A FINITENESS THEOREM FOR THE SPECTRAL SEQUENCE OF A RIEMANNIAN FOLIATION

BY
Jesús A. Alvarez López

Introduction

Let M be a smooth closed manifold which carries a smooth foliation \mathscr{F} of dimension p and codimension q. A differential form ω of degree r is said to be of filtration $\geq k$ if it vanishes whenever $r-k+1$ of the vectors are tangent to \mathscr{F}. In this way the deRham complex of the differential forms becomes a filtered differential algebra and we have the spectral sequence ($E_{i}(\mathscr{F}), d_{i}$) which converges after a finite number of steps to the (finite dimensional) cohomology of M.

It is clear that $E_{2}^{0,0}(\mathscr{F}), E_{2}^{1,0}(\mathscr{F}), E_{2}^{q-1, p}(\mathscr{F})$ and $E_{2}^{q, p}(\mathscr{F})$ are of finite dimension but there are another vectorial spaces $E_{2}^{u, v}(\mathscr{F})$ that may be infinite-dimensional as shown in the examples of G.W. Schwarz [7].

In [6], K.S. Sarkaria proves that $E_{2}(\mathscr{F})$ is finite-dimensional when \mathscr{F} is transitive. He uses techniques of functional analysis (constructing a 2-parametrix).

In [2], A. El Kacimi-Alaoui, V. Sergiescu and G. Hector prove that the basic cohomology, [which is equal to $E_{2}^{;}, 0(\mathscr{F})$) is finite-dimensional. They prove it step to step for Lie foliations, transversely parallelizable foliations and Riemannian foliations.

This paper establishes the following improvement of the two results above.

Theorem. If a smooth closed manifold M carries a Riemannian foliation \mathscr{F} then $E_{2}(\mathscr{F})$ is finite-dimensional.

To prove it we assume that \mathscr{F} is transversely oriented and construct an operation of a Lie algebra in $E_{1}(\hat{\mathscr{F}})$, where $\hat{\mathscr{F}}$ is the horizontal lift of \mathscr{F} to the principal fiberbundle of oriented orthonormal frames with the transverse

Received January 9, 1987.

Levi-Civita connection [4]. Then $E_{2}(\mathscr{F})$ and $E_{2}(\hat{\mathscr{F}})$ can be related by results of [1] and by the above result of [6], the theorem follows.

This result has also been obtained recently by Sergiescu [6] but using different techniques.

Finally, I want to express my deep gratitude to Xosé M. Masa Vázquez, who is guiding me through this subject.

1. The spectral sequence associated to a foliation

Let M be a smooth manifold which carries a foliation \mathscr{F} of dimension p and codimension q. We may describe \mathscr{F} by the exact sequence of vectorbundles

$$
\begin{equation*}
0 \rightarrow T \mathscr{F} \rightarrow T M \rightarrow Q \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where $T \mathscr{F} \subset T M$ denotes the integrable subbundle of vectors of M tangent to \mathscr{F}, and $Q=T M / T \mathscr{F}$ is the normal bundle.

The spectral sequence $\left(E_{i}(\mathscr{F}), d_{i}\right)$ associated to \mathscr{F} arises from the following filtration of the deRham complex (A, d) of M :

$$
\begin{equation*}
F^{k}\left(A^{r}\right)=\left\{\alpha \in A^{r} / i_{v}(\alpha)=0 \quad \text { for } v=X_{1} \wedge \cdots \wedge X_{r-k+1}, X_{i} \in \Gamma T \mathscr{F}\right\} \tag{1.2}
\end{equation*}
$$

With this decreasing filtration, (A, d) is a graded filtered differential algebra. Since $F^{q+1}(A)=0,\left(E_{i}(\mathscr{F}), d_{i}\right)$ collapses at the $(q+1)$-th term and is convergent to $H_{D R}(M)$.

The choice of a Riemannian metric on M defines a subbundle $\nu=T \mathscr{F}{ }^{\perp} \subset$ $T M$ and a splitting $\sigma: Q \rightarrow T M$ of (1.1) such that $\sigma(Q)=\nu$. Then (A, d) is a bigraded differential algebra if we define

$$
\begin{equation*}
A^{u, v}=\Gamma\left(\Lambda^{v} T^{*} \mathscr{F} \otimes \Lambda^{u} \nu^{*}\right)=\Gamma \Lambda^{v} T^{*} \mathscr{F} \otimes_{C^{\infty}(M)} \Gamma \Lambda^{u} \nu^{*} \tag{1.3}
\end{equation*}
$$

for $0 \leq u \leq q$ and $0 \leq v \leq p$.
The exterior derivative d may be decomposed as the sum of the bihomogeneous operators $d_{\mathscr{F}}, d_{1,0}$ and $d_{2,-1}$ of bidegrees $(0,1),(1,0)$ and $(2,-1)$ respectively, which satisfy

$$
\begin{align*}
& d_{\mathscr{F}}^{2}=0, d_{2,-1}^{2}=0, \quad d_{\mathscr{F}} d_{1,0}+d_{1,0} d_{\mathscr{F}}=0 \tag{1.4}\\
& d_{1,0} d_{2,-1}+d_{2,-1} d_{1,0}=0, \quad d_{1,0}^{2}+d_{2,-1} d_{\mathscr{F}}+d_{\mathscr{F}} d_{2,-1}=0
\end{align*}
$$

The filtration of A may be represented by

$$
F^{k}(A)=\underset{u \geq k}{\oplus} A^{u}
$$

Hence we have the following well known theorem.
(1.6) Theorem [3]. We have the following identities of bigraded differential algebras.
(i) $\quad\left(E_{0}(\mathscr{F}), d_{0}\right)=\left(A, d_{\mathscr{F}}\right)$,
(ii) $\quad\left(E_{1}(\mathscr{F}), d_{1}\right)=\left(H\left(A, d_{\mathscr{F}}\right), d_{1,0^{*}}\right)$.

