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AN ANALOGUE OF HILBERT’S THEOREM 90 FOR THE
RING OF ENTIRE FUNCTIONS

BY

WILLIAM MESSING AND YASUTAKA SIBUYA2

1. Introduction

Let us look at the following situation.
Let , Cq and H(X) be an n by n matrix whose entries are entire in h.

Regard , as a row vector and suppose that there exists a linear transformation
L: Cq --> Cq such that

(I) Lm is the identity transformation,
(II) H satisfies the condition

H(X)H(XL)H(XL2) H(XL"-t) I,

where 1 is the n by n identity matrix.
To compare with this situation, we shall state Theorem 90 of Hilbert.

THEOREM 90 OF HILBERT. Let k be a field and K a finite cycfic extension of
k. Denote by g a generator of Gal(K/k). Then

(1.2) Nr/k(a ) (= ag(a)g2(a).., gm-t(a)) 1

for an element a of K if and only if

(1.3) a bg(b) -
for some b K* (= K- (0}), where m is the order of Gal(K/k) (cf. D.
Hilbert [6]).
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As to (1.1), a result analogous to this theorem is known.

PROPOSITION 1.1. Suppose that (I) is satisfied. Furthermore assume that
(III) Lh is not the identity transformation for 0 < h < m.

Let H be an n by n matrix whose entries are meromorphic in . Then H satisfies
condition (1.1) if and only if

H(x) w(x)w(xz )

for some matrix W whose entries are meromorphic in h.

In this paper we shall prove a better result:

THEOREM 1.2. Assume that L satisfies condition (I). Let H(X) be an n by n
matrix whose entries are entire in . Then H satisfies condition (1.1) if and only

(i) H(O)m L; and there exists an n by n matrix E(X) such that
(ii) the entries of E and E-1 are entire in )t,
(iii) H()t) E(X)H(O)E(tL)-.
Note. In this theorem we do not assume (III) of Proposition 1.1.
The hardest part of the problem is to construct the matrix E so that the

entries of E and E-1 are entire in . If q 1 (i.e.,)t is a scalar) and if (III) is
also satisfied, we can construct such an E by using the W of Proposition 1.1
and Weierstrass’ representation of an entire function as an ifinite product.
Such a technique does not work for other cases. To overcome this difficulty we
use the following result:

PROPOSITION 1.3. Let (t, t) (t, ,,..., )tq) Cq+ and F(t, ) be an n
by n matrix whose entires are entire in ( t, )t). Assume that there exists a linear

transformation L: Cq -’ C q such that
(i) Lm is the identity transformation,
(ii) F(t, X)F(t, XL)F(t, XL2)... F(t, Lm-l) I.

Then, there exists an n by n matrix A( t, ) such that
(1) the entries ofA( t, , ) are entire in ( t, , ),
(2) the derivative of F with respect to is given by

(1.5) ( OF/Ot)(t, X) A(t, ,)F(t, X) F(t, X)A(t, ,L).

In fact, if we set F(t, ) H(t2t), then condition (1.1) implies condition (ii)
of Proposition 1.3. Now, define a matrix E by

(1.6) dE/dt A(t, t)E, E I at O.
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Then, the entries of E and E-t are entire in (t, X) and

(1.7) H(tX) F(t, k) E(t, X)F(0, X)E(t, XL) -.
Setting 1, we derive (iii) of Theorem 1.2 with E E(1, X).

2. Proof of Proposition 1.3

In case m 2 (i.e., L2 is the identity), we have F(t, )F(t, XL) I, and
hence

K(t, X)F(t, XL) + F(t, X)K(t, XL) O,

where K OF/O t. Set

(2.2) B(t, X) K(t, X)F(t, XL) K(t, X)F(t, X) -t.

Then

B(t, XL) K(t, XL)F(t, X) -F(t, XL)K(t, X).

Therefore

K(t, X) B(t, X)F(t, X) -F(t, X)B(t, XL),

and

(2.3) K(t, X) 1/2[B(t, X)F(t, X) F(t, X)B(t, XL)].

Hence, setting

(2.4) A(t, X) 1/2B(t, X) (= 1/2K(t, X)F(t,

we derive (1.5). We can prove Proposition 1.3 for the general case in a similar
manner. However, we shall provide here a much simpler proof.

