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BY

VLADIMIR DROBOT AND JOHN TURNER

1. Introduction

In this paper we describe a method of calculating Hausdorff dimension of
certain subsets of the unit interval, using the Perron-Frobenius theory of
non-negative matrices. The sets in question are as follows. Let b > 1 be a fixed
integer. Each x (0,1) can then be expressed in base b as

(1) x E e,,(x)b-" O.e(x)e2(x )...,
n--1

where 0 < e,,(x) < n 1. The functions e,,(x) are called the digits of x in
base b. If we stipulate that the e,’s have the property that for each x,
e,,(x) < b I for infinitely many n’s, then the expansion in (1), i.e., all the
functions e,(x), is uniquely determined. The lack of uniqueness is an issue
only for countably many x ’s. Now, given two integers 0 < c < r We define the
set Tb(c, r) to be

Tb(C,r) {xe (0,1)" e,,+(x) > c, n O, 1,2...).
j----1

In other words, Tb(C, r) consists of those x’s in (0,1), for which any r
consecutive base b digits sum up to at least c. We will show how to calculate
the Hausdorff dimension of these sets. The interest in them arose from the
paper [2] by one of the authors, in which a Fibonacci type of recurrence of sets
was studied. The set arising in that paper was T2(1, 2), the Hausdorff dimen-
sion of which turns out to be log2(1/2(1 + 73-)). In order to keep the exposition
and notation clear we restrict our attention to case b 2, i.e., to the binary
expansion. Extension of the method to arbitrary b’s is completely routine.
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We sketch, very briefly, the definition and some basic properties of Hausdorff
dimension. For a complete discussion see [1]. In what follows, I and J (with
or without subscripts and/or superscripts) will always denote intervals in the
real line, and III will be the length of the interval I. If E

_
[0, 1] and e > 0,

define for each a > 0,

A(E, a, e) inf Ilnl"" E c U In, II1 , n ,2,
n=l n=l

It is clear that for fixed E and a, A(E, a, e) increases as e $ 0. Now we define

X(E, a) limA(E, a, e).

For each e > 0 the set function X(., a) is an outer measure in the sense of
Caratheodory. If we keep E fixed and vary a the following happens: There
exists a0 such that

X(E a) (0 ifa>a0

if a < a0

The number a0 is called the Hausdorff dimension of E and is denoted by
dim(E). The following two facts are basic in calculating Hausdorff dimension
of various sets.

LEMMA 1. Let E c_ R and let a > 0 be given. Suppose for each e > 0 there
is a sequence of intervals (I } such that E

_
(Jln, I1-< e for all n, and

111nl < 1. Then dim(E) < a.

LEMMA 2. Let E R be a compact set and let a >_ 0 be given. Suppose
there is an e > 0 with the following property" Given any finite collection of
closed, non-overlapping intervals 11, I2,..., I such that I1 -< e and E II.I _< 1,
it follows that [31j does not cov.er E. Then dim(E) > a.

Lemma 1 is obvious; for Lemma 2 see [1].

2. Notation and terminology

Recall that we are considering base 2 expansions only. Given a finite
sequence e1, e2,..., eN of O’s and l’s we define a cylinder I(el, e2,... eN) of
rank N to be the closure of the set

{x [0,1]" el(x ) e1, e2(x ) e2,..., ev(x ) eN}.



HAUSDORFF DIMENSION 3

Each cylinder of rank N is of length 2-v and two distinct cylinders of the
same rank do not overlap. Let now 0 < c < r be two fixed integers. If N > r
we say that a cylinder I(el, e2,..., ev) of rank N is admissible if

for n 0,1,2,..., N r.

If N < r, any cylinder of rank N is admissible. Let -(N) be the collection of
all admissible cylinders of rank N and let Fu be the union of all cylinders in
’(N). Finally, let F C3FN. A moment of reflection shows that F differs
from Tb(C, r) by at most countable number of points. Indeed, Tb(C, r) is the
intersection of sets Gv, where Gu is the union of admissible cylinders of rank
N, whose right end point was removed. Thus

dim(Tb (c, r)) dim(F).

