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0. Introduction

In this paper, we prove some geometric consequences obtained from certain
linear relations among linear invariants of Riemannian. almost-product mani-
folds. We also define and study weak-harmonic distributions.

In Section 1, we obtain a consequence of the Weitzenb/Sck formula, (Theo-
rem 1.2), which will be used in the next section.

Section 2 begins with general concepts on Riemannian almost-product
manifolds.
A Riemannian almost-product manifold is a triplet (’, g, P), where (’, g)

is a Riemannian manifold and P is a (1,1)-tensor field on ’ satisfying
p 2 I and g(PM, PN) g(M, N), M, N Y’(,//g’). The eigenspaces of P
corresponding to the eigenvalues 1 and -1, at each point, determine two
distributions ze" and ’, respectively called vertical and horizontal.

Next, we get a linear relation among linear invariants of Riemannian
almost-product manifolds, (Theorem 2.8), by using Theorem 1.2, from which
we deduce some geometric consequences. Among these it is necessary to note
that:

THEOREM. A Riemannian almost-product manifold (’, g, P) with non-
negative sectional curvature in which Y/" and off’ are foliations whose mean
curvatures, restricted to each horizontal and vertical leaf respectively, have zero
divergence, is necessarily locally a product.
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One thus generalizes two results obtained in [1], where this conclusion is
proved, when and o, are both foliations with minimal leaves, or both
totally umbilical foliations with mean curvatures as in the theorem.

It is shown in [12] that one cannot find two complementary and orthogonal
totally umbilical foliations on compact Riemannian manifolds with non-posi-
tive sectional curvature, unless each one of them is 1-dimensional or a totally
geodesic foliation. As a consequence of Theorem 2.8, we get, in Corollary 2.11,
an improvement of this result for non-integrable distributions.

In the last section we generalize the concept of harmonic foliation that
appears in [7] and [8]. The distribution of a Riemannian almost-product
manifold is said to be weak-harmonic if the canonical projection
from the tangent bundle onto horizontal bundle is an aVe-valued 1-form
orthogonal to Aaed, with Aae the Laplacian operator induced by the following
connection on

where X7 is the Levi-Civita connection of
We prove that some of the main results of [8] on harmonic foliations

(Corollary 2.27, Theorem 2.34) remain valid for weak-harmonic distributions.
(On the other hand, these results are consequences of Theorem 2.8.) Further-
more, we show some new results about weak-harmonicity, among which are
the following:

(i) A weak-harmonic distribution with the property AF (Definition 2.3) is
a totally geodesic foliation.

(ii) Let (’, g, P) be a Riemannian almost-product manifold with non-
negative sectional curvature in which the horizontal distribution is a foliation
with minimal leaves. Then, if the distribution " is weak-harmonic, the
manifold is locally a product.

All geometric objects considered throughout the paper will be of class C.
The author wishes to thank V. Miquel and A.M. Naveira for useful

comments.

1. A consequence of the Weitzenb6ck formula

Let (d#’, g) be an n-dimensional Riemannian manifold and a vector
bundle over d/4’ with a covariant differentiation D.
We shall denote AP(6, ’) the vector space of all g-valued differential

p-forms on
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It is a well known fact that the covariant differentiation D induces the
following o.perators on #valued p-forms: the covariant differential acting
on forms, D, the exterior differential operator, d, the exterior codifferential,
8 o, and the Laplacian operator, AD.

Furthermore, if go is a vector bundle over t’ with a metric ( ), we have
on A’(d, t’) the metric induced by the metrics ( ) and g:

If 19, AP(g, t’), then (, 7) is the function on .At’ given by

(O(eil, eip), rl(eil, eip))

where { el,..., e, } denote an orthonormal basis of Txg.
Let go be a vector bundle over t’ with a metric ( ) and a metric

covariant differentiation D. If the manifold .At’ is compact and oriented, we
can define the inner product

(0, rl ) fcf o, rl ) * 1, 0, r/ AP(o, ’),

for which the operator 8D is the adjoint operator of d; that is,

(de, n) (e, 8sn), Ve e AP(e, ’), n Ap+I(#, ’).

