AN ANALOGUE OF HILBERT'S THEOREM 90 FOR THE RING OF ENTIRE FUNCTIONS

BY
William Messing ${ }^{1}$ and Yasutaka Sibuya ${ }^{2}$

1. Introduction

Let us look at the following situation.
Let $\lambda \in C^{q}$ and $H(\lambda)$ be an n by n matrix whose entries are entire in λ. Regard λ as a row vector and suppose that there exists a linear transformation $L: C^{q} \rightarrow C^{q}$ such that
(I) L^{m} is the identity transformation,
(II) H satisfies the condition

$$
\begin{equation*}
H(\lambda) H(\lambda L) H\left(\lambda L^{2}\right) \cdots H\left(\lambda L^{m-1}\right)=I \tag{1.1}
\end{equation*}
$$

where I is the n by n identity matrix.
To compare with this situation, we shall state Theorem 90 of Hilbert.
Theorem 90 of Hilbert. Let k be a field and K a finite cyclic extension of k. Denote by g a generator of $\operatorname{Gal}(K / k)$. Then

$$
\begin{equation*}
N_{K / k}(a)\left(=a g(a) g^{2}(a) \ldots g^{m-1}(a)\right)=1 \tag{1.2}
\end{equation*}
$$

for an element a of K if and only if

$$
\begin{equation*}
a=b g(b)^{-1} \tag{1.3}
\end{equation*}
$$

for some $b \in K^{*}(=K-\{0\})$, where m is the order of $\operatorname{Gal}(K / k)(c f . D$. Hilbert [6]).

[^0]As to (1.1), a result analogous to this theorem is known.
Proposition 1.1. Suppose that (I) is satisfied. Furthermore assume that (III) L^{h} is not the identity transformation for $0<h<m$.

Let H be an n by n matrix whose entries are meromorphic in λ. Then H satisfies condition (1.1) if and only if

$$
\begin{equation*}
H(\lambda)=W(\lambda) W(\lambda L)^{-1} \tag{1.4}
\end{equation*}
$$

for some matrix W whose entries are meromorphic in λ.
In this paper we shall prove a better result:
Theorem 1.2. Assume that L satisfies condition (I). Let $H(\lambda)$ be an n by n matrix whose entries are entire in λ. Then H satisfies condition (1.1) if and only $i f$
(i) $H(0)^{m}=L$; and there exists an n by n matrix $E(\lambda)$ such that
(ii) the entries of E and E^{-1} are entire in λ,
(iii) $H(\lambda)=E(\lambda) H(0) E(\lambda L)^{-1}$.

Note. In this theorem we do not assume (III) of Proposition 1.1.
The hardest part of the problem is to construct the matrix E so that the entries of E and E^{-1} are entire in λ. If $q=1$ (i.e., λ is a scalar) and if (III) is also satisfied, we can construct such an E by using the W of Proposition 1.1 and Weierstrass' representation of an entire function as an ifinite product. Such a technique does not work for other cases. To overcome this difficulty we use the following result:

Proposition 1.3. Let $(t, \lambda)=\left(t, \lambda_{1}, \ldots, \lambda_{q}\right) \in C^{q+1}$ and $F(t, \lambda)$ be an n by n matrix whose entires are entire in (t, λ). Assume that there exists a linear transformation $L: C^{q} \rightarrow C^{q}$ such that
(i) L^{m} is the identity transformation,
(ii) $F(t, \lambda) F(t, \lambda L) F\left(t, \lambda L^{2}\right) \ldots F\left(t, \lambda L^{m-1}\right)=I$.

Then, there exists an n by n matrix $A(t, \lambda)$ such that
(1) the entries of $A(t, \lambda)$ are entire in (t, λ),
(2) the derivative of F with respect to t is given by

$$
\begin{equation*}
(\partial F / \partial t)(t, \lambda)=A(t, \lambda) F(t, \lambda)-F(t, \lambda) A(t, \lambda L) \tag{1.5}
\end{equation*}
$$

In fact, if we set $F(t, \lambda)=H(t \lambda)$, then condition (1.1) implies condition (ii) of Proposition 1.3. Now, define a matrix E by

$$
\begin{equation*}
d E / d t=A(t, \lambda) E, \quad E=I \text { at } t=0 \tag{1.6}
\end{equation*}
$$

Then, the entries of E and E^{-1} are entire in (t, λ) and

$$
\begin{equation*}
H(t \lambda)=F(t, \lambda)=E(t, \lambda) F(0, \lambda) E(t, \lambda L)^{-1} \tag{1.7}
\end{equation*}
$$

Setting $t=1$, we derive (iii) of Theorem 1.2 with $E=E(1, \lambda)$.