It follows that $E_{2}(\mathscr{F})=H\left(H\left(A, d_{\mathscr{F}}\right), d_{1,0^{*}}\right), E_{1}{ }^{;}(\mathscr{F})=A_{b}(\mathscr{F})$, and $E_{2}^{;},(\mathscr{F})=H_{b}(\mathscr{F})$, where $A_{b}(\mathscr{F})$ and $H_{b}(\mathscr{F})$ are respectively the algebra of basic forms and the basic cohomology of \mathscr{F}.

2. Riemannian foliations

Assume that in Section 1, \mathscr{F} is Riemannian and transversely oriented. Let $\pi: \hat{M} \rightarrow M$ be the principal $\mathrm{SO}(q)$-bundle of oriented orthonormal transverse frames. We have on \hat{M} the transverse Levi-Civita connection ω with curvature Ω and the transversely parallelizable foliation $\hat{\mathscr{F}}$, where $T \hat{\mathscr{F}}$ is the horizontal lifting of $T \mathscr{F}$ [4], which satisfy

$$
\operatorname{dim}(\hat{\mathscr{F}})=p \quad \text { and } \quad \operatorname{codim}(\hat{\mathscr{F}})=q+q_{0}
$$

where $q_{0}=\operatorname{dim}(S O(q))=\frac{1}{2} q(q-1)$. Let $\hat{\nu}$ denote the horizontal lifting of ν and V the vertical subbundle. $T \hat{\mathscr{F}}, \hat{v}$ and V are preserved by the action of $\mathrm{SO}(q)$ on $T M$.

Let (\hat{A}, \hat{d}) denote the deRham complex of M, which is a trigraded algebra if we set

$$
\begin{equation*}
\hat{A}^{s, t, v}=\Gamma\left(\Lambda^{v} T^{*} \hat{\mathscr{F}} \otimes \Lambda^{t} \hat{\nu}^{*} \otimes \Lambda^{s} V^{*}\right) \tag{2.1}
\end{equation*}
$$

for $0 \leq s \leq q_{0}, 0 \leq t \leq q$ and $0 \leq v \leq p$. Thus, if we define

$$
\begin{equation*}
\hat{A}^{u, v}=\underset{s+t=u}{\bigoplus} \hat{A}^{s, t, v} \tag{2.2}
\end{equation*}
$$

for $0 \leq u \leq q_{0}+q$ and $0 \leq v \leq p,(\hat{A}, \hat{d})$ is a bigraded differential algebra from which the spectral sequence $\left(E_{i}(\hat{\mathscr{F}}), \hat{d_{i}}\right)$ arises according to Section 1.

The exterior derivative \hat{d} may be decomposed as the sum of the bihomogeneous operators $d_{\mathscr{F}}, \hat{d}_{1,0}$ and $\hat{d}_{2,-1}$ of bidegrees $(0,1),(1,0)$ and $(2,-1)$ respectively, satisfying the analogue of (1.4). Then (1.6) shows that

$$
\begin{equation*}
\left(E_{1}(\hat{\mathscr{F}}), \hat{d_{1}}\right)=\left(H\left(\hat{A}, d_{\mathscr{F}}\right), \hat{d}_{1,0^{*}}\right) \tag{2.3}
\end{equation*}
$$

Let $(s o(q), i, \theta, \hat{A}, \hat{d})$ be the operation of $s o(q)$ associated with the principal $\mathrm{SO}(q)$-bundle $\pi: \hat{M} \rightarrow M$ and ω^{*} the algebraic connection, with curvature Ω^{*}, corresponding to ω, (Section 8.22 of vol. III of [1]). Let $\left(E_{i}\left(\hat{A_{\theta=0}}\right), \hat{d_{i}}\right)$ denote the spectral sequence corresponding to the bigraded differential algebra $\left(\hat{A_{\theta}=0}, \hat{d}\right)$.

The homomorphism $\pi^{*}: A \rightarrow \hat{A}$ can be regarded as an isomorphism

$$
\begin{equation*}
\pi^{*}: A \xrightarrow{\cong} \hat{A}_{i=0, \theta=0} . \tag{2.4}
\end{equation*}
$$

We will let $A=\hat{A}_{i=0, \theta=0}$.
For $Z \in \operatorname{so}(q), i_{Z}$ and θ_{Z} are trihomogeneous of tridegrees ($-1,0,0$) and $(0,0,0)$ respectively. Hence, comparing bidegrees in $i_{Z} \hat{d}+\hat{d i} Z_{Z}=\theta_{Z}$ and $\hat{d} \theta_{Z}$ $=\theta_{Z} \hat{d}$ we obtain

$$
\begin{align*}
i_{Z} d_{\mathscr{F}}+d_{\mathscr{F}} i_{Z} & =0, \quad i_{Z} \hat{d}_{1,0}+\hat{d}_{1,0} i_{Z}=\theta_{Z} \tag{2.5}\\
\theta_{Z} d_{\mathscr{F}} & =d_{\dot{F}} \theta_{Z}, \quad \theta_{Z} \hat{d}_{1,0}=\hat{d}_{1,0} \theta_{Z}
\end{align*}
$$

from which we can derive in cohomology the operation $\left(\operatorname{so}(q), i_{1}\right.$, $\left.\theta_{1}, E_{1}(\hat{\mathscr{F}}), \hat{d_{1}}\right)$.

