
ILLINOIS JOURNAL OF MATHEMATICS
Volume 33, Number 2, Summer 1989

PARTIALLY ISOMETRIC APPROXIMATION OF
POSITIVE OPERATORS

BY

P.J. MAHER

1. Introduction

Consider the problems of minimizing the quantity

IIA- UIl,

where A is a fixed positive operator and where U varies over the set of (i) all
unitaries, (ii) all isometries, and (iii) all partial isometries (subject to the
condition that A- U c where c, denotes the von Neumann-Schatten p
class). In the language introduced by Halmos [6], problems (i), (ii) and (iii)
concern, respectively, unitary, isometric and partially isometric approximants
in c, of a positive operator. Problem (i) has been solved by Aiken, Erdos and
Goldstein [1]. This paper tackles problems (ii) and (iii).

Aiken, Erdos and Goldstein proved that if the operator A is positive and U
varies over all those unitaries such that A U c, where 1 < p < oo, then
IIA- UIIp is minimized when U I and, providing the underlying Hilbert
space is finite-dimensional, maximized when U -I [1, corollary 3.6]. Fur-
ther, if A is strictly positive and 1 < p < oo these minimum and maximum
points are unique [1, Theorem 3.5]. They also obtained the corresponding
inequality for the operator norm [1, Theorem 3.1]: if A is positive then for all
unitaries U in

IIA- III < IIA- UII < IIA + III-

A feature of their work is the use of noncommutative differential calculus.
They found an explicit formula [1, Theorem 2.1] for the derivative of the map
S IIXII’, where X c, with 1 < p < oo (see Theorem 2.3 below). In
searching for a global minimizer of IIA UIIp one can thus restrict attention
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228 P.J. MAHER

to those operators that are local extrema of the map U IIA- Ull; cf.
[1, Theorem 3.5].

Interestingly, the problem of minimizing IIA UII arises from quantum
chemistry: see [1], [2] and compare with [5].

In {}2 of this paper we recall various preliminaries about partial isometries
and the von Neumann-Schatten p-classes. In {}3 we turn to isometric approxi-
mation of positive operators" for c, where 0 < p < oo, this problem turns
out to be exactly that of unitary approximation; whilst (1.1) also holds for all
isometries in (H).

Partially isometric approximation, dealt with in {}4 and {}5, is harder
(perhaps because the initial and final spaces of a non-normal partial isometry
do not coincide). {}4 deals with the local theory pertaining to the map

F,’U IIa- UII (1.2)

where U varies over those partial isometries such that A U W, where
1 < p < oo, and A is positive. This local theory is utilized in 5, in particular
in Lemma 5.4 and Theorem 5.6. Theorem 5.6 says that if F attains a global
minimum then

(1.3)

(where El2 is a certain projection introduced in Definition 5.5); and, for
strictly positive A such that 1/2 o,(A), equality occurs in (1.3) if and only if
U El2.

The problem of partially isometric approximation thus becomes an exis-
tence problem. If the underlying space is finite-dimensional then F attains a
global minimum (and, at U -I, a global maximum) so that (1.3) holds, with
a similar result in the operator norm (see Theorem 5.7). In infinite dimensions,
the Halmos/Bouldin theory of normal spectral approximants [7], [3] shows
that (1.3) holds provided p > 2 and U is a normal partial isometry (see
Theorem 5.11).
The positivity condition on A can be weakened. There is an infinite-dimen-

sional result (Theorem 5.10) about approximating a normal operator A by
normal partial isometrics; and a finite-dimensional result (5.8) about approxi-
mating an arbitrary operator A by partial isometrics.

After writing this paper I learnt that Wu [11] had obtained formulas for the
operator norm distance, infllA UII, where A is arbitrary and where U varies
over (i) the isometrics, (ii) the isometrics and the co-isometrics, and (iii) the
partial isometrics. For the cases considered in this paper, it can be checked
that the relevant distance is attained when U I or when U E/2.