2. Proof of Proposition 1.3

In case $m=2$ (i.e., L^{2} is the identity), we have $F(t, \lambda) F(t, \lambda L)=I$, and hence

$$
\begin{equation*}
K(t, \lambda) F(t, \lambda L)+F(t, \lambda) K(t, \lambda L)=0 \tag{2.1}
\end{equation*}
$$

where $K=\partial F / \partial t$. Set

$$
\begin{equation*}
B(t, \lambda)=K(t, \lambda) F(t, \lambda L)=K(t, \lambda) F(t, \lambda)^{-1} \tag{2.2}
\end{equation*}
$$

Then

$$
B(t, \lambda L)=K(t, \lambda L) F(t, \lambda)=-F(t, \lambda L) K(t, \lambda)
$$

Therefore

$$
K(t, \lambda)=B(t, \lambda) F(t, \lambda)=-F(t, \lambda) B(t, \lambda L)
$$

and

$$
\begin{equation*}
K(t, \lambda)=\frac{1}{2}[B(t, \lambda) F(t, \lambda)-F(t, \lambda) B(t, \lambda L)] . \tag{2.3}
\end{equation*}
$$

Hence, setting

$$
\begin{equation*}
A(t, \lambda)=\frac{1}{2} B(t, \lambda)\left(=\frac{1}{2} K(t, \lambda) F(t, \lambda)^{-1}\right) \tag{2.4}
\end{equation*}
$$

we derive (1.5). We can prove Proposition 1.3 for the general case in a similar manner. However, we shall provide here a much simpler proof.

Set

$$
\begin{align*}
& \omega=\exp [2 \pi i / m], \rho\left(\omega^{k}\right)=L^{k} \quad(k=0,1, \ldots, m-1) \\
& F\left(t, \lambda ; \omega^{0}\right)=I, F(t, \lambda ; \omega)=F(t, \lambda) \tag{2.5}\\
& F\left(t, \lambda ; \omega^{k}\right)=F(t, \lambda) F(t, \lambda L) \ldots F\left(t, \lambda L^{k-1}\right) \\
& \quad(k=2, \ldots, m-1)
\end{align*}
$$

Then

$$
\begin{align*}
& F\left(t, \lambda ; \omega^{k+h}\right)=F\left(t, \lambda ; \omega^{k}\right) F\left(t, \lambda \rho\left(\omega^{k}\right) ; \omega^{h}\right) \tag{2.6}\\
& \quad(k, h=0,1, \ldots, m-1)
\end{align*}
$$

Set

$$
\begin{equation*}
D\left(t, \lambda ; \omega^{k}\right)=(\partial F / \partial t)\left(t, \lambda ; \omega^{k}\right) F\left(t, \lambda ; \omega^{k}\right)^{-1} \tag{2.7}
\end{equation*}
$$

Then
(2.8) $D\left(t, \lambda ; \omega^{k+h}\right)$

$$
=D\left(t, \lambda ; \omega^{k}\right)+F\left(t, \lambda ; \omega^{k}\right) D\left(t, \lambda \rho\left(\omega^{k}\right) ; \omega^{h}\right) F\left(t, \lambda ; \omega^{k}\right)^{-1}
$$

Therefore, if we define A by

$$
\begin{equation*}
A(t, \lambda)=\frac{1}{n} \sum_{h=0}^{m-1} D\left(t, \lambda ; \omega^{h}\right) \tag{2.9}
\end{equation*}
$$

we have

$$
A(t, \lambda)=D\left(t, \lambda ; \omega^{k}\right)+F\left(t, \lambda ; \omega^{k}\right) A\left(t, \lambda \rho\left(\omega^{k}\right)\right) F\left(t, \lambda ; \omega^{k}\right)^{-1}
$$

or

$$
\begin{align*}
(\partial F / \partial t)\left(t, \lambda ; \omega^{k}\right)= & A(t, \lambda) F\left(t, \lambda ; \omega^{k}\right) \tag{2.10}\\
& -F\left(t, \lambda ; \omega^{k}\right) A\left(t, \lambda \rho\left(\omega^{k}\right)\right)
\end{align*}
$$

Setting $k=1$, we derive (1.5).

3. A generalization of Proposition 1.3 and Theorem 1.2

We can generalize Proposition 1.3 further.
Theorem 3.1. Let $t \in C, \lambda \in C^{q}$ and $\xi \in G$, where G is a compact group. Let $\rho: G \rightarrow G L_{q}(C)$ be a continuous map. Suppose that

$$
\begin{equation*}
F: C \times C^{q} \times G \rightarrow G L_{n}(C) \tag{3.1}
\end{equation*}
$$

is a continuous map such that
(i) the entries of matrix $F(t, \lambda ; \xi)$ are entire in (t, λ) for each fixed $\xi \in G$,
(ii) F satisfies the condition

$$
\begin{equation*}
F(t, \lambda ; \xi \eta)=F(t, \lambda ; \xi) F(t, \lambda \rho(\xi) ; \eta) \tag{3.2}
\end{equation*}
$$

for $t \in C, \lambda \in C^{q}, \xi \in G$ and $\eta \in G$.
Then, there exists an n by n matrix $A(t, \lambda)$ such that
(i) the entries of A are entire in (t, λ),
(ii) the derivative of F with respect to t is given by
(3.3) $(\partial F / \partial t)(t, \lambda ; \xi)=A(t, \lambda) F(t, \lambda ; \xi)-F(t, \lambda ; \xi) A(t, \lambda \rho(\xi))$.