Consequently, for 0 AP(, ,At’),

o) +

THEOREM 1.1 (WEITZENBOCK’S FORMULA). Let be a vector bundle over g
with a metric ( ) and a metric covariant differentiation D. If O is an
#valued 1-form, then

(DO DO} + A

where A is the Laplacian operator of the Riemannian manifold dg and A is a

function on dg defined by

i=1 i,j=l
RO(ei, ej, O(ei), O(ej))
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where (el,..., e, } is an orthonormal basis for T,/I, S is the endomorphism of
Tx[ defined by Ricci tensor of d/t, that is, S(ei) .k..1Skie, and

RD( M, N, q, tl,, ) (DrM, N]* DM ( DNq ) + DN ( DMCk ), d,,, ),

M, N e (./’), ,#, e F(o).

THEOREM 1.2. Let be a vector bundle over the Riemannian manifold
(d/t, g), with a metric ( ), and a metric covariant differentiation D. If 0 is
an #valued 1-form satisfying

(8(M), 8(N)) g(M, N), M, N . (./tt’),

then

r "re= 2,1x + (doe, doe) + (80, 8Do) (be, bo),

where tx is the 1-form defined by t(M)= -(i0, O(M)), is the scalar
curvature of /1 and the function on [ given by

e(x) R(ei, ej, O(ei),
i,j=l

with { e } 7= an orthonormal basis of Txdl[.

Proof. First, we will prove that

(ADo, O) 2! + (dO, dDO) + (0, 8Do).

Since (O(M), O(N)) g(M, N), M, N e r(d/t’), we have

Let { E } ’= be a local orthonormal frame of Td//. Then,

i,k=l i=1
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Now,

since,

i,k=l

(dO, dO8)
and,
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It follows that

n

<A"O, O) (d"O, d"O) + E { e,<ao, o(e,)) (a"o,
i--1

(dO, dO) (80, 80) + 2 i (D,(SzO),
i-1

On the other hand,

n n

i=1 i=1

n

E {-e,<"o, o(e,)> + <o,
n

i=1

Therefore, we have

<A"O, O) 2, + {d"O, d"O) + <"0,

Now, by using the Weitzenb/Sck formula, and considering that, in this case,
A re and A(O, O 0, we have the required result.

2. A linear relation among linear invariants of Riemannian
almost-product manifolds: geometric consequences

A Riemannian almost-product manifold is a triplet (//’, g, P), where (/’, g)
is a Riemannian manifold and P is a (1, 1)-tensor field on /’ satisfying

p2=i and g(PM, PN) g(M, N) for M, N

A Riemannian almost-product structure P, determines two distributions Y/"
and corresponding to the eigenvalues of P, 1 and -1, respectively called
vertical and horizontal. In turn, a distribution determines, on a Riemannian
manifold, a complementary distribution +/-, and hence, a Riemannian al-
most-product structure whose vertical and horizontal distributions are and

+/- respectively; this structure will be called Riemannian almost-product
structure associated to .
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LEMMA 2.1 [11]. In any Riemannian almost-product manifoM (g, g, P), we
have

(i) g((Tt.P)M N) g((TLP)N, M) and
(ii) g((V,P)PM, PN) -g((V,P)M, N)

for L, M, N

The proof is immediate.

It is shown in [11] that there are 36 different classes of Riemannian
almost-product manifolds, each one of which is characterized by some alge-
braic condition on XTP. This classification was obtained by decomposition of
the space of covariant tensors of order 3 that have the same algebraic
properties as the tensor 3’, given by 3,(L, M, N)= g((VLP)M, N) (Lemma
2.1), under the action of the structural group of (t’, g, P), 0(p) 0(q),
where p and q n -p are the respective dimensions of the distributions "and o. Some non-trivial examples for every one of these classes are given in
[10]; and in [4] the algebraic conditions, which define the classes, are inter-
preted in terms of geometric properties of the vertical and horizontal distribu-
tions.