Set

o exp[2ri/m], p(0’) L (k 0,1,..., rn 1),
F(t, X; lo) I, F(t, X; lo) F(t, X),
F(t, X; ook) F(t, h)F(t, XL)... F(t, XL-)

(k 2,...,m- 1).
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Then

(2.6) F(t, ; o:+) F(t, ,; k)F(t, XO(wk); wh)
(k,h=O,1,...,m-1).

Set

(2.7) D(t, X; ok) (OF/Ot)(t, X; ok)F(t, X; o) -1.

Then

(2.8) D(t, X; wg+h)

D(t, X; o:) + F(t, X; o:)D(t, XO(k); o:h)F(t, X; o:) -.
Therefore, if we define A by

(2.9) 1 m-1

A(t, ,) -ff E D(t, ,;
h---O

we have

A(t, X) D(t, ,; o:k) + F(t, X; o:k)A(t, XO(o:k))F(t, ,; o:k) -,
or

(2.10) ( OF/Ot)(t, X; o) A(t, X)F(t, X; ok)
-F(t, X; o:k)A(t,

Setting k 1, we derive (1.5).

3. A generalization of Proposition 1.3 and Theorem 1.2

We can generalize Proposition 1.3 further.

THEOREM 3.1. Let C, Cq and G, where G is a compact group.
Let p: G - GLq(C) be a continuous map. Suppose that

(3.1) F: C Cq G GL,(C)
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is a continuous map such that
(i) the entries of matrix F(t, ; ) are entire in (t, 2) for each fixed G,
(ii) F satisfies the condition

F(t, X; ) F(t, X; )F(t, )t#(); r/)

fort C, , Cq, .: G and G.
Then, there exists an n by n matrix A(t, t) such that
(i) the entries ofA are entire in ( t, X ),
(ii) the derivative of F with respect to is given by

(3.3) ( OF/Ot)(t, ,; ) A(t, )t)F(t, )t; ) F(t, X; )A(t, XO()).

In fact, if ,() is the normalized Haar measure on G with ,(G) 1, then A is
given by

(3.4) a(t. x) f (t. x; n)

where

D(t, X; ) ( OF/Ot)(t, X; )F(t, X; )-1.
Note that (3.2) implies

(3.6) D(t, X; rl) D(t, t; ) + F(t, X; )D(t, XO(); )F(t, X; )-.
Let us define an n by n matrix E(t, h)by

(3.7) dE/dt A(t, X)E, E I att=0.

Then, (3.3) implies that

F(t, X; ) E(t, X)F(0, ,; )E(t, XO()) -,
or

F(t, )t; li)E(t, ?tO(li))F(O, ?t; li) - E(t,

Note that the entries of E and E-1 are entire in (t, ). Thus we have proved
the following theorem:

THEOREM 3.2. Under the same assumptions as Theorem 3.1, there exists an n
by n matrix E( t, t ) such that

(1) the entries of E and E- are entire in (t, ),
(2) F has the form (3.8), i.e.,

F(t, X; ) E(t, X)F(0, X; )E(t, XO()) -1.
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In the case when F does not depend on t, introducing through the change
of the variable replacing h by t,, we can prove the following theorem:

THEOREM 3.3. Let h - Cq and G, where G is a compact group. Let
p: G GLq(C) be a continuous map. Suppose that

: Cq X a -- GLn(C )

is a continuous map such that
(i) the entries of d are entire in h for each fixed G,
(ii) t satisfies the condition

for Cq, G and 1 G.
Then there exists an n by n matrix E(X) such that
(1) the entries of E and E-1 are entire in ,
(2) @ has the form @(h; }) E(X)@(0; l)E(hp(}))

Remark 3.4.

(3.9)

(i) In Theorem 3.1, it is not necessary to assume that

p(lrl) p(l)p(rl) for and / G.

However, condition (3.2) implies that

F(t, hp(l); ’) F(t, hp()p(r/); ’) for , ,/and " G.

Hence, it would be convenient to verify (3.9) when we want to check condition
(3.2).

(ii) Condition (3.2) can be relaxed in the following way:
The quantity

(3.2’) C F(t, X; rl)-IF(t, X; )F(t, Xp(); ,/)

is independent of t.
In fact, (3.2’) also implies (3.6).