In fact, if $\nu(\xi)$ is the normalized Haar measure on G with $\nu(G)=1$, then A is given by

$$
\begin{equation*}
A(t, \lambda)=\int_{G} D(t, \lambda ; \eta) d \nu(\eta) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
D(t, \lambda ; \xi)=(\partial F / \partial t)(t, \lambda ; \xi) F(t, \lambda ; \xi)^{-1} \tag{3.5}
\end{equation*}
$$

Note that (3.2) implies

$$
\begin{equation*}
D(t, \lambda ; \xi \eta)=D(t, \lambda ; \xi)+F(t, \lambda ; \xi) D(t, \lambda \rho(\xi) ; \eta) F(t, \lambda ; \xi)^{-1} \tag{3.6}
\end{equation*}
$$

Let us define an n by n matrix $E(t, \lambda)$ by

$$
\begin{equation*}
d E / d t=A(t, \lambda) E, \quad E=I \quad \text { at } t=0 \tag{3.7}
\end{equation*}
$$

Then, (3.3) implies that

$$
\begin{equation*}
F(t, \lambda ; \xi)=E(t, \lambda) F(0, \lambda ; \xi) E(t, \lambda \rho(\xi))^{-1} \tag{3.8}
\end{equation*}
$$

or

$$
F(t, \lambda ; \xi) E(t, \lambda \rho(\xi)) F(0, \lambda ; \xi)^{-1}=E(t, \lambda)
$$

Note that the entries of E and E^{-1} are entire in (t, λ). Thus we have proved the following theorem:

Theorem 3.2. Under the same assumptions as Theorem 3.1, there exists an n by n matrix $E(t, \lambda)$ such that
(1) the entries of E and E^{-1} are entire in (t, λ),
(2) F has the form (3.8), i.e.,

$$
F(t, \lambda ; \xi)=E(t, \lambda) F(0, \lambda ; \xi) E(t, \lambda \rho(\xi))^{-1}
$$

In the case when F does not depend on t, introducing t through the change of the variable replacing λ by $t \lambda$, we can prove the following theorem:

Theorem 3.3. Let $\lambda \in C^{q}$ and $\xi \in G$, where G is a compact group. Let $\rho: G \rightarrow G L_{q}(C)$ be a continuous map. Suppose that

$$
\Phi: C^{q} \times G \rightarrow G L_{n}(C)
$$

is a continuous map such that
(i) the entries of Φ are entire in λ for each fixed $\xi \in G$,
(ii) Φ satisfies the condition

$$
\Phi(\lambda ; \xi \eta)=\Phi(\lambda ; \xi) \Phi(\lambda \rho(\xi) ; \eta)
$$

for $\lambda \in C^{q}, \xi \in G$ and $\eta \in G$.
Then there exists an n by n matrix $E(\lambda)$ such that
(1) the entries of E and E^{-1} are entire in λ,
(2) Φ has the form $\Phi(\lambda ; \xi)=E(\lambda) \Phi(0 ; \xi) E(\lambda \rho(\xi))^{-1}$.

Remark 3.4. (i) In Theorem 3.1, it is not necessary to assume that

$$
\begin{equation*}
\rho(\xi \eta)=\rho(\xi) \rho(\eta) \text { for } \xi \text { and } \eta \in G \tag{3.9}
\end{equation*}
$$

However, condition (3.2) implies that

$$
F(t, \lambda \rho(\xi \eta) ; \zeta)=F(t, \lambda \rho(\xi) \rho(\eta) ; \zeta) \quad \text { for } \xi, \eta \text { and } \zeta \in G
$$

Hence, it would be convenient to verify (3.9) when we want to check condition (3.2).
(ii) Condition (3.2) can be relaxed in the following way:

The quantity

$$
C=F(t, \lambda ; \xi \eta)^{-1} F(t, \lambda ; \xi) F(t, \lambda \rho(\xi) ; \eta)
$$

is independent of t.
In fact, (3.2') also implies (3.6).
(iii) In Theorem 1.2, Condition (1.1) can be replaced by

$$
\begin{equation*}
H(\lambda) H(\lambda L) H\left(\lambda L^{2}\right) \ldots H\left(\lambda L^{m-1}\right)=K \tag{1.1'}
\end{equation*}
$$

where K is an n by n invertible constant matrix.
In fact, utilizing (2.5) we can verify that

$$
F\left(\lambda ; \omega^{k+h}\right)^{-1} F\left(\lambda ; \omega^{k}\right) F\left(\lambda L^{k} ; \omega^{h}\right)=\left\{\begin{array}{lll}
I & \text { if } & 2 \leq k+h \leq n \\
K & \text { if } & n+1 \leq k+h \leq 2 n
\end{array}\right.
$$