From now on we will deal with the set F only. Let now J I(e1, e2,... er) be
a fixed cylinder of rank r. If N is an integer, N >_ r, and I I(rh, r/E,..., r/N)
is any cylinder of rank N, we say that I is of type J if "the last r digits of I
coincide with the digits of J ", that is, if

N-j er-j for j O, 1,..., r 1.

Thus if r 3, I(01100) is of type I(100).
Let s be the number of all admissible cylinders of rank r; s depends only

on r and c (and, of course, on the base b in general case). We choose an
arbitrary ordering of these cylinders, say Jx, J2,..-, Js. This ordering will
remain fixed for the rest of the paper. Any admissible cylinder of rank N > r
is of one of the types J1, J2,..-, Js.

Next, we introduce an s s matrix M [m(i, j); i, j 1,2,..., s] as
follows. Fix 1 _< _< s and let J I(el, .2,..., er) be the ith admissible
cylinder of rank r as above. Consider two cylinders I’= I(e2, e3,... e.r, 1)
and I"= (e2, e3,... er, 0). The cylinder I’ is admissible since e2 + e3
+ +e + I >_ e + e2 + +er, SO for some j we have I’ Jj. We set
m(i, Jl) 1. The cylinder I" may or may not be admissible, depending on
whether e2 + e + +e + 0 is >_ c or < c. If I" is admissible, I" is one of
the J’s, say I"= JJ2 for some J2- We put then m(i, J2)= 1. There is no
conflict with the definition of m(i, j) since j J2, because the last digits of
I’ and I" are different. We then set m(i, j) 0 for all the other entries not
determined by the above procedure.

Finally, if X is any s s matrix, the spectral radius of X, denoted by p(X),
is defined by

p (X) max(I hi: X is an eigenvalue of X }.
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3. The main result

The Hausdorff dimension of the set T2(c, r) can be calculated as follows.

THEOREM. With matrix M defined above,

dim(T2(c, r)) log2(p(M)).

Moreooer, M has one eigenvalue 0 > 0 such that ’0 #(M), this eigenvalue
is simple and the corresponding eigenvector v ( v1, v2,..., vs) has each v > O.
For every other eigenvalue of M, I,1 < ’0.

We remark that there are well developed numerical procedures to calculate
eigenvalues of matrices such as M above. Also, constructing M is quite
straightforward, once c and r are given, and the ordering of J’s is agreed
upon. Thus the values of dim(Tb(C, r)) can be calculated explicitly. We now
proceed with the proof.

LEMMA 3. Let N >_ r and let be any collection of admissible cylinders of
rank N. For each I < < s let fi be the number of cylinders in which are of
type Ji, and let f be the vector (fl, rE,..., fs). Now let f= f() be the
collection of admissible cylinders of rank N + I which are contained in some
cylinder of ’. Let gi be the number of cylinders of f which are of type Ji and let
g be the vector g (gl, g2,---, gs). Then

(2) g fM,

where M is the matrix constructed in the previous section.

Proof Each cylinder I of - contains exactly two cylinders of rank N + 1.
At least one of them is admissible" the one whose last digit is 1. Given a fixed
I " of type J,., it contains 1’ of type J if and only if m(i, j) 1. Thus for
a fixed j we have gj. Eifi, where the summation is taken over those i’s for
which m(i, j) 1. But that is exactly the equation (2). (We multiply f by the
jth column of M to get the jth entry of g.)

Denote by U the vector (1,1,..., 1) (s l’s).

COROLLARY 1.
N >_ r. Then

Let As denote the number of admissible cylinders of rank

(Here denotes the ordinary dot product.)



HAUSDORFF DIMENSION

Proof By definition, there are s U. U admissible cylinders of rank r.
Applying Lemma 3 (N r times) with f U, the result follows.

COROLLARY 2.
J,, and let

Let I be a fixed admissible cylinder of rank > r and of type

V (0,..., 0,1,0,..., 0) (1 in the kth place).