In Definition 2.3, we describe the algebraic conditions on X7P which
characterize the properties of " and in the different classes of Rieman-
nian almost-product manifolds.

DEFINITION 2.2. A foliation on a Riemannian manifold (t’, g) is said
to be a totally geodesic or totally umbilical foliation if all the maximal integral
manifolds of are totally geodesic or totally umbilical submanifolds of t’
respectively.

DEFINITION 2.3 [4], [11]. Let be a distribution on a Riemannian
manifold and P the almost-product structure associated to 9.

(i) 9 is a foliation (property F) if and only if (VP)B (XTsP)A,
A,B .@.

(ii) is a distribution with the property AF if (VnP)A 0, A .
(iii) A foliation with the property AF is a totally geodesic foliation

(property TGF).
(iv) 9 is a totally umbilical foliation (property F2) if and only if

1
A,

where a= Ea_i(veoP)Ea, (Ea}.. is a local orthonormal reference of .
(v) is a distribution with the property D2 if

2
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If is a foliation on a Riemannian manifold, it is obvious that a is, up to
a constant, its mean curvature. So"

(vi) A foliation is a foliation with minimal leaves (property F1) if and
only if a 0.

(vii) A distribution 9 which satisfies a 0 will be said to be a distribu-
tion with the property D1.

It is evident that a distribution has the property AF if and only if it has the
properties D1 and D2.
A Riemannian almost-product manifold (’, g, P) will be said to be of type

(a,/3) if the vertical distribution has the property a and the horizontal one has
the property ft.

Observe that in a Riemannian almost-product manifold (d/t’, g, P), the
almost-product structure associated to $/" is P, and the one associated to 9 is
--e.

DEFINITION 2.4 [5], [13]. We define the configuration tensors T and O of a
Riemannian almost-product manifold (t’, g, P) by

1 1
TN - (V,,MP ) PN, OMN - (V,MP ) PN

for M, N 5f(d/t’), where v 1/2(I + P) and 1/2(I P) are the
projectors onto 3e" and respectively.

It is obvious that T (resp. O) vanishes if and only if , (resp. ) is a
totally geodesic foliation.

DEFINITION 2.5. On a Riemannian almost-product manifold we can define

SI(M, N) [vM, vN], S2(M, N) v[M, $N]

for M, N

Evidently, S (resp. $2) vanishes if and only if (resp. ’) is a foliation.

LEMMA 2.6.

(i)

(ii)
(iii)

In any Riemannian almost-product manifoM we have:

1 P

a,b=l

IlOll -- u, v-p+1

IIvPII 2 4(IITII 2 + 110112);
411S112 211Tll 2 A, 411S2112 2110112 A2
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where A and A2, are the linear invariants [1] given by

p

a,b=l

(iv)

(v)

n

u, v=p+l

IIx7PII u -lldPII 2 mx + m2;
1 4( S112 12Ildell z- -Ilvellz+ +llS=l );

(vi) IIPII 2= I1112 + 11*112;

where ( E } aP=. and ( Eu ) ,=p + are local orthonormal frames of K" and
respectively.

The proof is immediate.

DEFINITION 2.7.
we can define

On a Riemannian almost-product manifold (/’, g, P),

p

"r= E R(Ea, Eb, Ea, Eb),
a,b=l

u, v=p+l

"rfae= E R(Ea, Eu, Ea, Eu)
a=l u=p+l

where R is the Riemannian curvature operator of the manifold, and (E }aP__
and (Eu}w,/ are local orthonormal frames of Y and o, respectively.

It is obvious that the scalar curvature of (./g, g, P), , can be written as

r z+ 2z,’ae+

THEOREM 2.8.
Then

Let (kl, g, P) be a Riemannian almost-product manifold.