(iii) In Theorem 1.2, Condition (1.1) can be replaced by

(1.1’) n(k)n(kt)a(kt2).., n(ktm-l) K,

where K is an n by n invertible constant matrix.
In fact, utilizing (2.5) we can verify that

F(X" o’+h)-IF(h" k)F(hLk" ah) (IK if 2<k+h<n,
if n+l<k+h<2n.
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Hence we can apply Remark (ii). (Condition (i) of Theorem 1.2 should be
replaced by H(0)m K.)

(iv) The requirement on the smoothness of the entries of F(t, X; ) may be
relaxed. For example, we may assume that the entries of F and OF/Ot are
continuous in (t, X; ) in a domain: G, where is a t-interval and
is an open set in the X-space. Then the entries of .4 are also continuous in
(t, X). If we assume a continuous differentiability of the entries of F and
OF/Ot with respect to , then the entries of A admit the same kind of
smoothness. Those modifications are based on the observation concerning the
differentiation of an integral of the type fog dv() with a function g which is
smooth with respect to parameters.

(v) Theoem 3.1 can be extended to p-adic functions if G is finite. How-
ever, we do not know whether the matrix E defined by (3.7) is entire.

(vi) The matrices and E of Theorem 3.3 satisfy condition (2) or

(3.10) E(X) (I)(t; )E(Xo())(I)(0" )-1.
We can interpret this relation in terms of automorphy factors and automor-
phic forms (cf. A. Borel [3]). In fact, if we define a map

(3.11) Ol: Cq G Aut(M(C))
by

(3.12)

where M,(C) is the vector space of n by n complex matrices, and Cq,
G and X Mn(C), then, since satisfies the relation (,;/jr/)

(X; )(h0(); r/), we have

(3.13)

and relation (3.10) can be written in the form

(3.14)

This mans that a is an automorphy factor and that E is an automorphic form
relative to ct. For a given automorphy factor, automorphic functions are not
unique. One of the most important problems in the study of automorphic
functions is to find a basis for the space of automorphic functions. We shall
investigate such a problem concerning the matrix E of Theorems 3.2 and 3.3,
elsewhere.

Note. In the case of Theorem 3.2, we define et by

(3.12’) a(t, ,;/j)[X] F(t, h; t)XF(O, ); ld) -1.
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Then condition (3.2) implies that

(3.13’) a(t; X; r/) a(t, X;/j)a(t, XO();

and relation (3.8’) can be written in the form

(3.14’) a(t, x; )[E(/, X0())] e(t, X).

Hence, a is an automorphy factor and E is an automorphic form relative to a.

4. Results in terms of Galois-cohomology

Let X be a smooth complex anaytic manifold, E a vector bundle over X,
and G a compact group acting continuously on the right on E by vector
bundle automorphisms; i.e., there is given a homomorphism GO ---> Aut (E).
Let denote I’(E, 0e) (the ring of all global analytic functions on E) so that
G acts on , i.e., there is a homomorphism 0: G ---> Aut (). Thus G also acts
on GL,(N). Now we can state an abstract version of Theorem 3.3 in terms of
Galois-cohomology (cf. A. Grothendieck [5]).

THEOREM 4.1. Hi(G, GL,(.)) HI(G, GLn(F(X, (gx))).

Note. In case of Theorem 3.3, X consists of a point.

To prove Theorem 4.1, we introduce a new variable through (t, e) --> te
(e E). This replaces E by C E. Let F(C E, (gce) be denoted by ’.
Then G still acts on C E, and hence p can be extended to a homomorphism
p’: G ---> Aut (’). Further if we denote d/dt by , then we have O’(j)
’() for G. Let = GL,(I’) and ’= .//t’(’). Now we can state an
abstract version of Theorem 3.1.

THEOREM 4.2.

for all l G.

For every one cocycle f: G --> there exists b , such that

(f()) bf(li) f()p’(j)(b)

Note. A map f: G .’ is a one cocycle if

f(ljrl) f()p’(l)(f(rl)) for G and r/ G.

To prove Theorem 4.2, we introduce on " a new structure of G-module by
(l, b) l b f(f)p’(l)(b)f(l) -. Let us denote this new G-module by f.
Set

(4.2) h() (f())f()-.
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This is a map G . It is easily verified that

(4.3) h() h() + x h().

This means that h is a one cocycle and hence defines an dement in Hi(G, ).
Now the following lemma is the key to the proof of Theorem 4.2.

LEMMA 4.3. HI(G, ,y) (0}.

