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BY

STEVEN BLOOM

1. Introduction

Our setting will be the unit circle T in the complex plane, although the
results in the next section and some of the later results extend easily to R". For
an interval I(f),

1I( f ) - fif
The Hardy-Littlewood maximal operator M* is defined by

M*(f) sup I(Ifl).
XI

Throughout this paper C will denote a universal constant, and may change
from line to line. A nonnegative weight v belongs to the Muckenhoupt class
Ap for somel<p< if

I(v)I(v x/t’- x)-1 < C for each interval I.

A function b BMO, provided

I(Ib- I(b)l ) < CI(v) for all intervals I,

and BMO BMO for the function v 1. Given b, the commutator of the
maximal operator with b is Tb, given by

Tbf(x ) suplb(x)l(f ) I(bf )l.
x-I

Likewise, the commutator of the Hilbert transform H with b is the operator
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Sb [H, Mb] given by

Sbf(x ) [b(x)Hf(x) H(bf )(x) I.
In [1], we derived a two-weighted norm inequality for Sb and used it to give a
vector-valued analog of the Hunt, Muckenhoupt, and Wheeden Theorem. In
this paper, we will derive similar theorems for Tb and analogs of the Hardy-
Littlewood maximal operator. Usually, the Hardy-Littlewood maximal opera-
tor is much easier to deal with than the Hilbert transform, yet in this
commutator setting, the opposite is apparently so. Even in the unweighted
case, although it was known that Tb is bounded on L2 if and only if
b BMO, the proofs proceeded via Muckenhoupt’s theory of weights, and no
direct proof was known for many years.

2. A commutator theorem

We will establish:

THEOREM 2.1. Let and ?t Ap. Put v (].I,X-1)1/p. Then b BMO,, if
and only if Tb: L P(i,) L P() is a bounded operator.

An immediate consequence is:

COROLLARY 2.2. b BMO if and only if Tb is a bounded operator on LP.

Corollary 2.2 has an interesting history. It first appeared in [5], where the
sufficiency was derived from Muckenhoupt’s Theorem by a clever interpola-
tion argument, and for some time no direct proof was known. When we were
working on 2.1, we thought we had obtained the first such direct proof. But
Peter Jones, after seeing an early draft of this paper, communicated to us an
elegant (unpublished) proof by Jones and Stromberg using Carleson measure
theory [7]. At about that time, Coifman, Meyer, and Stein presented their Tent
Space theory in [5]. Corollary 2.2 can be derived from a slightly modified
version of their Theorem 5:

THEOREM 2.3. Let 1 < p < o. For each x R, let Ix,, be an interval of
length containing x. For a function f LP(R), put

f(x,t) =Ix, t(f)

and let be a function defined on R2+. Put

M,f(x) supl(x, t)f(x, t)l.
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Then the operator M, is a bounded operator on Lp if and only if

1 ft(suplt-t(x,t)lP)dx<C(2.4) II- t-<-I*l

for all intervals I.

Now suppose b BMO. Set/x(x, t) b(x) Ix, t(b ). To bound Tb, it will
suffice to bound

#bf(x) sup[b(x)Ix, t(f ) Ix, t(bf )

with norm independent of the collection p { I,, t}" Now

](M, 7b)f(x)[ _< sup[Ix, t(b)Ix, t(f ) Ix, t(bf )

and it’s an easy application of H61der’s inequality to show that the operator

f supllx, t(b)I,t(f) Ix, t(bf)

is bounded on L’. Hence Tb is bounded providing (2.4) holds. Let J be the
interval concentric with I but of twice the length, and set

b,(x) [b(x) J(b)lxs(x).

Since, for x I,

sup ](x, t)l < 2M*(b,)(x),
t<-Ill

(2.4) follows from Hardy and Littlewood’s Theorem.
We would like to thank the reviewer and Prof. Coifman for pointing out the

connection between 2.2 and 2.3. It would be interesting to see a weighted
version of Tent Space theory that would lead to weighted versions of 2.3.
To prove 2.1, let 1 < q < p but near p. We will denote the conjugate

exponent with a prime, 1/q + 1/q’ 1. For r > 1, define these operators:

Sr(b; w, I) I(Ib- I(b)lrwr)l/r,
A,(f; w, I) I(Ifwl)l/r,

Kr*(b, f, w)(x) supSq,(b; w, I)Aq(f; w-1, I)
x.I
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and K* K*.
We use a result from [1].

LEMMA 2.3. Let and A, v (/)l/p, and b BMO,. For an
appropriate choice of q < p and any r with I < r < p/q, there exists a weight w
depending on r such that wq’ Aq, and

f [KT(b, f, w)(x)] X(x) dx <_ Cflf(x)l,t(x) dx.

Proof of Theorem 2.1. Let b BMO,. Fix an r with 1 < r < p/q and let
w and ff be the weights from Lemma 2.3 for 1 and r respectively, so

f, w)l PX _< cflflPl
and

Let

e T6f(x ) dx.