4r*’ae= IldPII 2 IIVPII 2 + 2 div,- aae+ 2 divae a*"

where div aae= EPa_xg(Veoag, Ea) divae a*’= E"u=p+lg(Ve.a, Eu), and
{ E } aP= and { Eu }"u=p + are local orthonormal frames of Y and g’ respec-
tively.
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Proof. By applying Theorem 1.2 to the T,///’-valued 1-form P, we obtain

z ,r’= 2F’ + IIdPII = / IIPII z- IIvPII z

Now, r rP= 4vr and

which implies the result.

COROLLARY 2.9. Let (’, g, P) be a Riemannian almost-product manifold.
(i) If ( [g, g, P) is of type (AF, AF), then

rae 1
gllx7PII =

(ii) If (1, g, P) is of type (F, F), then

1
4rrae= -IIvPII 2 + 2 divaae+ 2 divae aC

(iii) If (t’, g, P) is of type (F1, F1), then

1

(iv) If ( /[. g, P) is of type (F.AF). then

2rae= -IITII 2 + 110112 + div. a.
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(v) If ( 1[, g, P) is of type (D2, D2) then

2rae= IIvPII2- 11112- 2 + diver a*+ div a.
(vi) If (dtt, g, P) is of type (AF, D2), then

1 1 a2*’ae= IIVPII2- lla*ll 2 + dive.

(vii) If (d/t, g, P) is of type (F, D2) then

2rCae= -1--Ila*l12 -]ITI] 2 + 110112 + div aae+ divae a.q

Proof. Results (i) through (iv) follow immediately from Theorem 2.8 and
Lemma 2.6.
For the remaining results, it is sufficient to consider that if (resp. ) is a

distribution with the property D2, then

Ax 11:1 211TI resp. A2 11*112- 2110112

COROLLARY 2.10. Let (/t’, g, P) be a compact, oriented Riemannian al-
most-product manifold. Then

The proof follows from Theorem 2.8 by considering that

L lf2 L lfdiver aae. 1 laell 2 * 1 and divae ar* 1 la’ll 2 1.

Of course, the formulas of Corollary 2.10 which contain div- aaeor divae a,
can be reformulated in compact manifolds.

COROLLARY 2.11. Let (4’, g, P) be a Riemannian almost-product manifold.

(i)

(ii)

If (tg, g, P) is of type (AF, AF), then .’ae> O, with equality holding
only if the manifold is locally a product.
If (, g, P) is of type (F, F) and the mean curvatures of the vertical
and horizontal foliations, restricted to each horizontal and vertical leaf
respectively, have zero divergence, then zrae< O, with equality holding
only if (.J[, g, P) is a locally-product manifold.
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(iii) If (t’, g, P) is of type (D2, D2) compact and oriented, then

(iv)

and the equality is satisfied if and only if each distribution, /’.and o, is

of dimension one or a totally geodesic foliation.
If (g, g, P) is compact and oriented, dim o= 1 and 7//" is a foliation
with minimal leaves, then fx,’a’. 1 < O, with equality holding if and
only if " is a totally geodesic foliation.

Proof. Results (i) and (ii) are deduced immediately from results (i) and (ii)
of Corollary 2.10 respectively.

(iii) Considering that

dive: a, 1 la*ll 2
* 1,

Ldiv f, 1 - I111 * 1

and by using (v) of Corollary 2.10, we deduce

1 + q2q lall 2 1

and so, if dim e’> 2 and dim :> 2, we have f,,:g, 1 > 0, equality holding
only if the manifold is locally a product.

If dim:= 1, is a totally umbilical foliation. Therefore

211TII 2 ax lla’ll 2 211TIt 2

and the last formula can be written in the following form:

2f.,,:, 1 fllOII 2 1+ q-2fl2q lal12*l"

So, if q > 2, then f,,:::, 1 > 0, equality holding if and only if *’ is a
totally geodesic foliation. And if q 1, the integral vanishes.
For dim o,’= 1, the argument is analogous.
(iv) If (’, g, P) is of type (F1, F2), compact and oriented, we have

2/-.w, 1 q- 1
2q

which implies the result.
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Comments. Result (i) in Corollary 2.9 (and consequently the result (i) in
Corollary 2.11) was obtained in [1] by using a different method.

