\nabla_{थ \nabla_{E_{a}} E_{u}} P\right) E_{a}, E_{u}\right)\right\} \\
& +\frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} \\
= & \frac{1}{4} \sum_{a=1}^{p} \sum_{u=p+1}^{n} g\left(\left(\nabla_{E_{a}} P\right) E_{u},\left(\nabla_{E_{a}} P\right) E_{u}\right) \\
& +\frac{1}{2} \sum_{a, b=1}^{p} \sum_{u=p+1}^{n} g\left(\left(\nabla_{E_{b}} P\right) E_{a}, E_{u}\right) g\left(\nabla_{E_{a}} E_{u}, E_{b}\right)+\frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} \\
= & \frac{1}{2}\|T\|^{2}-\frac{1}{4} A_{1}+\frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} \\
= & \left\|S_{1}\right\|^{2}+\frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} .
\end{aligned}
$$

(ii) By using (i), Lemma 2.6 and Theorem 2.8, we have

$$
\begin{aligned}
4 g\left(\Delta^{\mathscr{H}} h, h\right) & =4\left\|S_{1}\right\|^{2}+2 \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} \\
& =2\|T\|^{2}+\|d P\|^{2}-\|\nabla P\|^{2}+A_{2}+2 \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} \\
& =2\|T\|^{2}+4 \tau^{\mathscr{H}}-2 \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}+A_{2} \\
& =\frac{1}{2}\|\nabla P\|^{2}-4\left\|S_{2}\right\|^{2}-2 \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}+4 \tau^{\mathscr{V}} \mathscr{\mathscr { H }} .
\end{aligned}
$$

Evidently, if \mathscr{H} is a distribution with the property AF, this formula is that given in (iii).

The formula given in (iii) of the last Theorem was obtained in [8] in the case that \mathscr{V} is a foliation.

Corollary 3.7. Let (\mathscr{M}, g, P) be a Riemannian almost-product manifold.
(i) If (\mathscr{M}, g, P) is of type (,- TGF) and \mathscr{V} is a weak-harmonic distribution, then $\tau^{\mathscr{H}} \leq 0$, with equality holding only if the manifold is locally a product.
(ii) If (\mathscr{M}, g, P) is of type (F, TGF) and $\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}=0$, then $\tau^{\mathscr{H}} \leq 0$, where the equality holds only if the manifold is locally a product.
(iii) If (\mathscr{M}, g, P) is of type (AF,-), then \mathscr{V} is not a weak-harmonic distribution, unless it is a totally geodesic foliation.
(iv) A distribution with the property D_{1} is weak-harmonic if and only if it is harmonic.
(v) If (\mathscr{M}, g, P) is compact and oriented, then \mathscr{V} is a weak-harmonic distribution if and only if it is a harmonic distribution.
(vi) If \mathscr{V} is a weak-harmonic distribution and \mathscr{H} is a foliation satisfying $\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}=0$ (in particular if \mathscr{H} is a foliation with minimal leaves), then $\tau^{\mathscr{} \mathscr{H}} \leq 0$, with equality holding only if the manifold is locally a product.
(vii) If \mathscr{V} is a weak-harmonic distribution, $\operatorname{dim} \mathscr{H}=1$ and $\alpha^{\mathscr{H}}$ has zero divergence, then $\tau^{\mathscr{H}} \leq 0$, the equality holding if and only if \mathscr{V} is a totally geodesic foliation.

Proof. Result (i) is an immediate consequence of part (iii) of the theorem above.
(ii) If \mathscr{V} is a foliation and $\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}=0$, then, from part (i) of the last theorem, $g\left(\Delta^{\mathscr{H}} h, h\right)=0$, and the result follows from (i).
(iii) If \mathscr{V} is a distribution with the property AF , then, by using (i) of Theorem 3.6, we deduce $g\left(\Delta^{\mathscr{H}} h, h\right)=\|T\|^{2}$ and the result follows.
(iv) This follows immediately from Theorem 3.6(i).
(v) By integrating formula (i) of Theorem 3.6, we have

$$
\int_{\mathscr{M}} g\left(\Delta^{\mathscr{H}} h, h\right) * 1=\int_{\mathscr{M}}\left\|S_{1}\right\|^{2} * 1+\frac{1}{4} \int_{\mathscr{M}}\left\|\alpha^{\mathscr{V}}\right\|^{2} * 1
$$

which implies the result.
(vi) This is a direct consequence of Theorem 3.6(ii).
(vii) If $\operatorname{dim} \mathscr{H}=1$, then $\left\|S_{2}\right\|^{2}=0$ and $\|O\|^{2}=1 / 2\left\|\alpha^{\mathscr{H}}\right\|^{2}$. So we deduce from Theorem 3.6(ii) that

$$
g\left(\Delta^{\mathscr{H}} h, h\right)=\frac{1}{2}\|T\|^{2}-\frac{1}{2} \operatorname{div} \alpha^{\mathscr{H}}+\tau^{\mathscr{H} \mathscr{H}}
$$

and the result follows.
We observe that the result (ii) in the last corollary is clearly more general than Corollary 2.27 in [8]. In any case, this result is an immediate consequence of Corollary 2.11(ii).