Hence we can apply Remark (ii). (Condition (i) of Theorem 1.2 should be replaced by $H(0)^{m}=K$.)
(iv) The requirement on the smoothness of the entries of $F(t, \lambda ; \xi)$ may be relaxed. For example, we may assume that the entries of F and $\partial F / \partial t$ are continuous in $(t, \lambda ; \xi)$ in a domain: $l \times \mathscr{U} \times G$, where l is a t-interval and \mathscr{U} is an open set in the λ-space. Then the entries of A are also continuous in (t, λ). If we assume a continuous differentiability of the entries of F and $\partial F / \partial t$ with respect to λ, then the entries of A admit the same kind of smoothness. Those modifications are based on the observation concerning the differentiation of an integral of the type $\int_{G} g d \nu(\xi)$ with a function g which is smooth with respect to parameters.
(v) Theoem 3.1 can be extended to p-adic functions if G is finite. However, we do not know whether the matrix E defined by (3.7) is entire.
(vi) The matrices Φ and E of Theorem 3.3 satisfy condition (2) or

$$
\begin{equation*}
E(\lambda)=\Phi(\lambda ; \xi) E(\lambda \rho(\xi)) \Phi(0: \xi)^{-1} \tag{3.10}
\end{equation*}
$$

We can interpret this relation in terms of automorphy factors and automorphic forms (cf. A. Borel [3]). In fact, if we define a map

$$
\begin{equation*}
\alpha: C^{q} \times G \rightarrow \operatorname{Aut}\left(M_{n}(C)\right) \tag{3.11}
\end{equation*}
$$

by

$$
\begin{equation*}
\alpha(\lambda ; \xi)[X]=\Phi(\lambda ; \xi) X \Phi(0 ; \xi)^{-1} \tag{3.12}
\end{equation*}
$$

where $M_{n}(C)$ is the vector space of n by n complex matrices, and $\lambda \in C^{q}$, $\xi \in G$ and $X \in M_{n}(C)$, then, since Φ satisfies the relation $\Phi(\lambda ; \xi \eta)=$ $\Phi(\lambda ; \xi) \Phi(\lambda \rho(\xi) ; \eta)$, we have

$$
\begin{equation*}
\alpha(\lambda ; \xi \eta)=\alpha(\lambda ; \xi) \alpha(\lambda \rho(\xi) ; \eta) \tag{3.13}
\end{equation*}
$$

and relation (3.10) can be written in the form

$$
\begin{equation*}
\alpha(\lambda: \xi)[E(\lambda \rho(\xi))]=E(\lambda) \tag{3.14}
\end{equation*}
$$

This mans that α is an automorphy factor and that E is an automorphic form relative to α. For a given automorphy factor, automorphic functions are not unique. One of the most important problems in the study of automorphic functions is to find a basis for the space of automorphic functions. We shall investigate such a problem concerning the matrix E of Theorems 3.2 and 3.3, elsewhere.

Note. In the case of Theorem 3.2, we define α by

$$
\alpha(t, \lambda ; \xi)[X]=F(t, \lambda ; \xi) X F(0, \lambda ; \xi)^{-1}
$$

Then condition (3.2) implies that

$$
\begin{equation*}
\alpha(t ; \lambda ; \xi \eta)=\alpha(t, \lambda ; \xi) \alpha(t, \lambda \rho(\xi) ; \eta) \tag{3.13'}
\end{equation*}
$$

and relation (3.8^{\prime}) can be written in the form

$$
\alpha(t, \lambda ; \xi)[E(t, \lambda \rho(\xi))]=E(t, \lambda)
$$

Hence, α is an automorphy factor and E is an automorphic form relative to α.

4. Results in terms of Galois-cohomology

Let X be a smooth complex anaytic manifold, E a vector bundle over X, and G a compact group acting continuously on the right on E by vector bundle automorphisms; i.e., there is given a homomorphism $G^{0} \rightarrow \operatorname{Aut}(E)$. Let \mathscr{R} denote $\Gamma\left(E, \mathcal{O}_{E}\right)$ (the ring of all global analytic functions on E) so that G acts on \mathscr{R}, i.e., there is a homomorphism $\rho: G \rightarrow \operatorname{Aut}(\mathscr{R})$. Thus G also acts on $G L_{n}(\mathscr{R})$. Now we can state an abstract version of Theorem 3.3 in terms of Galois-cohomology (cf. A. Grothendieck [5]).