Let As(I) be the number of admissible cylinders of rank + N which are
contained in 1. Then AN(1) (VMN. U).

We now prove the second assertion of the theorem (the part after "More-
over"). This is, however, precisely the Perron-Frobenius theorem (see [3],
p. 30), the only thing we must show is that M is irreducible. Given an s s
matrix X [xij with non-negative entries, the definition of irreducibility is as
follows. We construct a directed graph on s vertices vl, v2,..., vs with an
arrow going from vi to vj if and only if xij > 0. The matrix X is called
irreducible if and only if the resulting graph is strongly connected, i.e., if there
is a path from any vertex to any other vertex. For all this see [3], Chapter 2. In
the case of our matrix M, m(i, j) > 0 if and only if the th cylinder J has the
form

I( el, e2,..., e,)

and the jth cylinder has the form

I(82, 3, er, /) where rt 0 or 1.

Thus to show that M is irreducible we must show that given any two
admissible cylinders

Ji I(el, e2,... F.r) and Jj I(/, /2,.--, r),

it is possible to get from J to Jj. by an operation of "adding a digit at the
end and shifting the remaining digits to the left", with each intermediate
cylinder being admissible. Now, if J I(e, e2,..., er) is admissible, then
I(e2,..., e,, 1) is also admissible since

E2 + + e + 1 >__ e + e2 + + er.

Thus it is possible to get from J I(ex, e,) to I(1,1,..., 1) going only
through admissible cylinders. But now, I(1, 1,..., 1, */1) is also admissible
because

1 + 1 + +1 >- 111 + 2 + +r"
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For the same reason, I(1,1,..., 1, r/l, 72) is admissible, etc. Continuing in this
way we see that it is indeed possible to get from any J to any J., and thus M is
irreducible so the Perron-Frobenius theorem applies. Finally, it remains to
show that for any other eigenvalue , of M we have 11 < ’0, or, in the
terminology of the Perron-Frobenius theory, that the matrix M is irreducible.
By [3], p. 43, Exercise 1, it is enough to show that one of the diagonal entries
of M is positive. Now, one of the admissible cylinders of rank r is I(1,1,..., 1),
say this cylinder is Jkl on the list of all such cylinders. The cylinder
I(1, 1,..., 1, 1)(r / I l’s) is again admissible, is a subset of Jl and is of type
J*l, so m(k1, kl) 1. The assertion is thus proved.

Let now ’0 be the simple eigenvalue of M of largest absolute value; we have
just shown that 0 > 0.

LEMMA 4. There exists a constant c > 0 such that as N oo, AN Cho In
particular, for some 0 < c < c2, clX _< AN _< c2,0 (AN is the number of
admissible cylinders of rank N.)

Proof. Let o (,..., o,) be the eigenvector corresponding to the (sim-
ple) eigenvalue ,o; all the oj’s are > 0 (see [3], Theorem 2.1). By Corollary 1,
AN (Uv-r U), where U (1,..., 1). The entire space R can be written as
a direct sum

span(v) Y,

where Y is invariant under M, and the restriction of M to Y, denoted by Mr,

has all of its eigenvalues < ,0 in absolute value. Choose a number a such
that v _< a, 1,..., s. If U Y then, by the spectral radius theorem,

X o limllvMll /N <_ lim IIaUMNII t/N

<_ li-- IIMII t/N= Ilargest eigenvalue of My[ < o.
Hence U by + w, for some b = 0 and w Y. Thus

(UMN-r" U)= b,r(v U)X + (wMN-r" U)

and the last term is o(,), since wM wMr.

LEMMA 5. There exists a constant c > 0 with the following property. Let I
be any admissible cylinder of rank and let AN(I) be the number of admissible
cylinders of rank + N which are contained in I. Then AN(1) < c3Yo. More-
over, this constant c can be taken to be independent of I (and hence of t).