This paper originated as part of my Ph.D. thesis. I should like to thank my
supervisor, Dr. J.A. Erdos, for the help and encouragement he has so freely
and generously given.
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2. Preliminaries

Throughout this paper the term Hilbert space means complex Hilbert space
with inner product denoted by ( ), basis means orthonormal basis, operator
means bounded linear operator and .W(H) denotes the set of all operators on
the Hilbert space H. Projection means orthogonal projection. The spectrum of
an operator A is denoted by o(A) and its point spectrum by op(A). A
self-adjoint operator A in .Z’(H) is positive if (Af, f) > 0 for all f in H and
strictly positive if, further, Ker A {0}.
An operator is a partial isometry if it is isometric on the orthogonal

complement of its kernel: thus, U is a partial isometry if II Ufll Ilfll for all f
in (Ker U)i. If U is a partial isometry then U*U and UU* are, respectively,
the projections onto (Ker U) +/- (called the initial space of U and onto Ran U
(called the final space of U). For a partial isometry U we shall write
Ev U*U and Fv UU* (so that Ev. Fv). Thus, a partial isometry U is
normal if and only if Ev Fv, that is, if and only if its initial and final spaces
coincide. Note also that an operator U is a partial isometry if and only if
U= UU*U.
The polar decomposition says that every operator A in Z(H) can be

expressed uniquely as A Uo[A where [A[ (A’A)/2 and where Uo is the
partial isometry such that Ker Uo Ker]A[ (and where Ran Uo Ran A) [8,
Chapter 16]. Note: the partial isometry Uo can be extended to a unitary, say
Uo, which agrees with Uo on (Ker Uo) (and which can be any isometry
mapping Ker Uo onto (Ran A)+/-) if and only if dim Ker Uo dim(Ran Uo)+/-,
that is, if and only if, dim Ker A --dimKer A* [9, p. 586]. (In finite dimen-
sions the condition dim Ker Uo dim(Ran Uo) +/- is automatically met.)
We now give a brief resum6 of the properties we require of the von

Neumann-Schatten p-classes [4, Chapter XI]. For a compact operator A, let
s(A), s2(A),.., denote the (positive) eigenvalues of [A[ arranged in decreas-
ing order and repeated according to multiplicity. If, for some p > 0,

E si(a)" < O
i--1

we say that A is in the von Neumann-Schatten p class cgp and write

i=1

If 1 < p < oo, it can be shown that II I1 is a norm and under this norm
is a Banach space; if 0 < p < 1, cge is a metric space with metric given by

a(A, E
i=l
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For all p, where 0 < p < oo, ffp is a two-sided ideal of .oq’(H) and Ilallp
IIa* I1 if A H c. If 0 < Pl < P2 < oo then c, _c c2. We identify cgoo with
the two-sided ideal of compact operators in .(H). The algebra
is the Calkin algebra.
The class 1 is called the trace class. If A H ’ and if { , ) is a basis of the

Hilbert space H then the quantity z(A), called the trace of A and defined by

,(A) E

can be shown to be finite and independent of the particular basis chosen. If
A H cg and S H Aa(H) then z(SA)= (AS). The rank 1 operator x
(x, e)f, where e and f are fixed vectors in H, will be denoted by e (R) f. Note
that

A(e(R)/)B= (B’e) (R) (Af ) and z(e(R)f)= (f,e).

If A is a compact normal operator and (,,) is the sequence of non-zero
eigenvalues of A arranged in decreasing order of magnitude and repeated
according to multiplicity then, for 0 < p < oo, A ’ if and only if Y’.I,I
< oo and when A H ,,

Ilall E Ihl. (2.1)
n----1

From [10, Theorem (1.9)] we shall require the following result: if A + B H

Cgp, where 0 < p < oo, and if Ran A _k Ran B and Ran A* .1. Ran B* then
A H c,, B H , and

IIA + BII Ilall, + Ilnll p-

Next we state the Aiken, Erdos and Goldstein differentiation result. The real
part of a complex number z will be denoted by Re z.

THEOREM 2.3 [1, Theorem 2.1]. If 1 < p < oo then the map cg _._> R+

given by X IlSll is Frchet differentiable with derivative Dx at X given by

Dx(T ) p Re (IXI"-XU*T)

where X UI XI is the polar decomposition of X. If the underlying Hilbert space
is finite-dimensional, the same result holds for 0 < p < 1 at every invertible
element X.