Result (ii) in Corollary 2.11 generalizes two results obtained in [1]. There, it
was shown for a manifold of type (F2, F2) instead of (F, F). Furthermore, in
[1], it was also shown that, on manifolds of type (F1, F1), we have rar< 0, the
equality holding only if the manifold is locally a product.

Result (iii) in Corollary 2.11 generalizes a result obtained in [12]. There, the
same conclusion is obtained for a manifold of type (F2, F2).

3. Weak-harmonic distributions-

In [7], F.W. Kamber and Ph. Tondeur analyzed some properties of harmonic
foliations and in [8] the same authors examined the relation between the
harmonicity property of a foliation with bundle-like metric and the sectional
curvature of the manifold, obtaining the following result: Let (/, g, P) be a
Riemannian almost-product manifold of type (F, TGF) with non-negative
sectional curvature. If f is a harmonic foliation, then it is a totally geodesic
foliation [8, Corollary 2.27].
We shall begin this section by extending the concept of harmonicity which

appears in [7] and [8], obtaining afterwards a generalization of the above
result. Furthermore, we shall obtain, among other results, some generalizations
of several other conclusions found in [8].

DEFINITION 3.1. Let (,////, g, P) be a Riemannian almost-product mani-
fold. We define the following connection on the vector bundle

A

VyarX=  (VyX), X, Y

Its torsion, T, is the 9re-valued 2-form on /’ defined by

Tar(M, N) Vff($N) VNar($M) [M, N], M, N (’).

Writing this expression for vertical and horizontal vector fields, we have

Tar(A, B) -$[A, B], Tar(A, X) O, Tar(X, Y) 0

with A, B
It is evident that XTar is torsion free if and only if / is integrable, and in

this case, X7 ar is the basic connection which is used in [7] to define the concept
of harmonic foliation.
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PROPOSITION 3.2. g7 is a metric connection (with respect to the metric

induced by g in ’) if and only if is a distribution with the property AF.

The proof is immediate.
The connection X7r determines the ,operators V, d, 8 and A on

--valued forms, which, in this section, will be applied to the --valued 1-form

LEMMA 3.3

(i) gr: B -(VaP)B, A, B :;

(ii) = --(iiil (, Nl r(, Nl, , N s

The proof is immediate.

DEISTO 3.4. (i) We will say that the distribution is harmonic if
the -valued 1-form , is V -closed and V -coclosed, that is, d , 0.

(ii) We will say that is a weak-harmonic distribution if the -valued
1-form ,4 satisfies g(A, ,)- 0.

It is evident that if is a harmonic distribution, then it is a weak-harmonic
distribution.

THEOREM 3.5. (i) is V -coclosed if and only if / is a distribution with
the property D1.

(ii) is V-closed if and only if " is a foliation.
(iii) F" is a harmonic distribution if and only if it is a foliation with minimal

leaves.

The proof follows immediately from Lemma 3.3.

THEOREM 3.6. Let (,r, g, p) be a Riemannian almost-product manifold.
Then:

1
(i) g(A[, [) - div ar+ IlSxll 2.

1 12 2 1 ..(ii) g(Ae/;, ’) -glIX7PI 115211 di%r a+
(iii) If (, g, P) is of type (-, AF), then

1 1 ,raeg(Ar, ) -2-11TII 2 11OII 2 +
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Proof (i) Let (E)’.t and (E.).+t be local orthonormal frames of "and " respectively.

g(, ) g((),)
u-p+l

a-1 u-p+1

1g( d"g’ ( Ea "O’TEaEu ) Eu ) "+" " div a"

P n

a-1 u-p+1

1{--g((TEat)TEagu, gu)-1- g((TVVEaEu.P)ga, gu) }

1 P n

E E g((v?)e.,
a-1 u-p+l

1 P n

+E E
a, b.=l u-p+1

1g((Ve,P)Ea, Eu)g(Vf.,,Eu, Eb) + " diva
1 1 1
-{[TI[2- ’At + --divar

1 a.-IlSxll 2 + - divg

(ii) By using (i), Lemma 2.6 and Theorem 2.8, we have

4g(Ag/;, ,) 411S112 + 2 diver ar

211TII 2 + IIdPII2- IIX7PII 2 + A2 + 2divg ar

211T[[ 2 + 4z’g- 2 diver ag+ A2

1
[[vPl[ 2 4llSEll 2 2 diver ae+ 4zrg.