To prove this, set

b fd(rl) dv(rl),

where , is the normalized Haar measure on G with ,(G) 1. Then from (4.3)
we derive

(4.4) b h() + b.

Hence Lemma 4.3 follows immediately.

5. An example

A traditional method for solving differential equations which goes back to
Riemann’s treatment of hypergeometric differential equation has 5 stages:

(1)

(2)

(3)

(4)
(5)

classification of differential equations by means of suitable transforma-
tions;
identification of invariants under such transformations in terms of
solutions;
construction of a standard equation representing an equivalence class
in terms of its invariants;
computation of invariants for a given equation;
reduction of a given equation to a standard equation.

Since 1970 a German-American School (W. Jurkat (Ulm-Syracuse), D.A.
Lutz (Milwaukee-San Diego), W. Balser (Ulm) et al) has done extensive work
on the classification of meromorphic differential equations (cf. W. Jurkat [8]).
In particular they identified the invariants in terms of monodromy matrices
and Stokes multipliers. Inspired by the German-American group, a French
School (B. Malgrange (Grenoble), J.-P. Ramis (Strasbourg) et al) described the
space of invariants in terms of certain cohomology groups related with
differential equations.
Now, "computation of invariants" has become a point of interest. Such a

computation may be carried out in many ways. This problem is essentially



AN ANALOGUE OF HILBERT’S THEOREM 90 73

related with the computation of monodromy matrices and Stokes multipliers.
These quantities may be computed numerically, if a differential equation is
given. We are interested in studying these quantities as functions of suitable
parameters. In a local study, this leads us to a perturbation theory (regular
and/or singular: cf. W. Balser [2]), or a deformation theory such as recent
work on isomonodromic deformations (cf. Flaschka-Newell [4], Jimbo-Miwa-
Ueno [7], T. Kimura [10], K. Okamoto [12] and R/Smer-SchrSder [13]) and
isoformal deformations (cf. Babbitt-Varadalajan [1]). A motivation of our
researches is to study some special but important cases (cf. Y. Sibuya [14]).

Precisely speaking we study solutions of

(5.1)
where

(9._ pS)y P(x)y 0 ( xd/dx),

m-1

(5.2) P(x) x" + E ahx’-h,

p is an integer such that 0 < p < m- 1, and ah (h 1,..., m- 1) are
parameters. We assume that x 0 is an apparent singular point. This assump-
tion implies that a,_ is a certain polynomial in other parameters ah

(h m p) for each pair (m, p): for example,
2 2)(5.3) a,,_ 0 (p 1), am_ 2 am_ (p

a am_la,_ 2 1/4a (p 3) etcrn-1

We shall denote by a the vector (ax,..., am_p_1, am_p+l,..., a
If p 1, Equation (5.1) becomes

m-l) cm-2"

(5.4) d2y/dx - Q(x) y O,
where

m-2

(5.5) Q(x) x’-2 + E ahx
h=l

Asymptotic solutions of Equation (5.4) with (5.5) were studied in Y. Sibuya
[14]. Many results in this book can be extended to equation (5.1).

PROPOSITION 5.1.
(5.1)-

(5.6)

There exist two linearly independent solutions of equation

tpl(x,a) =1+ pxh(a)xh+
h-1 h=p+l

q2(x, a) x" + E q2h(a) xh,
h=p+l

qglh ( a ) x h,

which are unique and entire in (x, a ).
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This result is an application of the method of G. Frobenius to (5.1) at
x 0. Note that x 0 is an apparent singular point.

PROPOSITION 5.2. Equation (5.1) admits a solution tp(x, a) such that
(i) p is entire in (x, a ),
(ii) p. admits an asymptotic representation

(5.7) q9 x-b(a)+(2p-m)/4[1 d- 0(X-1/2)] exp[--E(x, a)]

as x o0 in [arg x[ < 3r/m, where

m-- 1 ]l/2 o

1+ E akx-k =1 + E b,(a) x-h,
k--1 h---1

E(x, a) (2/m)xm/2 + E (2/(m- 2h))bh(a)x (m-2h)/2

<h<m/2

and

0
b(a)= b,,,/z(a )

if m is odd,

ifm is even.

Condition ( ii) determines the solution p uniquely.

This is a simple modification of Theorem 6.1 of Y. Sibuya [14] (see also F.E.
Mullin [11]).