Furthermore, we must note that if \mathscr{V} is a foliation satisfying $\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}=0$, then it is a weak-harmonic distribution, but it is not necessarily a harmonic distribution.

The harmonic foliations of codimension one are also analyzed in [8], where the following result is obtained.

If \mathscr{V} is a transversally orientable foliation of codimension one on a compact and oriented Riemannian manifold \mathscr{M} with non-negative Riccicurvature then:
(i) If the Ricci operator is positive for at least one point in \mathscr{M}, the foliation \mathscr{V} is not harmonic.
(ii) If \mathscr{V} is harmonic, then \mathscr{V} is totally geodesic.

Since a harmonic distribution is a foliation with minimal leaves, this result is a consequence of the formula

$$
\int_{\mathscr{M}} \tau^{\mathscr{L} \mathscr{H}} * 1=-\frac{1}{2} \int_{\mathscr{M}}\|T\|^{2} * 1
$$

which is true if $\operatorname{dim} \mathscr{H}=1$ and \mathscr{V} has the property F_{1} (Corollary 2.11(iv)). Furthermore, the result can be stated without the hypothesis of integrability of \mathscr{V} (nevertheless, we must note that harmonicity implies integrability), and considering the assumption on $\tau^{\mathscr{H} \mathscr{H}}$, instead of that on the Ricci-curvature.

On the other hand, part (vii) in Corollary 3.7 can be considered as a version of this result for non-compact manifolds.

References

1. F.J. Carreras, Linear invariants of Riemannian almost-product manifolds, Math. Proc. Cambridge Philos. Soc., vol. 91 (1982), pp. 99-106.
2. J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., vol. 10 (1978), pp. 1-68.
3. ___ Selected topics in harmonic maps, C.B.M.S. Regional Conference Series in Math., no. 50, 1983.
4. O. Gil-Medrano, Geometric properties of some classes of Remannian almost-product manifolds, Rend. Circ. Mat. Palermo, vol. 32 (1983), pp. 315-329.
5. A. Gray, Pseudo-Riemannian almost-product manifolds and submersions, J. Math. Mech., vol. 16 (1967), pp. 715-737.
6. F.W. Kamber and Ph. Tondeur, Feuilletages harmoniques, C.R. Acad. Sci. Paris, vol. 291 (1980), pp. 409-411.
7. __ Harmonic foliations, Proc. National Science Foundation Conference on Harmonic Maps, Tulane, 1980, Lecture Notes in Mathematics, no. 949, Springer-Verlag, N.Y., 1980, pp. 87-121.
8. \qquad , Curvature properties of harmonic foliations, Illinois J. Math., vol. 28 (1984), pp. 458-471.
9. Y. Matsushima, Vector bundle valued harmonic forms and immersions of Riemannian manifolds, Osaka J. Math, vol. 8 (1971), pp. 1-13.
10. V. Miquel, Some examples of Riemannian almost-product manifolds, Pacific J. Math., vol. 111 (1984), pp. 163-178.
11. A.M. Naveira, A classification of Riemannian almost-product manifolds, Rend. Mat., vol. 3 (1983), pp. 577-592.
12. A.M. Naveira and A.H. Rocamora, "A geometrical obstruction of the existence of two totally umbilical complementary foliations in compact manifolds" in Proc. Differential Geometric Methods in Mathematical Physics, Clausthal, 1983, Lecture Notes in Mathematics, no. 1139, Springer-Verlag, N.Y., 1985, pp. 263-279.
13. B. O'Neil, The fundamental equations of a submersion, Michigan Math. J., vol. 13 (1966), pp. 459-469.
14. W.A. Poor, Differential geometric structures, McGraw-Hill, Hightstown, New Jersey, 1981.

University of Valencia Valencia, Spain.

[^0]: Received November 10, 1986.
 ${ }^{1}$ Partially supported by a grant from CAICYT.