The algebraic connection $\omega^{*}: s o(q)^{*} \rightarrow \hat{A}^{1,0,0} \subset \hat{A}^{1,0}$ satisfies

$$
\operatorname{Im}\left(\omega^{*}\right) \subset \hat{A}^{1,0} \cap \operatorname{Ker}\left(d_{\mathscr{F}}\right)=E_{1}^{1,0}(\hat{\mathscr{F}}) \quad[2]
$$

then

$$
\omega_{1}^{*}=\omega^{*}: \operatorname{so}(q)^{*} \rightarrow E_{1}^{1,0}(\hat{\mathscr{F}})
$$

is an algebraic connection for $\left(\operatorname{so}(q), i_{1}, \theta_{1}, E_{1}(\hat{\mathscr{F}}), \hat{d}_{1}\right)$.
We have the isomorphism of graded algebras (Section 8.4 of vol. III of [1]):

$$
\begin{equation*}
f: \hat{A_{i=0}} \otimes \Lambda s o(q)^{*} \xrightarrow{\cong} \hat{A}, \quad \alpha \otimes \phi \mapsto \alpha \cdot \omega_{\Lambda}^{*}(\phi) . \tag{2.6}
\end{equation*}
$$

According to the identification given by f we obtain (Section 8.7 of vol. III of [1]):

$$
\begin{align*}
i_{Z} & =w \otimes i_{s o(q) Z} \tag{2.7}\\
\theta_{Z} & =\theta_{Z} \otimes 1+1 \otimes \theta_{s o(q) Z} \tag{2.8}\\
\hat{d} & =w \otimes d_{s o(q)}+\hat{d}_{\theta}+h_{\Omega}+\nabla_{i=0} \otimes 1 \tag{2.9}
\end{align*}
$$

where $Z \in \operatorname{so}(q), w$ is the degree involution, ∇ is the covariant derivative in \hat{A} associated with ω^{*}, and $d_{s o(q)}, d_{\theta}$ and d_{Ω} are defined by

$$
\begin{align*}
d_{s o(q)} & =\frac{1}{2} \sum_{l} \mu\left(e^{* l}\right) \theta_{s o(q) e_{l}} \tag{2.10}\\
d_{\theta} & =\sum_{l} w \theta_{e_{l}} \otimes \mu\left(e^{* l}\right), \tag{2.11}\\
h_{\Omega} & =\sum_{l} w \mu\left(\Omega^{*}\left(e^{* l}\right)\right) \otimes i_{s o(q) e_{l}}, \tag{2.12}
\end{align*}
$$

being $e^{* l}, e_{l}$ a pair of dual bases for $s o(q)^{*}$ and $s o(q)$, and $\mu\left(e^{* l}\right)$ is the multiplication by $e^{* l}$.

Over $\hat{A}_{\theta=0}$ we have

$$
\begin{equation*}
\hat{d}=-w \otimes d_{s o(q)}+h_{\Omega}+\nabla_{i=0} \otimes 1 \tag{2.13}
\end{equation*}
$$

For all $X, Y \in \Gamma T \hat{M}, \omega(X)=0$ and $Y \in \Gamma T \hat{F}$ implies that $\omega([X, Y])=0$ [4]. Hence we can regard Ω^{*} as

$$
\begin{equation*}
\Omega^{*}: s o(q)^{*} \rightarrow \Gamma \Lambda^{2} \hat{\nu}^{*}=\hat{A}^{0,2,0}=\hat{A}_{i=0}^{2,0} \otimes 1 \tag{2.14}
\end{equation*}
$$

and so h_{Ω} is trihomogeneous of tridegree ($-1,2,0$).
According to the bigradation of $\hat{A}_{i=0}, \nabla_{i=0}$ may be decomposed as the sum of the bihomogeneous operators $\nabla_{i=0 ; 0,1}, \nabla_{i=0 ; 1,0}$ and $\nabla_{i=0 ; 2,-1}$ of bidegrees $(0,1),(1,0)$ and $(2,-1)$ respectively. Then, by comparing bidegrees in (2.9) and (2.13) we obtain that over \hat{A},

$$
\begin{align*}
d_{\hat{H}} & =\nabla_{i=0 ; 0,1} \otimes 1=d_{\mathscr{H}} \otimes 1 \tag{2.15}\\
\hat{d}_{1,0} & =w \otimes d_{s o(q)}+\hat{d}_{\theta}+\nabla_{i=0 ; 1,0} \otimes 1+h_{\Omega} \tag{2.16}
\end{align*}
$$

and over $\hat{A}_{\theta=0}$,

$$
\begin{equation*}
\hat{d_{1,0}}=-w \otimes d_{s o(q)}+\nabla_{i=0 ; 1,0} \otimes 1+h_{\Omega} \tag{2.17}
\end{equation*}
$$

We have analogous results for $\left(s o(q), i_{1}, \theta_{1}, E_{1}(\hat{\mathscr{F}}), \hat{d_{1}}\right)$ with ω_{1}^{*}.
(2.18) Proposition. $H\left(E_{1}(\hat{\mathscr{F}})_{\theta_{1}=0}\right)$ is finite-dimensional if and only if $H\left(E_{1}(\hat{\mathscr{F}})_{i_{1}=0, \theta_{1}=0}\right)$ is finite-dimensional.