Theorem 4.1. $\quad H^{1}\left(G, G L_{n}(\mathscr{R})\right)=H^{1}\left(G, G L_{n}\left(\Gamma\left(X, \mathcal{O}_{X}\right)\right)\right)$.
Note. In case of Theorem 3.3, X consists of a point.
To prove Theorem 4.1, we introduce a new variable t through $(t, e) \rightarrow t e$ $(e \in E)$. This replaces E by $C \times E$. Let $\Gamma\left(C \times E, \mathcal{O}_{C \times E}\right)$ be denoted by \mathscr{R}^{\prime}. Then G still acts on $C \times E$, and hence ρ can be extended to a homomorphism $\rho^{\prime}: G \rightarrow \operatorname{Aut}\left(\mathscr{R}^{\prime}\right)$. Further if we denote $d / d t$ by \mathscr{D}, then we have $\mathscr{D} \rho^{\prime}(\xi)=$ $\rho^{\prime}(\xi) \mathscr{D}$ for $\xi \in G$. Let $\mathscr{A}=G L_{n}\left(\mathscr{R}^{\prime}\right)$ and $\mathscr{F}=\mathscr{M}\left(\mathscr{R}^{\prime}\right)$. Now we can state an abstract version of Theorem 3.1.

Theorem 4.2. For every one cocycle $f: G \rightarrow \mathscr{A}$ there exists $b \in \mathscr{F}$ such that

$$
\begin{equation*}
\mathscr{D}(f(\xi))=b f(\xi)-f(\xi) \rho^{\prime}(\xi)(b) \tag{4.1}
\end{equation*}
$$

for all $\xi \in G$.
Note. A map $f: G \rightarrow \mathscr{A}$ is a one cocycle if

$$
f(\xi \eta)=f(\xi) \rho^{\prime}(\xi)(f(\eta)) \quad \text { for } \xi \in G \text { and } \eta \in G
$$

To prove Theorem 4.2, we introduce on \mathscr{F} a new structure of G-module by $(\xi, b) \rightarrow \xi \times b=f(\xi) \rho^{\prime}(\xi)(b) f(\xi)^{-1}$. Let us denote this new G-module by \mathscr{F}_{f}. Set

$$
\begin{equation*}
h(\xi)=\mathscr{D}(f(\xi)) f(\xi)^{-1} \tag{4.2}
\end{equation*}
$$

This is a map $G \rightarrow \mathscr{F}_{f}$. It is easily verified that

$$
\begin{equation*}
h(\xi \eta)=h(\xi)+\xi \times h(\eta) \tag{4.3}
\end{equation*}
$$

This means that h is a one cocycle and hence defines an element in $H^{1}\left(G, \mathscr{F}_{f}\right)$.
Now the following lemma is the key to the proof of Theorem 4.2.
Lemma 4.3. $\quad H^{1}\left(G, \mathscr{F}_{f}\right)=\{0\}$.
To prove this, set

$$
b=\int_{G} h(\eta) d \nu(\eta)
$$

where ν is the normalized Haar measure on G with $\nu(G)=1$. Then from (4.3) we derive

$$
\begin{equation*}
b=h(\xi)+\xi \times b \tag{4.4}
\end{equation*}
$$

Hence Lemma 4.3 follows immediately.

5. An example

A traditional method for solving differential equations which goes back to Riemann's treatment of hypergeometric differential equation has 5 stages:
(1) classification of differential equations by means of suitable transformations;
(2) identification of invariants under such transformations in terms of solutions;
(3) construction of a standard equation representing an equivalence class in terms of its invariants;
(4) computation of invariants for a given equation;
(5) reduction of a given equation to a standard equation.

Since 1970 a German-American School (W. Jurkat (Ulm-Syracuse), D.A. Lutz (Milwaukee-San Diego), W. Balser (Ulm) et al) has done extensive work on the classification of meromorphic differential equations (cf. W. Jurkat [8]). In particular they identified the invariants in terms of monodromy matrices and Stokes multipliers. Inspired by the German-American group, a French School (B. Malgrange (Grenoble), J.-P. Ramis (Strasbourg) et al) described the space of invariants in terms of certain cohomology groups related with differential equations.

Now, "computation of invariants" has become a point of interest. Such a computation may be carried out in many ways. This problem is essentially
related with the computation of monodromy matrices and Stokes multipliers. These quantities may be computed numerically, if a differential equation is given. We are interested in studying these quantities as functions of suitable parameters. In a local study, this leads us to a perturbation theory (regular and/or singular: cf. W. Balser [2]), or a deformation theory such as recent work on isomonodromic deformations (cf. Flaschka-Newell [4], Jimbo-MiwaUeno [7], T. Kimura [10], K. Okamoto [12] and Römer-Schröder [13]) and isoformal deformations (cf. Babbitt-Varadalajan [1]). A motivation of our researches is to study some special but important cases (cf. Y. Sibuya [14]).