Evidently, if o’ is a distribution with the property AF, this formula is that
given in (iii).
The formula given in (iii) of the last Theorem was obtained in [8] in the case

that Y/" is a foliation.
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COROLLARY 3.7. Let (/t’, g, P) be a Riemannian almost-product manifold.
(i) If (g, g, P) is of type (-, TGF) and Y/" is a weak-harmonic

distribution, then yr<_ O, with equality holding only if the manifold is
locally a product.

(ii) If (g, g, P) is of type (F, TGF) and divar ar= 0, then rg <_ O,
where the equality holds only if the manifold is locally a product.

(iii) If (g, g, P) is of type (AF,-), then Y/" is not a weak-harmonic
distribution, unless it is a totally geodesic foliation.

(iv) A distribution with the property D is weak-harmonic if and only if it is
harmonic.

(v) If (g, g, P) is compact and oriented, then Y is a weak-harmonic
distribution if and only if it is a harmonic distribution.

(vi) If Y/" is a weak-harmonic distribution and 9f’ is a foliation satisfying
diver etg= 0 (in particular if 9f’ is a foliation with minimal leaves),
then ’’<_ O, with equality holding only if the manifold is locally a
product.

(vii) If Y is a weak-harmonic distribution, dim 9f’= 1 and a has zero
divergence, then a<_ O, the equality holding if and only if Y/" is a
totally geodesic foliation.

Proof.
above.
()

(iii)

(iv)
(v)

Result (i) is an immediate consequence of part (iii) of the theorem

If is a foliation and divg ar= 0, then, from part (i) of the last
theorem, g(Ag,, ) 0, and the result follows from (i).
If Y/" is a distribution with the property AF, then, by using (i) of
Theorem 3.6, we deduce g(A", ,) IITII 2 and the result follows.
This follows immediately from Theorem 3.6(i).
By integrating formula (i) of Theorem 3.6, we have

which implies the result.
(vi) This is a direct consequence of Theorem 3.6(ii).
(vii) If dim 9if= 1, then IIS2112 0 and 110112 1/211aell 2. So we deduce

from Theorem 3.6(ii) that

1g(A, ) llZll
1
-div a +

and the result follows.

We observe that the result (ii) in the last corollary is clearly more general
than Corollary 2.27 in [8]. In any case, this result is an immediate consequence
of Corollary 2.11(ii).
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Furthermore, we must note that if $/ is a foliation satisfying divae a= 0,
then it is a weak-harmonic distribution, but it is not necessarily a harmonic
distribution.
The harmonic foliations of codimension one are also analyzed in [8], where

the following result is obtained.

If is a transversally orientable foliation of codimension one on a
compact and oriented Riemannian manifold d/t’ with non-negative Ricci-
curvature then:

(i) If the Ricci operator is positive for at least one point in t’, the
foliation is not harmonic.

(ii) If v" is harmonic, then " is totally geodesic.

Since a harmonic distribution is a foliation with minimal leaves, this result is
a consequence of the formula

which is true if dim= 1 and Y/" has the property F (Corollary 2.11(iv)).
Furthermore, the result can be stated without the hypothesis of integrability of
Y/" (nevertheless, we must note that harmonicity implies integrability), and
considering the assumption on zr instead of that on the Ricci-curvature.
On the other hand, part (vii) in Corollary 3.7 can.be considered as a version

of this result for non-compact manifolds.
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