Proof. Since $s o(q)$ is reductive it follows that $H\left(E_{1}(\hat{\mathscr{F}})_{\theta_{1}=0}\right)$ has finite type if and only if $H\left(E_{1}(\hat{\mathscr{F}})_{i_{1}=0, \theta_{1}=0}\right)$ has finite type (Corollary VI of Section 9.5 of vol. III of [1]). The proof is completed because we have that $E_{1}^{u, v}(\hat{\mathscr{F}})=$ 0 if $u>q+q_{0}$ or $v>p$.

3. Invariant cohomology

Let M and N be smooth manifolds. N is assumed to be connected, oriented and of dimension n. Let π_{M} and π_{N} denote the canonical projections of $M \times N$ over M and N respectively. By $f_{N}: A_{c v}(M \times N) \rightarrow A(M)$ we mean the integration along the fiber of the trivial oriented fiberbundle π_{M} : $M \times N \rightarrow M$.

For $r \geq 0$ and any $\phi \in A_{c}^{r}(N)$ we may define the linear homogeneous operator of degree $r-n$

$$
\begin{equation*}
I_{\phi}: A(M \times N) \rightarrow A(M), \quad \alpha \mapsto f_{N} \alpha \Lambda \pi_{N}^{*}(\phi) \tag{3.1}
\end{equation*}
$$

Now let ϕ denote a fixed element of $A_{c}^{n}(N)$ such that $\int_{N} \phi=1$. Then $I_{\phi} d=d I_{\phi}$ and $I_{\phi} \pi_{M}^{*}=1$. Fix $b \in N$ and let $j_{b}: M \rightarrow M \times N$ denote the inclusion opposite b.
(3.2) Theorem (Section 4.4 of vol. II of [1]). There exists a linear homogeneous operator $l: A(M \times N) \rightarrow A(M)$ of degree -1 such that $I_{\phi}-j_{b}^{*}=$ $d l+l d$.

Proof. Let U be a contractible open neighbourhood of b. Given $\psi \in A_{c}^{n}(U)$ such that $\int_{U} \psi=1$ there exists $X \in A_{c}^{n-1}(N)$ such that $\phi-\psi=d X$.

Let $\lambda: M \times U \rightarrow M \times N$ denote the inclusion. ψ determines an operator

$$
\tilde{I}_{\psi}: A(M \times U) \rightarrow A(M)
$$

such that $\tilde{I}_{\psi} \lambda^{*}=I_{\psi}$.

Let $H: U \times I \rightarrow U$ be any homotopy connecting 1_{U} with cte $_{b}: U \rightarrow b$ ($I=[0,1]$). Thus we have the homogeneous linear operator of degree -1 ,

$$
\tilde{h}: A(M \times U) \rightarrow A(M \times U), \quad \alpha \mapsto f_{I} i_{\partial / \partial t}\left(1_{M} \times h\right)^{*} \alpha \cdot d t
$$

satisfying $\left(1_{M} \times c t e_{b}\right)^{*}-1=d \tilde{h}+\tilde{h} d$. If we define $l=I_{X} w-\tilde{I}_{\psi} \tilde{h} \lambda^{*}$, the theorem follows.

Let G be a compact Lie group of dimension n and $T: M \times G \rightarrow M$ an action. For each $a \in G$ we define T_{a} to be the diffeomorphism of M given by the restriction of T to $M \times\{a\}$, and let R_{a} and L_{a} be the right and left translations of G. Assume that G has a left-invariant orientation and let Δ denote the unique left-invariant n-form such that $\int_{G} \Delta=1$. We obtain the homogeneous linear operator

$$
\begin{equation*}
\rho=I_{\Delta} T^{*}: A(M) \rightarrow A(M), \quad \phi \mapsto f_{G} T^{*} \phi \Lambda \pi_{G}^{*} \Delta . \tag{3.3}
\end{equation*}
$$

By $A_{I}(M)$ and $H_{I}(M)$ we mean the differential subalgebra of T-invariant differential forms and the T-invariant cohomology of M respectively. Let j : $A_{I}(M) \rightarrow A(M)$ be the inclusion.
(3.4) Proposition (Section 4.3 of vol. II of [1]). $\quad \rho j=1$.
(3.5) Theorem (Section 4.3 of vol. II of [1]). If G is compact and connected then

$$
j^{*}: H_{I}(M) \stackrel{\cong}{\rightrightarrows} H(M) .
$$

Proof. From (3.4) we obtain $\rho_{*} j_{*}=1$. Let e denote the identity element of G. According to (3.2) we can define a linear homogeneous operator

$$
l: A(M \times G) \rightarrow A(M)
$$

of degree -1 such that $I_{\Delta}-j_{e}^{*}=d l+l d$. Then for $h=l T^{*}$ we obtain $j \rho-1=d h+h d$.