Precisely speaking we study solutions of

$$
\begin{equation*}
\left(\delta^{2}-p \delta\right) y-P(x) y=0 \quad(\delta=x d / d x) \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
P(x)=x^{m}+\sum_{h=1}^{m-1} a_{h} x^{m-h} \tag{5.2}
\end{equation*}
$$

p is an integer such that $0 \leq p \leq m-1$, and $a_{h}(h=1, \ldots, m-1)$ are parameters. We assume that $x=0$ is an apparent singular point. This assumption implies that a_{m-p} is a certain polynomial in other parameters a_{h} ($h \neq m-p$) for each pair (m, p) : for example,

$$
\begin{align*}
& a_{m-1}=0(p=1), \quad a_{m-2}=a_{m-1}^{2}(p=2) \tag{5.3}\\
& a_{m-3}=a_{m-1} a_{m-2}-\frac{1}{4} a_{m-1}^{3}(p=3), \text { etc. }
\end{align*}
$$

We shall denote by a the vector $\left(a_{1}, \ldots, a_{m-p-1}, a_{m-p+1}, \ldots, a_{m-1}\right) \in C^{m-2}$. If $p=1$, Equation (5.1) becomes

$$
\begin{equation*}
d^{2} y / d x^{2}-Q(x) y=0 \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(x)=x^{m-2}+\sum_{h=1}^{m-2} a_{h} x^{m-h-2} \tag{5.5}
\end{equation*}
$$

Asymptotic solutions of Equation (5.4) with (5.5) were studied in Y. Sibuya [14]. Many results in this book can be extended to equation (5.1).

Proposition 5.1. There exist two linearly independent solutions of equation (5.1):

$$
\begin{align*}
& \varphi_{1}(x, a)=1+\sum_{h=1}^{p-1} \varphi_{1 h}(a) x^{h}+\sum_{h=p+1}^{\infty} \varphi_{1 h}(a) x^{h} \tag{5.6}\\
& \varphi_{2}(x, a)=x^{p}+\sum_{h=p+1}^{\infty} \varphi_{2 h}(a) x^{h}
\end{align*}
$$

which are unique and entire in (x, a).

This result is an application of the method of G. Frobenius to (5.1) at $x=0$. Note that $x=0$ is an apparent singular point.

Proposition 5.2. Equation (5.1) admits a solution $\varphi(x, a)$ such that
(i) φ is entire in (x, a),
(ii) φ admits an asymptotic representation

$$
\begin{equation*}
\varphi=x^{-b(a)+(2 p-m) / 4}\left[1+O\left(x^{-1 / 2}\right)\right] \exp [-E(x, a)] \tag{5.7}
\end{equation*}
$$

as $x \rightarrow \infty$ in $|\arg x|<3 \pi / m$, where

$$
\begin{gathered}
{\left[1+\sum_{k=1}^{m-1} a_{k} x^{-k}\right]^{1 / 2}=1+\sum_{h=1}^{\infty} b_{h}(a) x^{-h}} \\
E(x, a)=(2 / m) x^{m / 2}+\sum_{1 \leq h<m / 2}(2 /(m-2 h)) b_{h}(a) x^{(m-2 h) / 2}
\end{gathered}
$$

and

$$
b(a)= \begin{cases}0 & \text { if } m \text { is odd } \\ b_{m / 2}(a) & \text { if } m \text { is even }\end{cases}
$$

Condition (ii) determines the solution φ uniquely.
This is a simple modification of Theorem 6.1 of Y. Sibuya [14] (see also F.E. Mullin [11]).

Set

$$
\begin{equation*}
\omega=\exp (2 \pi i / m), \quad G(a)=\left(\omega a_{1}, \ldots, \omega^{k} a_{k}, \ldots, \omega^{m-1} a_{m-1}\right) \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(x, a)=\varphi\left(\omega^{-k} x, G^{-k}(a)\right) \tag{5.9}
\end{equation*}
$$

Proposition 5.3. For every integer k, f_{k} is a solution of equation (5.1) and

$$
\begin{align*}
f_{k}= & \left(\omega^{-k} x\right)^{-(-1)^{k} b(a)+(2 p-m) / 4}\left[1+O\left(x^{-1 / 2}\right)\right] \\
& \times \exp \left[-(-1)^{k} E(x, a)\right] \\
\delta f_{k}= & \left(\omega^{-k} x\right)^{-(-1)^{k} b(a)+(2 p+m) / 4}\left[-1+O\left(x^{-1 / 2}\right)\right] \tag{5.10}\\
& \times \exp \left[-(-1)^{k} E(x, a)\right]
\end{align*}
$$

as $x \rightarrow \infty$ in $|\arg x-2 \pi k / m|<3 \pi / m$.