We shall require the notion of retraction. If A is a non-empty closed subset
of the complex plane C then a retraction for A is a function F mapping C
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onto A such that

[z-F(z)[ < [z-X[

for each h in A, where z is an arbitrary complex number. It can be shown
that every non-empty dosed subset A of C has a Borel measurable retraction
[7, p. 55, Lemma]. Also A has a unique retraction F if and only if A is convex
if and only if F is continuous [7, p. 54]. We next stae Halmos’ main result on
retractions and Bouldin’s , variant of it.

THEOREM 2.4. Let F be a Borel measurable retraction for a non-empty closed
subset A of C, let A be a normal operator and let V’(A) denote the set of all
those normal operators each of whose spectrum is in A. Then:

(a) [7, p. 55, Theorem] F(A) /’(A) andfor all X in .A/’(A),

IIA f(a)ll < IIA Sll.

(b) [3, Theorem 2] In addition, if X varies such that A X Cgp, where
2 < p < , then F(A) is also such that A F(A) cg, and

IIa F(A)II-< Ila gll; (1)

further, F(A) is the unique choice of X producing equality in (1) if and only if
every point of t(A) has a unique closest point in A.

The operator F(A) occurring in Theorem 2.4 (a)/(b) is called a normal
spectral approximant of A (in norm/in ,)).

3. Isometric approximation of positive operators

We now extend the results of Aiken, Erdos and Goldstein to isometric
approximation of positive operators. First, their preliminary result, which says
that if A- U ’p for some unitary U and positive A then A- I Cgp
[1, Theorem 3.2], holds equally well for isometric U (all that is required is that
U satisfies U*U I). Thus"

LIMMA 3.1. If a is a two-sided ideal of .(H) and ifA U a for some
positive operator A and some isometry U then A- I Gag; in particular, if
A U c,, where 0 < p < oo, then A 1 c,.
Theorem 3.2 gives the extension to isometries. Theorem 3.2 depends on the

Fredholm alternative [8, Problem 179] which says that if K is compact and if
0 h C then either h is an eigenvalue of K or K- ,I is invertible.
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THEOREM 3.2. Let A be a positive operator and U be an isometry such that
A U cv, where 0 < p < oo. Then U is unitary.

Proof From Lemma 3.1 it follows that A I ffp. So

%.
Hence U- I K, say, is compact. Now, U I + K is isometric and hence
1-1. So Ker(I + K) {0} and hence -1 is not an eigenvalue of the compact
operator K (for otherwise, Ker(I + K) would contain a non-zero eigenvector
of K with corresponding eigenvalue -1). Therefore by the Fredholm alterna-
tive, K- (-1)I (= U) is invertible and hence unitary, m

Conclusion so far: all of Aiken, Erdos and Goldstein’s results about unitary
approximation in ,, where 0 < p < oo, hold for isometric approximation.
The same is true of their operator norm result (1.1): for the proof of (1.1)

depends on the equality

(llafll- 1) -<ll(a u)/ll2-< (llafll + 1)-
(where Ilfll 1), an inequality which holds if U is isometric.
The positivity condition on A can be weakened; cf. [1, p. 63]. Let A be any

operator such that dim Ker A dim Ker A*; then A U01AI for some uni-
tary U0. Suppose U is unitary and such that A U p. Then the equality

uII, -II lat 00*u II, (3.3)

shows that, for 1 < p < oo, 00 is a unitary approximant in II lip to A. The
same result holds if U is assumed isometric" for then Uo*U is isometric and, as

IAI is positive, Theorem 3.2 applies" Uo*U, and hence U, is unitary. Obviously,
there is the corresponding result in the operator norm: if A satisfies dim Ker A

dim Ker A* and if U0 is as above then

IIa- 011 < IIa- UII < IIa + 011
for all isometries U in Ae(H).

Finally, since the norms II II and II II are self-adjoint all the results
mentioned so far about isometric approximation hold for co-isometric approx-
imation (U is a co-isometry if U* is an isometry).

