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VECTOR-VALUED HARMONIC FUNCTIONS AND CONE
ABSOLUTELY SUMMING OPERATORS

BY

OSCAR BLASCO

1. Introduction

Throughout this paper Rn++ denotes the half space

{(x,y)’xR",y>O)

and (B, II lid denotes a real Banach space.
The objective of this paper is to extend to a vector-valued setting the

problem of characterizing the boundary values of certain spaces of harmonic
functions in the upper half space. In the scalar-valued case the result may be
stated as follows [8]:

(1.1) hP(R+1) =LP(Rn) (1 <p< oo),

(1.2) hl(R+1) M(R")

where these isometries are given by the Poisson integral. Let us define the
space h ’ for B-valued functions, h(R++l) denotes the space of B-valued
harmonic functions u’R+ B such that

(1.3) lul sup Ilu( , Y)I1 dx < + oo (1 p < oo),
y>0

uloo sup u(x, y) lIB
(x, y) R.+1

In [1] the author solved the same problem for the unit disc D, by using certain
classes of operators. In that case h(D) may be interpreted, for 1 < p < oo, as
the Dinculeanu class of operators. In addition a class of operators from a
Banach lattice into a Banach space was defined in [1], the so-called positive
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p-summing operators, which turns out to be the Dinculeanu class in the special
case of Lp-spaces. Later on in [2] the author discovered that, for Lv-spaces,
these classes also coincide with a class defined by Schaefer [7] and which are
called cone absolutely summing operators (c.a.s.).
Here we shall present a proof in the case of the half-space which uses the

c.a.s, operators and which is quite different from the original one [1]. Now we
shall use the w*-compactness of the unit ball in a dual space.

Let us introduce some notation here to establish the main result of the
paper.

Denoting by X a Banach lattice, L’(X, B), AI(X, B) and rrl(x, B) will be
the spaces of all bounded operators, the cone absolutely summing ones and
the absolutely summing operators respectively (see definitions below).
With all this the main theorem states the following identifications:

1 1
1 <p< oo,- + -7 =1,

We shall finally prove that (1.1) remains valid in the vector-valued setting if
and only if B has the Radon-Nikodym property.

2. Preliminary results and definitions

Let us begin with the properties which still hold for functions with values
in B.

Recall that P(x, y) denotes the Poisson Kernel on the half-space; that is,

P(x,y) =c,
(y2 + ixl 2)

n + 1
2

If f belongs to L(Rn) we still can define the B-valued harmonic function

u(x, y) V(., y),/(x) ff(t)P(x t, y) dt.

PROPOSITION 1.
Ilfllp lull.

Let l < p < oo. lf fL(Rn) then u h(R++1) and

Proof From Minkowski’s inequality follows ulv < Ilfllv and since
P(., y), f ---> f as y goes to zero, Fatou’s lemma implies the converse inequal-
ity. 1
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So the Poisson integral embeds L(R") into h(R++x).

Remark 1. The Poisson integral is not surjective in general. The reader can
easily check that if B LI(R") and u(x, y)(t)= P(x- t, y) then u
hear+l) but u is not the Poisson integral of any function in L(R). So inB ,’=+
order to find the corresponding space of boundary values for h(R++ 1) we
should look for a larger space than L(R") but which contain it. The key point
is to look at functions as operators. In order to unify results let X, L(R")
for 1 < p < oo and let Xoo C0(R") (continuous functions which converge to
zero at infinite), and with this notation we can write

/4(le) .z(x,,, 1 1

The identification is given as follows: f in L(R") defines the operator T,

T(p) fp(t)f(t) dt for all tp in X,,.

From H51der’s inequality II T/I < Ilfll- Notice that for p Do we have an
isometry (llflloo--liT/I). To embed L(R") isometrically in L’(X,,, B) we
shall use the Banach lattice structure of X,,.

DEFINITION 1. [7] Let X be a Banach lattice. An operator T in L’(X, B)
is called a cone absolutely operator (c.a.s.) if there exists a constant C > 0
such that for every positive finite family Xl, x2,..., xk > 0 in X we have

k k

(2.3) IlZxillB < C sup 1<, xi) l.
i=1 IIllx- _<1 i--1

We denote by AI(X, B) the space of c.a.s, operators and the norm in it is given
by the infimum of the constants verifying (2.3).