This result follows from (5.9), Proposition 5.2 and

$$
\begin{equation*}
b_{k}(G(a))=\omega^{k} b_{k}(a) \quad(k=1,2, \ldots) \tag{5.11}
\end{equation*}
$$

Proposition 5.4. For the solutions φ_{1} and φ_{2} we have

$$
\begin{equation*}
\varphi_{1}(\omega x, G(a))=\varphi_{1}(x, a), \quad \varphi_{2}(\omega x, G(a))=\omega^{p} \varphi_{2}(x, a) \tag{5.12}
\end{equation*}
$$

This result is a consequence of the uniqueness of φ_{1} and φ_{2}.
Set

$$
\Phi_{k}(x, a)=\left[\begin{array}{cc}
f_{k} & f_{k+1} \tag{5.13}\\
\delta f_{k} & \delta f_{k+1}
\end{array}\right], \quad W_{k}(x, a)=\operatorname{det} \Phi_{k}(x, a)
$$

Proposition 5.5. For every integer k, we have

$$
\begin{equation*}
\Phi_{k}(x, a)=\Phi_{0}\left(\omega^{-k} x, G^{-k}(a)\right) \tag{5.14}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{k}(x, a)=2 x^{p} \omega^{-(-1)^{k} b(a)-k p-(2 p-m) / 4} . \tag{5.15}
\end{equation*}
$$

This result follows from (5.11) and Proposition 5.3.
Set

$$
\begin{equation*}
\Phi_{k}(x, a)=\Phi_{k+1}(x, a) S_{k}(a) \tag{5.16}
\end{equation*}
$$

The matrices S_{k} are called Stokes multipliers.
Proposition 5.6. For every integer k, we have

$$
S_{k}(a)=\left[\begin{array}{ll}
C_{k}(a) & 1 \tag{5.17}\\
\tilde{C}_{k}(a) & 0
\end{array}\right]
$$

where

$$
\begin{gather*}
C_{k}(a)=\left(W_{k+1}\right)^{-1}\left[\begin{array}{cc}
f_{k} & f_{k+2} \\
\delta f_{k} & \delta f_{k+2}
\end{array}\right] \tag{5.18}\\
\tilde{C}_{k}(a)=-\left(W_{k+1}\right)^{-1} W_{k}=-\omega^{-(-1)^{k} 2 b(a)+p} \tag{5.19}
\end{gather*}
$$

and

$$
\begin{equation*}
S_{k}(a)=S_{0}\left(G^{-k}(a)\right) \tag{5.20}
\end{equation*}
$$

These results can be verified by simple computations.
Proposition 5.7. The matrices $S_{k}(k=0, \ldots, m-1)$ satisfy the relation

$$
\begin{equation*}
S_{m-1}(a) S_{m-2}(a) \ldots S_{2}(a) S_{1}(a) S_{0}(a)=I \tag{5.21}
\end{equation*}
$$

where I is the 2 by 2 identity matrix.
This result follows from the fact that $\Phi_{m+k}=\Phi_{k}$ (cf. (5.14)). Note that the monodromy group of equation (5.1) is trivial, since $x=0$ is an apparent singular point.

We are interested in the meaning of relation (5.21). Utilizing (5.20) we can write (5.21) in the form

$$
\begin{equation*}
S_{0}\left(G^{-m+1}(a)\right) S_{0}\left(G^{-m+2}(a)\right) \ldots S_{0}\left(G^{-1}(a)\right) S_{0}(a)=I \tag{5.22}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{0}(a) S_{0}(G(a)) \ldots S_{0}\left(G^{m-2}(a)\right) S_{0}\left(G^{m-1}(a)\right)=I \tag{5.23}
\end{equation*}
$$

Theorem 1.2 applies to (5.23). Hence, there exists a 2 by 2 matrix $E(a)$ such that
(i) the entries of E and E^{-1} are entire in a,
(ii) S_{0} has the form

$$
\begin{equation*}
S_{0}(a)=E(a) S_{0}(0) E(G(a))^{-1} \tag{5.24}
\end{equation*}
$$

On the other hand, let us look at relation (5.16). Setting $k=0$ and utilizing (5.14) we derive

$$
\Phi_{0}(x, a)=\Phi_{0}\left(\omega^{-1} x, G^{-1}(a)\right) S_{0}(a)
$$

or

$$
\begin{equation*}
S_{0}(a)=\Phi_{0}\left(\omega^{-1} x, G^{-1}(a)\right)^{-1} \Phi_{0}(x, a) \tag{5.25}
\end{equation*}
$$

Utilizing the two linearly independent solutions φ_{1} and φ_{2} (cf. Proposition 5.1), we write the two solutions f_{0} and f_{1} as linear combinations of φ_{1} and φ_{2}, i.e.,

$$
\begin{equation*}
\Phi_{0}(x, a)=\Phi(x, a) \Gamma(a) \tag{5.26}
\end{equation*}
$$

where

$$
\Phi(x, a)=\left[\begin{array}{cc}
\varphi_{1} & \varphi_{2} \\
\delta \varphi_{1} & \delta \varphi_{2}
\end{array}\right]
$$

and the entries of Γ and Γ^{-1} are entire in a. The matrix $\Gamma(a)$ is called a central connection matrix. Note that

$$
\Phi_{0}\left(\omega^{-1} x, G^{-1}(a)\right)=\Phi(x, a)\left[\begin{array}{cc}
1 & 0 \tag{5.27}\\
0 & \omega^{-p}
\end{array}\right] \Gamma\left(G^{-1}(a)\right)
$$