Let $J: G \times G \rightarrow G$ be the smooth map defined by $(a, g) \mapsto a^{-1} g a$. For any $a \in G$ the restriction of J to $\{a\} \times G$ determines the interior automorphism $J_{a}=R_{a} L_{\left(a^{-1}\right)}$. Then we define the homogeneous linear operator of degree 0,

$$
\begin{equation*}
\eta=I_{\Delta} J^{*}: A(G) \rightarrow A(G), \quad \phi \mapsto f_{G} J^{*} \phi \Lambda \pi_{G}^{*} \Delta \tag{3.6}
\end{equation*}
$$

We have the differential subalgebra of $A(G)$ given by

$$
\begin{equation*}
A_{J^{*}=1}(G)=\bigcap_{a \in G} \operatorname{Ker}\left(J_{a}^{*}-1\right) \tag{3.7}
\end{equation*}
$$

Let $H_{J^{*}=1}(G)$ denote its cohomology and let $i: A_{J^{*}=i}(G) \rightarrow A(G)$ be the inclusion. With the same arguments as in (3.4) and (3.5) we get the following two results.
(3.8) Proposition. $\quad \eta i=1$.
(3.9) Theorem. If G is compact and connected then $i_{*}: H_{J^{*}=1}(G) \xrightarrow{\cong} H(G)$.
(3.10) Lemma. If G is compact and connected for defining l in the proof of (3.5) (following the proof of (3.2)) we can choose ψ and X belonging to $A_{J^{*}=1}(G)$ and $H: U \times I \rightarrow U$ satisfying $R_{a} H_{g}=L_{a} H_{J_{a}(g)}$ for any $a \in G$ and any $g \in U$ where $H_{g}: I \rightarrow U$ is the restriction of H to $\{g\} \times I$.

Proof. Because G is compact we can take the canonical biinvariant Riemannian metric on G. For $\varepsilon>0$ such that $\exp : B(0, \varepsilon) \xrightarrow{\cong} B(e, \varepsilon), U=B(e, \varepsilon)$ is contractible and we can take the homotopy

$$
H: U \times I \rightarrow U, \quad(g, t) \mapsto \exp ((1-t) \cdot \log (g))
$$

connecting 1_{U} with $c t e_{e}: U \rightarrow e$.
For $g \in U, H_{g}$ is the unique geodesic in U joining g with e and defined in I. Hence $R_{a} H_{g}=L_{a} H_{J_{a}(g)}: I \rightarrow B(a, \varepsilon)$ because both ones are the unique geodesic in $B(a, \varepsilon)$ joining $g a$ with a and defined in I.

Let Θ be the biinvariant volume form corresponding to the above Riemannian metric on G. Then $\Delta=\left(1 / \int_{G} \Theta\right) \cdot \Theta$ is biinvariant and thus $\eta \Delta=\Delta$.

Let us take $\psi \in A_{c}(U)$ and $X \in A^{n-1}(G)$ such that $\int_{G} \psi=1$ and $d X=\Delta$ $-\psi$. For any $a \in G$, since J_{a} is an isometry with e as fixed point we have $\eta \psi \in A_{c}^{n}(U)$. From (3.8) and (3.9) we obtain $\int_{G} \eta \psi=\int_{G} \psi=1$, and on the other hand $d \eta X=\eta d X=\Delta-\eta \psi$. So we can define l using $\eta \psi, \eta X$ and this H.
(3.11) Proposition. In the proof of (3.5) l can be taken such that $T_{a} h=h T_{a}$ for any $a \in G$.

Proof. Assume that l is defined as in (3.10). Fix $\phi \in A^{r}(M)$ and $x \in M$. Then

$$
\left(T^{*} \phi\right)_{x} \in \sum_{s+t=r} A^{s}\left(G, \Lambda^{t} T_{x}^{*} M\right),
$$

and its component of degree 1 may be represented by

$$
\left(T^{*} \phi\right)_{x}^{1}=\sum_{i} \alpha_{i} \otimes \gamma_{i} \in \Lambda^{r-1} T_{x}^{*} M \otimes A^{1}(G) .
$$

For any $a \in G$ we have $T_{a} T=T\left(1 \times R_{a}\right)$ and $T=T\left(T_{\left(a^{-1}\right)} \times L_{a}\right)$, so we obtain

$$
T^{*} T_{a}^{*}=\left(1 \times R_{a}\right)^{*} T^{*} \quad \text { and } \quad\left(T_{\left(a^{-1}\right)} \times L_{a}\right) * T^{*} .
$$

On the other hand, since G is connected the right and left translations in G are orientation-reserving. Hence we have

$$
\begin{aligned}
\left(I_{X} T^{*} T_{a}^{*} \phi\right)(x) & =\int_{G}\left(T^{*} T_{a}^{*} \phi\right)_{x}^{1} \cdot X \\
& =\int_{G}\left(1 \times R_{a}\right)^{*}\left(T^{*} \phi\right)_{x}^{1} \cdot X \\
& =\sum_{i} \alpha_{i} \cdot \int_{G} R_{a} \gamma_{i}^{*} \cdot X \\
& =\sum_{i} \alpha_{i} \cdot \int_{G} \gamma_{i} \cdot R_{\left(a^{-1}\right)}^{*} X \\
& =\sum_{i} \alpha_{i} \cdot \int_{G} \gamma_{i} \cdot L_{\left(a^{-1}\right)}^{*} X \\
& =T_{a}^{*} \sum_{i} T_{\left(a^{-1}\right)}^{*} \alpha_{i} \cdot \int_{G}\left(L_{a}^{*} \gamma_{i}\right) \cdot X \\
& =T_{a}^{*} \int_{G}\left(T_{\left(a^{-1}\right)} \times L_{a}\right) *\left(T^{*} \phi\right)_{x}^{1} \cdot X \\
& =T_{a}^{*} \int_{G}\left(T^{*} \phi\right)_{x a}^{1} \cdot X \\
& =T_{a}^{*}\left(I_{X} T^{*} \phi\right)(x a) \\
& =\left(T_{a}^{*} I_{X} T^{*} \phi\right)(x)
\end{aligned}
$$