Set

(5.8) o exp(2ri/m), G(a) (oal,..., okak,..., tom-lain_l),
and

(5.9) fk(x, a) p(-kx, G-t:(a)).

PROPOSITION 5.3. For every integer k, fk is a solution of equation (5.1) and

(5.10)

as x o in arg x 2rk/m < 3r/m.
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This result follows from (5.9), Proposition 5.2 and

(5.11) bu,(G(a)) akbk(a) (k=1,2,...).

PROPOSITION 5.4. For the solutions qt and P2 we have

(5.12) l(oax, G(a)) qx(x, a), 2(ax, G(a)) aP2(x, a).

This result is a consequence of the uniqueness of t and 2.

Set

f +x ](5.13) k(X,a) 3fk 3fk+l Wk(x,a) det (x, a).

PROPOSITION 5.5. For every integer k, we have

(5.14) (x, a) o(O-x, G-(a))

and

Wk(X, a) 2xP-(-1)kb(a)-kp-(2p-m)/4.

This result follows from (5.11) and Proposition 5.3.

Set

(5.16) k(X, a) @k+l(X, a)Sk(a).

The matrices Sk are called Stokes multipliers.

PROPOSITION 5.6. For every integer k, we have

(5.17)
Ck(a 1 ]Sk(a)= G(a) O’

where

(5.18)

(5.19)

C(a)=(Wk+x)-[fk
((a) -(Wk+l)-XWk -oo -(-1)k2b(a)+p,
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and

Sk(a ) So(G-k(a)).
These results can be verified by simple computations.

PROPOSITION 5.7. The matrices Sk (k 0,..., m 1) satisfy the relation

(5.21) Sm_l(a)Sm_2(a ) S2(a)Sl(a)So(a ) I,

where I is the 2 by 2 identity matrix.

This result follows from the fact that m+k k (cf. (5.14)). Note that the
monodromy group of equation (5.1) is trivial, since x 0 is an apparent
singular point.

We are interested in the meaning of relation (5.21). Utilizing (5.20) we can
write (5.21) in the form

(5.22) So(G-m+l(a))So(G-m+2(a)) So(G-l(a))So(a) I,

or

(5.23) So(a)So(G(a)) So(Gm-2(a))So(Gm-l(a)) I.

Theorem 1.2 applies to (5.23). Hence, there exists a 2 by 2 matrix E(a) such
that

(i) the entries of E and E-1 are entire in a,
(ii) SO has the form

(5.24) So(a ) E(a)So(O)E(G(a)) -1.

On the other hand, let us look at relation (5.16). Setting k 0 and utilizing
(5.14) we derive

Co(X, a) ll)o(o-lx, G-l(a))So(a)
or

So(a ) *o(-lx, G-l(a))-ld#o(X, a).

Utilizing the two linearly independent solutions q0 and 2 (cf. Proposition
5.1), we write the two solutions fo and fx as linear combinations of and

2, i.e.,

(5.26) d#o(x, a ) *(x, a)F(a),
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where

(x,a) ql q2

and the entries of F and 1’-1 are entire in a. The matrix I’(a) is called a
central connection matrix. Note that

[1 0 ]F(G_X(a))(5.27) ( x’G-(a))=d(x’a) 0 o-"

(cf. (5.12)). Therefore, from (5.25), (5.26) and (5.27), we derive

(5.28) S(a) F(G-(a))-l[ 10 ,0 r(a)

and hence

(5.29) So(0) F(0)-I[1 0
0 0’ r(o).

Thus we have

(5.30) So(a ) F(G-(a))-So(O)F(a),
where

(5.31) F(a)

(Note that the entries of F and F- are entire in a.) This means that the
matrix E of (5.24) and the matrix ff F(G-(a))- satisfy the same relation
with SO (i.e., (5.24) and (5.30)). However, E and F were constructed through
two to.tally different processes. We shall investigate the relation between E
and F more carefully elsewhere. For doing this, we hope that it would be
helpful to regard Stokes multipliers Sk as an automorphy factor and E and ff
as associated automorphic forms (cf. Remark 3.4 (vi)).
We strongly believe that the study of Stokes multipliers as functions of

suitably chosen parameters will lead us to a theory similar to that of automor-
phy factors and automorphic functions (cf., also, Jurkat-Zwiesler [9]).
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