(cf. (5.12)). Therefore, from (5.25), (5.26) and (5.27), we derive

$$
S_{0}(a)=\Gamma\left(G^{-1}(a)\right)^{-1}\left[\begin{array}{cc}
1 & 0 \tag{5.28}\\
0 & \omega^{p}
\end{array}\right] \Gamma(a)
$$

and hence

$$
S_{0}(0)=\Gamma(0)^{-1}\left[\begin{array}{cc}
1 & 0 \tag{5.29}\\
0 & \omega^{p}
\end{array}\right] \Gamma(0)
$$

Thus we have

$$
\begin{equation*}
S_{0}(a)=F\left(G^{-1}(a)\right)^{-1} S_{0}(0) F(a) \tag{5.30}
\end{equation*}
$$

where

$$
\begin{equation*}
F(a)=\Gamma(0)^{-1} \Gamma(a) \tag{5.31}
\end{equation*}
$$

(Note that the entries of F and F^{-1} are entire in a.) This means that the matrix E of (5.24) and the matrix $\tilde{F}=F\left(G^{-1}(a)\right)^{-1}$ satisfy the same relation with S_{0} (i.e., (5.24) and (5.30)). However, E and \tilde{F} were constructed through two totally different processes. We shall investigate the relation between E and \tilde{F} more carefully elsewhere. For doing this, we hope that it would be helpful to regard Stokes multipliers S_{k} as an automorphy factor and E and \tilde{F} as associated automorphic forms (cf. Remark 3.4 (vi)).

We strongly believe that the study of Stokes multipliers as functions of suitably chosen parameters will lead us to a theory similar to that of automorphy factors and automorphic functions (cf., also, Jurkat-Zwiesler [9]).

References

1. D.G. Babbit and V.S. Varadarajan, Deformations of nilpotent matrices over rings and reduction of analytic families of meromorphic differential equations, Mem. Amer. Math. Soc., no. 325, 1985.
2. W. Balser, Convergent power series expansions for the Birkhoff invariants of meromorphic differential equations I, II, Yokohama Math. J., vol. 32 (1984), pp. 15-29; vol. 33 (1985), pp. 5-19.
3. A. Borel, Introduction to automorphic forms, algebraic groups and discontinuous subgroups, Proc. Sympos. Pure Math., 1966, p. 201.
4. H. Flaschka and A.C. Newell, Monodromy and spectrum preserving deformations I, Comm. Math. Phys., vol. 76 (1980), pp. 65-116.
5. A. Grothendieck, Technique de descente et théoremes d'existence en géométrie algébrique, I: Généralité. Descente par morphismes fidelement plat, Seminaire Bourbaki, exposé 190, volume 1959/60, Benjamin, New York, 1966.
6. D. Hilbert, Zahlbericht, Deutsche Math., Ver. 4, 1879, pp. I-XVIII, 177-546.
7. M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I and II, Physica 2D (1981), pp. 306-52, 407-48.
8. W.B. Jurkat, Meromorphe differentialgleichungen, Lecture Notes in Math., no. 637, Springer Verlag, New York, 1978.
9. W.B. Jurkat and H.J. Zwiesler, a reduction theory of second order meromorphic differential equations, Univ. Ulm, preprints, 1985-87.
10. T. Kimura, On the isomonodromic deformation for linear ordinary differential equations of the second order I, II Proc. Japan Acad., vol. 57A (1981), pp. 285-290; vol. 58A (1982), pp. 294-297.
11. F.E. Muluin, On the regular perturbation of the subdominant solution to second order linear ordinary differential equations with polynomial coefficients, Funkcial. Ekvac., vol. 11 (1968), pp. 1-38.
12. К. Окамото, Isomonodromic deformation and Painlevé equations and the Garnier system, J. Fac. Sci., Univ. Tokyo Sect. IA Math., vol. 33 (1986), pp. 575-618.
13. H. Römer and T. Schröder, Hamiltonian structure for singular isomonodromy deformation equations, J. Phys. A, vol. 18 (1985), pp. 1061-1083.
14. Y. Sibuya, Global thery of a second order linear ordinary differential equation with a polynomial coefficient, Math. Studies 18, North-Holland, 1975;

University of Minnesota
Minneapolis, Minnesota

[^0]: Received January 9, 1987.
 ${ }^{1}$ Supported in part by grants from the National Science Foundation.
 ${ }^{2}$ Supported in part by grants from the National Science Foundation and Alexander von Humboldt-Stiftung.