Let us recall that the space of absolutely summing operators, rl(X, B) has
the same definition without requiting that the family xl,..., xk be positive
(see [6]).
We shall use an equivalent norm in AI(X, B) (see [7]):

(2.4) IIIZlll sup E liT(x,)I1 x, o x, < 1
i--1 i--1 X

The following useful characterization may be found in [7] (or in [1] in the
particular case of X L’).
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PROPOSITION 2. Let T .’( X, B).
positive functional in X* such that

T is c.a.s, if and only if there exists a

(2.5) IITxll <, Ixl> forallx X.

Moreover can be chosen with I111. IIITIII-

The only cases we are interested in are X L’(Rn) or X Co(Rn) and for
these we have the following result.

PROPOSITION 3.

(2.6)
(2.7)

(/I(R.), ,) e’(/_.0e), ),
(Co(R"), ) (Co(R"), ).

Proof (a) Take T in .’(LX(R), B) and tpx,..., tpk > 0 in LX(R"). Then

k k

i---1 i=1 i=1

Therefore IIITIII II TII which proves (2.6) since the reverse inequality is true
in general.
To show (2.7), since rl(X, B) c_ AX(X, B), we take T in AX(C0(R"), B) and

%, q2,---, q in Co(R) not necessarily positive. Then

k k k

E T(%) < E T(%+ )11 / Z T(,- ) II.
i--1 i--1 i--1

On the other hand (see [4], page 162)

1 o IIllt(R") <

Therefore T is absolutely summing and II TII# < 21IITIII.

Remark 2.
page 163.)

AX(Co(R"), B)= Ms(R"). (This is essentially proved in [4],
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The following step is to verify that the spaces L(Rn) are isometrically
embedded into At(X,,, B).
From (2.2) we have II T(y)ll -< (llfll, I1> for all tp in Xp, which implies,

by (2.5), that L(Rn)
_

A(X,,, B) and IIITIII-< Ilfll- But we also have the
following"

PROPOSITION 4. For 1 p o, iff L(R) then IIITIII- Ilfll.
Proof. The cases p 1 and p o are clear from Remark 2 and (2.6)

respectively.
Take a simple function s Z.k=xaiXe,, a B. Then

I111-- E Ila,m(E,)
i----1

sup E Ila,llnm(E,)/a," E a’= 1
i--1 i=1

i--1 i---1

< IIIZlll sup E aim (Ei) 1/1"X ., af’ 1
i=1 B i--1

Therefore IIIZlll
proof.

and now the density of simple functions completes the

The following property says that when the Banach space is a dual space
then the space of c.a.s, operators is also a dual. The proof can be found in [7],
page 277, for 1 < p < o and the other part is a reformulation of Singer’s
theorem.

PROPOSITION 5.

(2.8)
(2.9)

((.)). a(/.’(n-), .),
(Co,,,("))* a(Co(n"),

l<p< oo,

3. Proof of the main theorem

Let us recall the notation X L(R") for 1 < p < oo and Xoo
and p’ such that 1/p + 1/p’ 1.

Co(")
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THEOREM 1. For 1 < p < , h:(R++ 1) is isometric to 3( Xp,, B).

Proof The isometry will be achieved by consideration of the following
extension of the Poisson integral: Given an operator T in .(X,,, B) we can
define the harmonic function u (T) by the formula

(3.1) u(x, y) T(P(x -., y))

where P(x, y) is the Poisson kernel on the half-space.
We shall prove that maps AI(Xp,, B) onto h(R++ 1). To do that let us

take T in AI(X,, B). Then according to (2.5) there exists a positive function g
in (Xp,)* LP(Rn) for 1 < p < or a positive measure ft in (X)* M(R")
such that

(3.2) Ilu(x, y)I1 P(’, y)* g(x) for 1 < p < ,
or

(3.2’) Ilu(x, y)I1 fP(x t) d(t) for p 1.