4. Partially isometric approximation: Local theory

THEOREM 4.1. Let A be a positive operator and let the map Fp be defined by
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where U varies over those partial isometries such that A- U cgp, where
1 < p < . If V is a critical point of F, then:

(a)
(b)
(c),
(d)
(e)
(f)

A V V*A and A V* VA
EvA AEv;
Ker V resduces A and Ker A reduces Ev;
Ker A reduces V;
AV= VA;
V is self-adjoint ifA is strictly positive.

Proof (a) The proof of (a) is the longest (results (b) to (f) are simple
deductions from it). The proof is analogous to that in [1, Lemma 3.3] for
unitary operators. Thus, for an arbitrary unit vector z and an arbitrary real 0
let the unitary operator Wz(O) be defined by

Wz(O) e’(z (R) z) + I- (z (R) z).

If V is a critical point of F, then, as Wz(O ) is unitary, Wz(O)V and VWz(O )
are both partial isometrics and, for each z,

ar.
dO (Wz(O)V) and --d-(VW(O))

both vanish at 0 0. Applying the chain rule to the map

o w(o)v r.(w(o)v)
and using Theorem 2.3 we get

o -a- (w(0)v) ,_ pRe z[lA Vl-xU*i(z (R) z)V] (1)

where A V UIIA V] is the polar decomposition of A V. From (1)
(since r[S(z (R) z)V] (VSz, z) where S .oq(H)), it follows that the opera-
tor VIA V[’-1U1. is self-adjoint:

VIA Vl’-U* Ul lA VI’- XV*. (2)

Similarly, since

ao (vw(o)) o.
0=0

it follows that

IA Vl’- tU*V V*Ul lA VIp- 1. (3)
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Now, we will have A V V*A if and only if

IA- VIUl*V- V*GIA- Vl (4)

because V’V= (A- [A- VIUt*)V-- V*(A- UIA- V[) since A A*
and V A UI[A V[ (the polar decomposition of A V).

Proof of (4). If p 2 it is obvious that (4) holds; for then (3) is the same
as (4).
For arbitrary p, where 1 < p < 0, the proof uses the functional calculus

for self-adjoint operators. Write X IA- VI’-t and Y U*V. Then (3)
says that

xr= r,x

and (4) is the same as Xt/(P-1)Y Y*X/(’-). This will follow, by the
functional calculus, from

X"Y Y*X", n N, (6)

for the function f: 1/(p-1), 1 < p < o, where R+ o(X), satisfies
riO) 0 and so can be approximated uniformly by a sequence (p) of
polynomials without constant term. Thus, (6) will imply that p(X)Y
Y*p(X) and hence that X1/(’-I)Y Y*X1/(1"-1).
The proof of (6) is by induction, first for odd, and then for even, n. We need

the following assertion: YX XY*. To prove this assertion, observe that since

Ker U KerlA Vl Ker X (where X IA VIp-l)

then (Ker Ut) +/- Ran X and hence that Ux* U1, the projection onto (Ker U1) +/-,
satisfies

vTGx= x xG*G.

Then multiplying (2) on the left by UI* and on the right by U we get

G*vxuTu1 Ul*UxXV*G,

that is, YX XY* (where Y Ut* V). Returning now to (6) in the case of n
odd: for n 1, (6) is just (5); whilst the inductive step follows from the
assertion (in the form XY* YX) and from (5).
The final step--that (6) holds for even n, too, --follows by another

application of the functional calculus. Since (6) holds for odd n then

(S2/)(s2k-ly) (y*s2k-1)(s2l), where I > 0 and k > 1.
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Hence, for every polynomial q, q(X2)(x2k-Iy) (y*x2k-1)q(X2). Take a
sequence ( qj } of polynomials converging uniformly to the positive square root
function t 1/2 where R +. Then, as qj(X2)(x2k 1y)
(y*xEk-1)qj(X2) for every qj, it follows, on taking limits, that

X(x2k-y) (y*x2k-)X,

that is, x2ky y*x2k--whJch is (6) for even n. This proves that A V V*A.
Finally, since A is self-adjoint, V is a local extremum of

if and only if V* is a local extremum of F,. Hence A V* VA.
(b) From (a), EvA= AEv (for, by (a), V*(VA)A V*(AV*)A

A VA V A(A V*)V). Hence, Ev commutes with A (the positive square root
of A2).