Let $\xi=\tilde{I}_{\psi} \tilde{h} \lambda^{*} T^{*} T_{a}{ }^{*} \phi$ and $\zeta=T_{a}{ }^{*} \tilde{I}_{\psi} \tilde{h} \lambda^{*} T^{*} \phi$. We have

$$
\begin{aligned}
\xi(x) & =\int_{G}\left(f_{I} i_{\partial / \partial t}(1 \times H)^{*} T^{*} T_{a}^{*} \phi \cdot d t\right)_{x} \cdot \psi \\
& =\int_{G}\left(f_{I} i_{\partial / \partial t}(1 \times H)^{*}\left(1 \times R_{a}\right)^{*}\left(T^{*} \phi\right)_{x}^{1} \cdot d t\right) \cdot \psi \\
& =\sum_{i} w\left(\alpha_{i}\right) \cdot \int_{G}\left(f_{I} i_{\partial / \partial t} H^{*} R_{a}^{*} \gamma_{i} \cdot d t\right) \cdot \psi \\
\zeta(x) & =T_{a}^{*}\left(\tilde{I}_{\psi} \tilde{h} \lambda^{*} T^{*} \phi\right)(x a) \\
& =T_{a}^{*} \int_{G}\left(f_{I} i_{\partial / \partial t}(1 \times H)^{*}\left(T^{*} \phi\right)_{x a}^{1} \cdot d t\right) \cdot \psi \\
& =T_{a}^{*} \int_{G}\left(f_{I} i_{\partial / \partial t}(1 \times H)^{*}\left(T_{\left(a^{-1}\right)} \times L_{a}\right)^{*}\left(T^{*} \phi\right)_{x}^{1} \cdot d t\right) \cdot \psi \\
& =\sum_{i} w\left(\alpha_{i}\right) \cdot \int_{G}\left(f_{I} i_{\partial / \partial t} H^{*} L_{a}^{*} \gamma_{i} \cdot d t\right) \cdot \psi
\end{aligned}
$$

For any $g \in U$ and for any i it is easy to prove that

$$
\begin{aligned}
& \left(i_{\partial / \partial t} H^{*} R_{a}^{*} \gamma_{i} \cdot d t\right)_{g}=H_{g}^{*} R_{a}^{*} \gamma_{i} \\
& \left(i_{\partial / \partial t} H^{*} L_{a}^{*} \gamma_{i} \cdot d t\right)_{g}=H_{g}^{*} L_{a}^{*} \gamma_{i}
\end{aligned}
$$

in $A^{1}(I)$. Then

$$
\begin{aligned}
\left(f_{I} i_{\partial / \partial t} H^{*} R_{a}^{*} \gamma_{i} \cdot d t\right)(g) & =\int_{I} H_{g}^{*} R_{a}^{*} \gamma_{i}=\int_{I} H_{J(g)}^{*} L_{a}^{*} \gamma_{i} \\
& =\left(f_{I} i_{\partial / \partial t} H^{*} L_{a}^{*} \gamma_{i} \cdot d t\right)(J(g))
\end{aligned}
$$

and so we obtain

$$
\begin{aligned}
\xi(x) & =\sum_{i} w\left(\alpha_{i}\right) \cdot \int_{G}\left(\left(f_{I} i_{\partial / \partial t} H^{*} L_{a}^{*} \gamma_{i} \cdot d t\right) J_{a}\right) \cdot \psi \\
& =\sum_{i} w\left(\alpha_{i}\right) \cdot \int_{G} J_{a}^{*}\left(\left(f_{I} i_{\partial / \partial t} H^{*} L_{a}^{*} \gamma_{i} \cdot d t\right) \cdot \psi\right) \\
& =\sum_{i} w\left(\alpha_{i}\right) \cdot \int_{G}\left(f_{I} i_{\partial / \partial t} H^{*} L_{a}^{*} \gamma_{i} \cdot d t\right) \cdot \psi=\zeta(x)
\end{aligned}
$$

Therefore, recalling the definition of l and h, the theorem follows.

$$
\text { 4. } E_{2}\left(\hat{A}_{\theta=0}\right)=E_{2}(\hat{\mathscr{F}})
$$

We consider a Riemannian and transversely oriented foliation \mathscr{F} of a manifold M. In this section the notation established in Section 2 remains in force. Then, let $T: \hat{M} \times S O(q) \rightarrow \hat{M}$ be the action of $S O(q)$ on \hat{M}. It follows that the algebra $\hat{A}_{\theta=0}$ is equal to the algebra of T-invariant differential forms on \hat{M}, and let $j: \hat{A_{\theta=0}} \rightarrow \hat{A}$ be the inclusion. Since $S O(q)$ is compact and connected, according to Section 3 we can construct the linear homogeneous operators $\rho: \hat{A} \rightarrow \hat{A}_{\theta=0}$ and $h: \hat{A} \rightarrow \hat{A}$ of degrees 0 and -1 respectively, such that $\rho \hat{d}=\hat{d} \rho, \rho j=1$ and $j \rho-1=\hat{d h}+h \hat{d}$.