From (3.2), Minkowski’s inequality implies lulp Ilgllp IIITIII and by Fu-
bini’s theorem and (3.2’) we get lulx -< II/11 IIITIII.
On the other hand, assume ql, q2,--., qk > 0 in X,,. Since

P(’, Y)* l]0i i

in X, for all 1 _< p’ < and T is continuous we have

k k

E liT(w/)II m0
E lit(e(., Y)* qi)I1

i--1 i=1

p E r (.- ,(
y>0 i=1

Now use Hille’s theorem [4, page 47] to put T inside the integral and use the
fact thal qi > 0 to get

k k

E IIT(,)II. -< sup fllT((’- t, y)[[sqi(t) dt
i----1 y>0 i-----

sup fllu(t, Y)I1 E W,(t) dt
y>0 iffil

i--- p,"
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R+I) IIIZlll. ToTherefore if T A(Xv,, B) then u (T) h( + and lul
finish the proof we must show that is surjective.

Let us take u in h(R+ 1). This means that u(., y) is a family of B-valued
functions uniformly bounded in L(R"). Since L(R) _c L..(R), then
Propositions 4 and 5 allow us to look at u(., y) as a family contained in a ball
of the dual space A(Xv,, B**). Therefore there exists an operator T and a
sequence y such that u(., y)coverges to T in w*-topology.
Due to the identification of these duals, we may write that for every in

Xp,, and in B*,

(3.3) (li, fu t, a,) ,,

The harmonicity of u implies that

(3.4) (li, fu(t, y’)P(x- t, y) dt) (, u(x, y + y’)).

By taking tp(t) P(x t, y) for fixed x R and y > 0 then (3.3) and (3.4)
imply (T) u.

Finally, if we show that the range of T is actually in B the proof will be
complete. To see that, it suffices to use the continuity of T and the fact that

V(., y), q -o p

in Xv, as y goes to zero. Then

T(tp) lim T(P(., y), tp)= lim T(fP(.-t, y)p(t)dt)y--*O y-O

lim fr(e(.- ,, y)p(t) dt lim fu(,, y)p(t) dt,
y--*O y-O

and since u(t, y) belongs to B there, so does T(). m
Let me finish by showing that the Radon-Nikodym property of B is the

necessary and sufficient condition for the Poisson integral to be an isometry
between h(Rn++1) and L(Rn). For the disc D this was proved by Bukhvalov
and Danilevich [3] and the author gave a different approach in [1]. This result
will follow from the next theorem which was proved in [2] for a finite measure
space.

THEOREM 2. Let 1 < p < oo. The following statements are equivalent.
(a) Every operator T in AI(Lv’(Rn), B) is representable by a function f in

L’(R’)
(b) B has the Radon-Nikodym property.
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Proof. Let us assume (a). By Theorem 5 on page 63 of [4] we have to show
that any operator

r. -. B

can be represented by a function f in L(fl), where 21 (x Rn" xl 1 }.
Let us consider the projection r" LP’(Rn) L’(2x) given by r(q) Xax.
It is simple to verify that Tr AI(L"(R), B) if T (LI(x), B). By
assumption we get f in L(R) and now take fxax to represent T.

Conversely, suppose B has the RNP and take T in A(LP’(R"), B). Let

ilk= (xR"’lx <k)

and define k LP’(k) -* LV(Rn) by Lk(Cp) k where (k (9 on flk and
tpk 0 on fl,. Then we can easily show that Tk k T belongs to
AI(Lp’(k) B). Now by using Theorem 2 in [2] we get fk in L(k) such that

Tk(q) ) q)(t)fk(t )dt for all
k

Consider f fk on fk" This function is measurable and it is well defined since
fk/ f on f. Now Fatou’s lemma implies that

llf(t)ll dt < lira Lllf(t)ll dt < IIIZlll < IIIZlll-
k--* oo

Therefore f belongs to L/(R) and the proof is completed.

Notice that due to the representation u(x, y) T(P(x -., y)) we can say
that T is representable if and only if u(x, y) P(., y), .f(x) for some f in

In other words, Theorems 1 and 2 imply the following result.

COROLLARY 1. Let 1 < p < . Then h(Rn++1)= Log(Rn) (by the Poisson
integral) if and only if B has the RNP.

Let us mention that from (2.8) and taking into account Theorem 2 we get
the following result due to Lai [5].

COROLLARY 2.
B* has the RNP.

Let 1 < p < c. Then (Lg(R"))* L’(R") if and only if

Acknowledgement. This work was done while the author was visiting the
University of Illinois during the special year in Analysis, 1986.
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