(c) EvA AEv means that Ker V (= (Ran Ev) +/-) reduces A. KerA
reduces Ev since if f KerA (so that Af= 0) then Evf KerA since

EvA AEv.
(d) Ker A is invariant under V; for if f Ker A then Vf Ker A because,

by (a), A Vf V*Af= O. Similarly, KerA is invariant under V* (because
AV* VA).

(e) From (a), A2V A V*A VA2. Hence, as A is positive, A V VA.
(f) From (a) and (e), V*A A V VA. So, (V* V)A 0, that is, V is

self-adjoint on Ran A (Ker A)+/-. Hence, V V* if A is strictly positive.

Notice that the positivity of A, though required in parts (b), (c), (e) and (f)
above is not required in part (a) which holds if A is self-adjoint. In fact, the
differentiation argument of Theorem (4.1) yields the following result: let A be
in .W(H) and let U vary over those partial isometrics such that A U cg,
where 1 < p < oo; then if V is a local extremum of the map U [[A U[[
it follows that A*V V*A.

Observe that the proof of Theorem 4.1 (in particular, the argument involv-
ing approximation to the function 1/(’- 1) where > 0) does not work in
the 0 < p < 1 case. Of course, this does not preclude Theorem 4.1 from
holding when 0 < p < 1 provided F, is differentiable at V.

5. Partially isometric approximation; Global theory

First, we have the following partially isometric analogue of Lemma 3.1.
Lemma 5.1 is stated for self-adjoint, rather than positive, operators A" the
positivity of A is only used in the proof of Lemma 3.1 to ensure that A + I is
invertible [1, Theorem 3.2].
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LEMMA 5.1. ff aCt" is a two-sided ideal of .(H) and ifA U Gag for some
self-adjoint operator A and some partial isometry U then A2- Ev Gag and
A2 Fv a (where Eu U*UandFv UU*); in particular, ifA U Cgp,
where 0 < p < , then A2- Ev cgp and A2- Fv cgp.

Proof It follows (cf. [1, Theorem 3.2]) from the self-adjointness of A and
the ideal property of a that A2 Ev (A + U*)(A U) + (AU- U’A)
a. Similarly, A2- F a.
LEMMA 5.2. If A U cg,, where 0 < p < oo, for some positive operator

A and some partial isometry U then

Proof. If A U p, where 0 < p < o, then, by Lemma 5.1,

A2_ Ev cg, (andA2_Fv p)

and hence A2- Ev goo. Therefore, if r denotes the canonical homomor-
phism on .L’(H) onto to the Calkin algebra .’(H)/Cgo then r(A2) r(Ev).
Using the homomorphism property of rr (in particular that (r(X))2 r(X2))
we have

(.(a)" (.(a)):.
Write a r(A). Then a4 a 2. Taking positive square roots of this (here we
use the positivity of A), we get a 2 a, that is, r(A2) r(A). So, A2 A
o-Hence,

and, similarly, A Fv cgoo. m

PROPOSITION 5.3. Let K be a compact normal operator in .(H) and let H
be the direct sum, H Hi, of a (possibly countably infinite) number of
subspaces H each of which reduces K. Then there exists a basis (dpn } of H
consisting of eigenoectors of K and such that each qn is in only one Hi.

Proof Fix i. Since H reduces K, the restriction of K to Hi, Kin,, is a
compact normal operator in La(Hi). Hence there exists a basis of H consist-
ing of eigenvectors of Kin,. Now let vary and take the union of all such
bases. This union, (, } say, is a basis of H consisting of eigenvectors of K
and such that each , is in one Hi. m
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The next preliminary result, Lemma 5.4, deals with minimizing [[A Vllp
in the special case when the map U [[A- UIIPp has a critical point at
U=V.

LEMMA 5.4. Let A be a positive operator. Let V be a critical point of

where U varies over those partial isometries such that A- U p, where
1 < p < oz. Then"

(a) EvA AEv, A -Ev Cgp, and

IIa- EvIIp < IIa- Vll; (1)

further, for strictly positive A there is equality in (1) if and only if V Ev.
(b) If the underlying space H is finite-dimensional then

IIa- EII < IIa- VI[ < IIh + Ellp (2)

and, further, for strictly positive A the left hand (right hand) inequality in (2) is
an equality if and only if V Ev (V -Ev).