The deRham complex of $\hat{M} \times S O(q)$ may be decomposed as the direct sum of the following spaces

$$
\begin{align*}
A^{s, t, u, v}(\hat{M} \times S O(q))= & \Gamma\left(\Lambda^{v}\left(T^{*} \hat{\mathscr{F}} \times S O(q)\right) \otimes \Lambda^{u}\left(\hat{\nu}^{*} \times S O(q)\right)\right. \\
& \left.\otimes \Lambda^{t}\left(V^{*} \times S O(q)\right) \otimes \Lambda^{s}\left(\hat{M} \times T^{*} S O(q)\right)\right) \tag{4.1}
\end{align*}
$$

for $s, t, u, v \geq 0$, where $S O(q)$ and \hat{M} are identified with the trivial vectorbundles over themselves. Then, recalling the definitions of ρ and h we have an analogous decomposition for the deRham complex of $\hat{M} \times U$ and the following three lemmas have easy but tedious proofs.
(4.2) Lemma. $\quad T^{*}\left(\hat{A}^{t, u, v}\right) \subset \Sigma_{0 \leq s \leq t} A^{s, t-s, u, v}(\hat{M} \times S O(q))$.
(4.3) Lemma. If $\phi \in A(S O(q))$ then

$$
I_{\phi}\left(A^{s, t, u, v}(\hat{M} \times S O(q)) \subset \hat{A}^{t, u, v}\right.
$$

and it is 0 if $s \neq q_{0}-\operatorname{deg}(\phi)$.
(4.4) Lemma. $\tilde{h}\left(A^{s, t, u, v}(\hat{M} \times U)\right) \subset A^{s-1, t, u, v}(\hat{M} \times U)$.

Applying (4.2), (4.3) and (4.4) we get:
(4.5) Proposition. ρ and h are trihomogeneous of tridegrees $(0,0,0)$ and $(-1,0,0)$ respectively.

Therefore for all $i \geq 0$ we have

$$
\begin{equation*}
E_{i}\left(\hat{A}_{\theta=0}\right) \underset{\rho_{i}}{\stackrel{j_{i}}{\rightleftarrows}} E_{i}(\hat{\mathscr{F}}) \tag{4.6}
\end{equation*}
$$

where $\rho_{i} j_{i}=1$. And comparing bidegrees we have

$$
\begin{equation*}
d_{\hat{F} F} h+h d_{\mathscr{F} F}=0 \quad \text { and } \quad \hat{d}_{1,0} h+h \hat{d}_{1,0}=j \rho-1 \tag{4.7}
\end{equation*}
$$

Hence for $u, v \geq 0$ we obtain

$$
\begin{equation*}
h_{1}: E_{1}^{u, v}(\hat{\mathscr{F}}) \rightarrow E_{1}^{u-1, v}(\hat{\mathscr{F}}) \tag{4.8}
\end{equation*}
$$

where $h_{1} \hat{d_{1}}+\hat{d_{1}} h_{1}=j_{1} \rho_{1}-1$. Thus $j_{2} \rho_{2}=1$ and we have the following result.
(4.9) THEOREM. $\quad j_{2}: E_{2}\left(\hat{A}_{\theta=0}\right) \xrightarrow{\cong} E_{2}(\hat{\mathscr{F}})$.

5. $E_{2}(\mathscr{F})$ is finite-dimensional for \mathscr{F} Riemannian and M closed

A smooth foliation is called transitive if evaluating all its infinitesimal transformations at each point we get all the tangent vectors [5].
(5.1) Theorem [5]. If a smooth closed manifold carries a transitive foliation then the second term of its spectral sequence is finite-dimensional.

Clearly every transversely parallelizable foliation is transitive, (this is false for Riemannian foliations). Then, going back to our cases in Sections 2 and 4, we see that $\hat{\mathscr{F}}$ is transitive, and if M is closed so is \hat{M}. Thus we have the following consequence.
(5.2) Corollary. If M is closed then $E_{2}(\hat{\mathscr{F}})$ is finite-dimensional.

By (3.11), $h: \hat{A} \rightarrow \hat{A}$ can be taken such that $h \theta_{Z}=\theta_{Z} h$ for each Z in $s o(q)$, then $h_{1} \theta_{1 Z}=\theta_{1 Z} h_{1}$ and

$$
\begin{equation*}
h_{1}\left(E_{1}(\hat{\mathscr{F}})_{\theta_{1}=0}\right) \subset E_{1}(\hat{\mathscr{F}})_{\theta_{1}=0} \tag{5.3}
\end{equation*}
$$

(5.4) PROPOSITION. $j_{2}: E_{2}\left(\hat{A}_{\theta=0}\right) \xrightarrow{\cong} H\left(E_{1}(\hat{\mathscr{F}})_{\theta_{1}=0}\right)$.

Proof. It follows because we have the restrictions

$$
E_{1}\left(\hat{A_{\theta=0}}\right) \stackrel{j_{1}}{\stackrel{\rho_{1}}{\rightleftarrows}} E_{1}(\hat{\mathscr{F}})_{\theta_{1}=0} \quad \text { and } \quad h_{1}: E_{1}(\hat{\mathscr{F}})_{\theta_{1}=0} \rightarrow E_{1}(\hat{\mathscr{F}})_{\theta_{1}=0}
$$

where $\rho_{1} j_{1}=1$ and $j_{1} \rho_{1}-1=h_{1} \hat{d_{1}}+\hat{d_{1}} h_{1}$.
By (2.6), (2.8) and (2.15) we have $\hat{A}=\hat{A}_{i=\ell} \otimes \Lambda s o(q)^{*}, 1_{Z}=1 \otimes i_{s o(q) Z}$ for $Z \in \operatorname{so}(q)$, and $d_{\mathscr{F}}=d_{\mathscr{F}} \otimes 1$. Then $E_{1}(\mathscr{F})=H\left(\hat{A}_{i=0}, d_{\mathscr{F}}\right) \otimes \Lambda s o(q)^{*}$ and $i_{1 Z}=1 \otimes i_{s o(q) Z}$, so

$$
\begin{equation*}
E_{1}(\hat{\mathscr{F}})_{i_{1}=0}=H\left(\hat{A}_{i=0}, d_{\hat{\mathscr{F}}}\right) \tag{5.5}
\end{equation*}
$$