Proof. It is enough to show that such a constant exists, depending only on
the type of I (there are only finite number of types). By Corollary 2,
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As(1) (VMN. U), where V= (0,..., 1,...,0) (1 in the kth place), and U
is as above. Let v (or,..., v) be the eigenvector corresponding to the
(simple) eigenvalue o, and let # Min(vt,..., v) > O. Then it easily follows
that

/12AN(I ) (/1VMN. /1U) < (vMN. /1U) X(o. #U)

so c3 may be taken to be/1-2(/) /1U). QED.
We now show, using Lemma 1, that dim(F) _< log2(k0). Let a > log2(,0).

The family 9’(N) covers F, each interval of ’(N) has length 2-N and by
Lemma 4 there are at most CEh intervals in o’(N). Thus

(3) E III" < c2(X02-") N.
I’(N)

Now, given e > 0 choose N so large that the fight side of (3) is < 1. This is
possible because 0 < 2". Thus dim(F) _< a. Since a > log2(h0) was arbi-
trary, the result follows.

Finally, we show that dim(F) >_ log2(X0). The proof is an adaptation of
techniques in [1]. Let a < log2( 0)" We will construct e > 0 such that if q/is

any finite collection of intervals I so that Y’.[I[ < 1 and 111 < e for all
I q/, then for N large enough -(N) will contain cylinders disjoined from
any I in q/. Since each cylinder in -(N) intersects the set F, this will show
that q/ does not cover F, and thus, by Lemma 2, dim(F) > a. Since a <
log2(k0) was arbitrary this will give the result. Given a as above we will
construct e as follows. Since the series E,(2-,o)" converges, there is an
integer so that

CE (2-"X0) -< 100c
n>_t

where c and c are as in Lemmas 4 and 5, respectively. Put then e 2 -t. Let
q/ be now a family of intervals as described above. For each p 1, 2, 3,...,
let q/(p)contain those I’s from q/for which

1 1
2t+P

< III-< 2t+P_

Each I in ok’(p) intersects at most 3 intervals from ’(t + p 1), and thus at
most 6 intervals from ar(t + p). Let 3’,, denote the number of intervals in
q/(p). We have then

’,(2-’-e)< E III <1
l’(p)
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or 3’, < (2t+/’)a. Let B(p) denote the number of intervals from ’(t + p)
which intersect some I q2’(p). By the above,

B ( p ) < 6,/p < 6(2 +’) ’.

Since q2’ is a finite family, ’(p)= for p>P0. Let now N>P0. If
I ’(t + N) intersects q2’, then it must intersect some q/(p) for certain
1 < p < Po, and hence this I must be contained in some J -(t + p), where
such J intersects (p). Given a specific J in ’(t + p), by Lemma 5, there
are at most c3kto+N-(t+p) I’s in ’(N + t) which are contained in this J.
Hence the number of I’s in ’(t + N) which intersect a specific ql(p) is at
most

6(2t+) c3’-e 6(2-att0)+Pc3to+N"

Thus, the total number of I’s in -(t + N) which intersect some ql(p) is at
most

6Xto+Vc3 E (2-aX0) t+p < 6c3 E (2-"’0)"[0+u
p---1 n>t

At+N< ___6._,. )tt+N < Cl/X0i00 t’l’ 0

by the choice of t. The total number of intervals in ’(t + N) is, however,
larger than clAt0+ by Lemma 4. Thus the assertion follows and the proof of
the theorem is complete.
As an illustration, we will calculate dim(T2(,1 2)), i.e., the dimension of the

set of those x’s for which e(x)+ e+(x)> 1 for all j’s. There are 3
admissible cylinders of rank 2: I(1,1) J1, I(1,0)= J2, and I(0,1)= J3.
Easy calculation shows that the matrix M is given by

1 1 O]0 0 1
1 1 0

The eigenvalues of M are 0, 1/2(1 + -), and 1/2(1 3-). Thus

dim( T2 (1, 2)) log2(1/2(1 + v)).

The authors would like to thank the referee for prompt and thorough
reading of the manuscript, and for several valuable suggestions; and to Prof.
Lawrence Wallen for an interesting conversation about the linear algebra
involved.
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