Proof (a) The proof is suggested by the proof of [1, Theorem 3.5]. Let V
be a critical point of Fp. Then by Theorem 4.1(b), (c) and (e), EvA AEv,
Ker V reduces A (and hence A Ev) and A V VA. Also, by Lemma 5.2,
A Ev is compact since A is positive.

Suppose now A is strictly positive. Then by Theorem 4.1(f), V V* so that
A V is reduced by Ker V and A V commutes with A Ev. Hence, since
the compact normal operators (A V)lKer V and (A Ev)lKer V’ in
L’(Ker V), commute then there exists a basis of Ker V consisting of common
eigenvectors of

(h V)lKerV and (A Ez)lge v.

There is a similar result about common eigenvectors of

(h- V)l(KerV) and (A-Ev)l(Kerv)

Therefore, as in the proof of Proposition 5.3, there exists a basis { Cn } of H
consisting of common eigenvectors of A- V and A- Ev such that q,n
Ker V or q,, (Ker V) +/- for each n. Thus each q, is an eigenvector of Ev, A
and V. Let h,, , and vn be the corresponding eigenvalues of A, Ev and V
respectively. Then, for each n, 1, v[ > I)t } (for if . Ker V then. v. 0; whilst if q. (Ker V) +/- then . 1 1,.1 which, since X. > 0,
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gives the desired inequality). Therefore, as the normal operator A V cg
then by (2.1),

Hence, by (2.1) again, the normal operator A Ev Cgl, and

which gives the inequality (1).
Suppose next there is equality in (1). Then there is equality throughout (3)

and hence, for each n, IX,- ’,1 IX,- J,I- If ,, , 0 this equality
automatically holds; whilst if I1 1 , then 1), ,,1 ],, 11 which
forces Re,, 1 (because ,, 4:0 since A is strictly positive) and hence ,, 1.
So, ,, , for every n, that is, V Ev.
Next we extend the inequality (1) to positive (as distinct from strictly

positive) A. Since by Theorem 4.1(c) and (d), KerA reduces Ev and V,
therefore Ker A reduces A- Ev and A- V. Decompose A- V into its
restrictions to Ker A and (Ker A) +/-, viz.

(A- V)licerA (= S) and (A- V)l(t:erA)l (= T, say).

Since S + T c, and since Ran S _1_ Ran T and Ran S* _1_ Ran T* it fol-
lows that (2.2) applies" S COp, T cop and

IIa- VIl IISI1% + IlZll%. (4)

Now, S (A V)lKerA
(ISlp) if X

--VlKerA and VI lEvi and so, since IlXllPp

As for T, since A is strictly positive on (Ker A) +/- the first part of the proof
shows that (A Ev)lOCerA)i COp and that

=IIA v)l(KerA) I1%  II(A EV)I(KerA,

Substituting back into (4) and again using the equality (2.2) we obtain, as
desired the inequality (1).

(b) The proof is similar to that of (a) and so is omitted, m
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The next example shows that the inequality IIA Evl[ [[A V[[ does
not hold for all partial isometrics V such that A V
Take

V=
1/v- 0 0 0 v- 2

so that V is a partial isometry (with initial space the x-axis) and A is positive.
It is easily checked that V, Ev and A do not satisfy the inequality

IlA Ewll. < IIA VII:2
We next define the projection El2. The notation S{q,} refers to the

closure of the span of the vectors

DEFINITION 5.5. Let A in Za(H) be positive and such that there exists a
basis (q,, } of H consisting of eigenvectors of A. The operator E/2 is defined
as the projection onto the subspace M/2 given by

M1/2 g( q," X, > 1/2 where Aq, X,q, ).

Not surprisingly, the same results hold in the rest of this paper if El2 is
replaced by E{/2, where E{/2 is defined in the same way as El2 except that
the condition )k, >_ 1/2 is replaced by ), > 1/2.
We now come to the first main result on global minimization.