Since $\hat{A_{i=0}}=\hat{A}^{0, \cdot}$ and ρ preserves the trigraduation of \hat{A} we have the restrictions

$$
\begin{equation*}
A=\hat{A}_{i=0, \theta=0} \stackrel{j}{\rightleftarrows} \hat{A}_{i=0} \tag{5.6}
\end{equation*}
$$

which are compatible with $d_{\mathscr{F}}$ and $d_{\mathscr{F}}$, and such that $\rho j=1$. Hence we obtain the homomorphisms of bigraded differential algebras,

$$
\begin{equation*}
E_{1}(\mathscr{F}) \underset{\rho_{1}}{\stackrel{j_{1}}{\rightleftarrows}} H\left(\hat{A}_{i=0}, d_{\hat{F}}\right)_{\theta_{1}=0}=E_{1}(\hat{\mathscr{F}})_{i_{1}=0, \theta_{1}=0} \tag{5.7}
\end{equation*}
$$

where $\rho_{1} j_{1}=1$. Also, since h is of tridegree $(-1,0,0)$ we have $h\left(\hat{A}_{i=0}\right)=0$, and by (5.5),

$$
\begin{equation*}
h_{1}\left(E_{1}(\hat{\mathscr{F}})_{i_{1}=0, \theta_{1}=0}\right)=0 . \tag{5.8}
\end{equation*}
$$

Thus, as in (5.4), we obtain

$$
\begin{equation*}
E_{1}(\mathscr{F})=E_{1}(\hat{\mathscr{F}})_{i_{1}=0, \theta_{1}=0} \quad \text { and } \quad E_{2}(\mathscr{F})=H\left(E_{1}(\hat{F})_{i_{1}=0, \theta_{1}=0}\right) \tag{5.9}
\end{equation*}
$$

(5.10) Theorem. If a smooth closed manifold M carries a Riemannian foliation \mathscr{F} then $E_{2}(\mathscr{F})$ is finite-dimensional.

Proof. Let $\tilde{\mathscr{F}}$ be the lift of \mathscr{F} to the 2 -sheeted covering \tilde{M} of transverse orientation of \mathscr{F}. Since M is closed so is \tilde{M}, thus from (2.18), (4.9), (5.2), (5.4) and $(5.9), E_{2}(\tilde{\mathscr{F}})$ is finite-dimensional. Then so is $E_{2}(\mathscr{F})$ by standard arguments.

6. The spaces $E_{2}^{0,} \cdot(\mathscr{F})$ and $E_{2}^{1,}(\mathscr{F})$

In the preceding section we have $\hat{A}_{\theta=0}=A \oplus\left(\hat{A}_{i=0} \otimes \Lambda^{+} s o(q)^{*}\right)_{\theta=0}$ where $d_{\hat{F}}=d_{\mathscr{F}}$ over A and $d_{\mathscr{F}}=d_{\mathscr{F}} \otimes 1$ over $\left(\hat{A}_{i=0} \otimes \Lambda^{+} s o(q)^{*}\right)_{\theta=0}$. This implies that for $0 \leq v \leq p$ and $0 \leq u \leq q$,

$$
\begin{equation*}
E_{1}^{u, v}\left(\hat{A}_{\theta=0}\right)=E_{1}^{u, v}(\mathscr{F}) \oplus H^{1, u-1, v} \oplus \cdots \oplus H^{u, 0, v} \tag{6.1}
\end{equation*}
$$

where $H^{s, t, v}=H^{v}\left(\left(\hat{A}_{i=0}^{t,-} \otimes \Lambda^{s} s o(q)^{*}\right)_{\theta=0}, d_{\hat{F}}\right)$ for $s+t=u$. Then, from (2.17), for $0 \leq v \leq p$, we obtain

where the derivative \hat{d}_{1} is decomposed as the sum of the operators on the right side. Hence we have the following result.
(6.3) Proposition. (i). $\quad E_{2}^{0,} \cdot(\hat{\mathscr{F}})=E_{2}^{0,}(\mathscr{F})$.
(ii) $E_{2}^{1, \cdot}(\hat{\mathscr{F}})=E_{2}^{1, \cdot}(\mathscr{F}) \oplus \operatorname{Ker}\left(\hat{d}_{1}: H^{1,0, v} \rightarrow E_{1}^{2, v}\left(\hat{A}_{\theta=0}\right)\right)$.

References

1. W. Greub, S. Halperin and R. Vanstone, Connections, curvature and cohomology, Academic Press, Orlando, Florida, 1973-1975.
2. A. El Kacimi-Alaoui, V. Sergiescu and G. Hector, La cohomologie basique d'un feuilletage riemannian est de dimension finie, Math. Zeitschrift, vol. 188 (1985), pp. 593-599.
3. F. Kamber and P. Tondeur, Foliations and metrics, Progress in Mathematics, vol. 32 (1983), pp. 103-152.
4. P. Molino, Feuilletages riemanniens, Cours de IIIème cycle, Montpellier 1983.
5. K.S. Sarkaria, A finiteness theorem for foliated manifolds, J. Math. Soc. Japan, vol. 30 (1978), pp. 687-696.
6. V. Sergiescu, Thesis, Lille, 1986.
7. G.W. Schwarz, On the deRham cohomology of the leaf space of a foliation, Topology, vol. 13, (1974), pp. 185-187.

Universidad de Santiago de Compostela
la Coruña, Spain