THEOREM 5.6. Let A be a positive operator. Let U vary over those partial
isometries such that A U Cp, where 1 < p < o. If the map

Fp" U IIA- UIIpp

attains a global minimum then there exists a basis of the underlying space
consisting of eigenvectors of A and

IIA- E1/2llp IIA- UIIp (1)

where Et/2 is as in Definition 5.5; and, further, for strictly positive A such that
1/2 q op(A), equality occurs in (1) if and only if U E/2.

Proof Let Fp attain a global minimum at V, say, so that

IIa Vllp IIA Ullp.

Since, for 1 < p < , a global minimum is a critical point it follows from
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Lemma 5.4 (a) that EvA AEV, A Ev cgp and

IIA- Evll,--IIA- VIIp IIA- UIIp.

(The equality is because F, attains a global minimum at V.) The inequality (1)
will now follow (on taking E Ev) from the assertion below.

ASSERTION. Let E be a projection such that EA AE and A- E Cgp,
where 1 < p < oo. Then"

(a) There exists a basis {q,) of the underlying space H consisting of
eigenvectors ofA and such that q, Ran E or q, (Ran E) +/- for each n.

(b) A E1/. cg, and

Ila E/[Ip <_ Ila Ellp; (2)

and, provided 1/2 q o(A), equality holds in (2) if and only if E El2.

Proof of assertion. (a) Since EA AE the compact normal operator A E
is reduced by Ran E. Therefore, by Proposition 5.3, there exists a basis (q, }
of H consisting of eigenvectors of A- E and such that , Ran E or
qn (Ran E) +/- for each n.

(b) Each qn is thus an eigenvector of E, A, Ell2, A E and A El2.

If, for each n, Aq, ,,q,, Eq, ,q, and E1/2dPn e,q, then I,, ,1 >
I,,- e,I. (To prove this inequality consider the four cases: , is/is not in

M/2/Ran E). Hence, using (2.1)

This proves that A E/2 Cp and gives the inequality (2).
Next, if equality holds in (2) then IX,- ,l IX,- e,I for each n and

since 1/2 op(A), this forces Ran E M/2; for if either n Ran E and
4 q M1/2, or, if qn Ran E and q, M/2 (when , > 1/2) we would have
I,, ,1 > 1,, e,I. This proves the assertion.

Finally, let A be strictly positive and such that 1/2 op(A). If there is
equality in (1) for some partial isometry U then I[A E1/211 p [[A Eu[lp

[IA Ullp. The second equality implies, by Lemma 5.4 (a), that U Ev;
and the first equality implies, by the assertion, that Ev E/2. So, U El.
The assumption of finite-dimensionality is critical in Theorem 5.7.

TI-IEOREM 5.7. Let the underlying space H be finite-dimensional. Let A be a
positive operator and let El2 be as in Definition 5.5. Then for all partial
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isometries U in .’(H),

IIA -E/2IIw <-IIA- UIl-< IIA +/lip, where 1 < p < oo, (1)
IIh -E1/ulI-< Ila- Ull-< IIa +/ll- (2)

Further, for strictly positive A the right hand inequality in (1) is an equality if
and only if U -I and, further, for strictly positive A such that 1/2 q op(A) the

left hand inequality in (1) is an equality if and only if U El2.

Proof The set of all partial isometries is dosed and bounded [8, Problem
129] and hence, since H is finite-dimensional, compact. It follows as in
[1, Theorem 3.5] that the (continuous) map F;: U IIA UII is bounded
and attains its bounds. The left hand inequality in (1), and the corresponding
uniqueness assertion, now follows from Theorem 5.6.
To prove the right hand inequality in (1) let W be a global maximum, and

hence a critical point, of F;. Then by Lemma 5.4, EwA AEw and we have
the equality

IIA- Wll--IIa / Ewllp
which, for strictly positive A, forces W -Ew. It can be shown (by consider-
ing the eigenvalues of A) that if E is a projection such that EA AE and if
H is finite-dimensional then IIA + EIIp attains its maximum at E I and at
no other point. This gives the right hand inequality in (1) and the correspond-
ing uniqueness assertion.
As H is finite-dimensional, the operator norm inequality (2) follows from

(1).

In finite dimensions the condition on A of positivity can be dropped: in that
case A t)olAI where/)0 isunitary. Let {n} be a basis of H consisting of
eigenvectors of IAI and let El2 be the projection onto to the subspace

Then if U( and hence /)o’U) is a partial isometry it follows, cf. (3.3), from
Theorem 5.7 that IIA- UII, where 1 < p _< c, is minimized when U
o/1/2 and maximized when U -o (here, II I1 denotes the operator
norm II II on .W(H)). Thus,

IIh- t)0/211p-< IIA- flip <-IIa + 011p where 1 < p < o (5.8)

(with the now obvious necessary conditions for equality when 1 < p <
We return to the infinite-dimensional case. As for maximizing IIA UII, as

in [1, Theorem 3.1] if A is positive then for all partial isometries U in .(H),

IIA- UII-< IIh + Ill. (5.9)
To get the infinite-dimensional approximation results we appeal to the

Halmos/Bouldin theorem on normal spectral approximation (Theorem 2.4).
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First, there is the following result about approximating a normal operator by
normal partial isometries.

THEOREM 5.10. Let A be a normal operator and define the function F:
C ---> A, where A (0) to C with C (z: zl 1), by

e i0 ifr > 1/2F(reia)
0 ifr < 1/2.

Then"
(a)

U,
F(A) is a normal partial isometry and for all normal partial isometries

A F(A) IIa uII, (1)
(b) Further, for all normal partial isometries U such that A- U Cgp,

where 2 < p < oo, then A F(A) Cgp and

a F(A) lip IIa UIl,. (2)

Proof First, the spectrum of a normal partial isometry is a non-empty
closed subset of {0} to C. This is because (i) a normal partial isometry is the
direct sum of the zero operator, and a unitary, and conversely [8, Problem
204]; and (ii) the spectrum of the direct sum of two operators is the union of
their individual spectra.

Conversely, if the spectrum of some normal operator U is a non-empty
closed subset of {0} to C then the underlying space H can be decomposed so
that U is the direct sum of a normal quasi-nilpotent operator, i.e. the zero

operator, and a unitary. Hence, U is a normal partial isometry.
The mapping F: C A is dearly a retraction. Therefore, by Theorem 2.4

(a) it follows that o(F(A))c A so that by the above argument F(A) is a
normal partial isometry, and F(A) satisfies the inequality (1). By Theorem 2.4
(b) it follows that A F(A) Cp and F(A) satisfies the cg inequality (2).

Of course, the same results hold in Theorem 5.10 if F is replaced by the
function F’: C A defined in the same way as F except that the condition
r> 1/2(r< 1/2) is replaced by r > 1/2(r< 1/2).

Finally, we come to the following result about normal partially isometric
approximation in ffp of positive operators.

THEOREM 5.11. Let A in .’(H) be positive. Then"
(a) If there exists a basis of H consisting of eigenvectors of A then for all

normal partial isometries U,

IIA- E1/2II <-Ila- Ull
where El2 is as in Definition 5.5.
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(b) For all normal partial isometries U such that A- U cr., where
2 < p < o, there exists a basis ofH consisting of eigenvectors of A and

IIa E/211, IIa Ull,; (1)

further, for strictly positive A such that 1/2 or(A), equality occurs in (1) if and
only if U El2.

Proof. (a) If {n } is a basis of H consisting of eigenvectors of A, with
Aq, where h > 0, then, with F as in Theorem 5.10, F(A)q
F(Xn)q Ex/2q and hence F(A)= Ell2. The result now follows from
Theorem 5.10 (a).

(b) By Theorem 5.10(b), the map Fr: U IIA- UII attains a global
minimum. The result now follows from Theorem 5.6. m

Observe that we cannot deduce from Theorem 5.11 an inequality like (5.8)
dealing with approximation^to non-positive A (because, in the notation of
(5.8), the partial isometries Uo*U need not be normal).

In the light of Theorem 5.7, Theorem 5.11 raises the following questions" in
the infinite-dimensional case, what happens if the partial isometries are not
normal and/or if p < 2?
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