By the Calderon-Zygmund decomposition, for each a >_ e, there exist disjoint
intervals { I.) such that:

(3) Tbf(x ) < a for a.a. x off
(4) a < l(Tbf ) < 2a for each n.
(5) Given fl < a and n, there exists a k with Iff c I.

Let

and

o(a) X([x" K*(b, M’f, w)(x) + K*(b, f, ff)(x) > al).

Since X Ap, X satisfies the A condition [3]. Thus there exists a 8 > 0 so
that for any interval I and measurable set E c I,

X(I) -< C
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We will establish the distribution inequality

(7) ,(3a) < o(ya) + Ky*’r(a) for each a > e and y > 0.

For this, fix I I and let I I3". Let F be the set of integers with n F
if and only if I c I. By (5), as we run through the I,’s, this process will
exhaust all the I3’s.

If

I c: [x: K*(b, M’f, w)(x) + Kr*(b, f, )(x) > "tot[,
then

c [x" K*(b, M’f, w)(x) + Kr*(b, f, )(x) > ya] I.

Otherwise, there exists an xo I with

K*(b, M’f, w)(Xo) < ya and Kr*(b, f, )(x0) <

Let 21 denote the interval concentric with I but of twice the length. Put
fl fX 2, and f2 f- f:- Then by (4),

31I1 _< fi,,Zt,f.F F

So there exist intervals Jx containing x such that

3a.lln] < Y: f.lb(x)J(f ) Jx(bf )[ dx
F F

Y:fi.lb- I(b)lJ(f) -Jx([b- I(b)]fl)
F

-J([b I(b)] f2)l dx

< 2F f/.[b I(b)lJx(lfl) + 2F fI.Jx(Ib /(b)[ [fall

f.Jx([b I(b)] f_)

<- X ft.[ b ’(b)]M*f + X fM*([b I(b)]f:)
F F

f J([b l(b)] f_)

K + Kz + Y:
F ft.J([b I(b)l f)
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Let R I Jx. For x I,, I, R is an interval, and

3a.,]I,,[ g K + K2 + , f L([b- I(b)] f2) Rx([b- I(b)] f)
F F I,,

+ _, f Rx([b- I(b)]f:)
F

K + K2 + g + K4.

We estimate these pieces in turn. First,

gx < flb- l(b)lM*f

IIII([b- I(b)lww-M*f)
<_ IIISq,(b; w, I)Aq(M*f; w-1, I) (by Holder’s inequality)
< IIIK*(b, M’f, w)(xo)
-<

Next, using Holder’s inequality again, and the boundedness of the maximal
operator on Lr, we have

K: <_ III 1-1/r *([b- I(b)] f)r dx

< III 1-/r *([b- I(b)]fl)

< CIII -l/r’ f lb- I(b)[rlf[r)
I/r

( 12_[ f2 )X/r< CIII b- I(b)l"lfl

[(12@[ f2} )elf<_ rill b 21(,b )lrlfl

CI/I(A / B).

Of these,

+ II(b)- 2I(b)2I(lf[r) 1/r]

A 2I(Ib- 2I(b)lrff;rlf-llr) 1/r

< Srq,(b; ’,2I)Arq(f; -1,2I)
<_ K*(b, f, #)(Xo)
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and

so that

2 f2lb-2I(b)lII(b)- 2I(b)l _< ,
< 2S,;f(b; 1,,2I)2I(-q)1/q

< 2Srq,(b; ,2I)2I(1,-rq)1/rq

B < 2Srq,(b; ,2I)2I(-rq)l/rqArq(f; -,21)2I(1rq’)/rq’

< CKr*(b, f, )(Xo) (as rq’ Aq)_
Cya.

Thus K
_
ClllI also.

To estimate K, fix x I and write and R R. Then

J([b-I(b)]f)-R([b-I(b)]f) =0 ifJc21,

so we can assume that J 21. But then [J[ 2 lI[, and so [R 3[J[. Now,

IS([b- I(b)lf:) R([b- Z(b)]f:)l

But R J c I and f2 0 on I, so this is really

1
IRI [b-I(b)]f2

< IRI- IJI fib- I(b)llflIRI IJI
3111_< IRi2 fRIb I(b)l Ifl

31II [R(Ib- R(b)l Ifl) / II(b) R(b)lR(Ifl)]-< I/1
3111 [Sq,(b; w, R)A (f; w-X, R) + 1 fi ]-< IRI q b- R(b)IR(Ifl)

3 III K*< - (b, f w)(xo) + 3R(Ib- R(b)I)R(Ifl)
_< 3/C*(b, M’f, w)(zo)

-’1" 3Sq,(b"w, R)R(w-q)l/qR(wq’)X/q’Aq(f; w-1, R)
< CK*(b, M’f, w)(Xo) (by the Aq, condition)
< C’a.

And so K < C’YaEFIl,,I < C’rallI also.
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IR([b-I(b)]f2)l

For K4, again fix R Rx- Then

1- ftR([b I(b)] f2)

1--fzR([b- I(b)]f) R([b- I(b)]fl )

< - ([b I(b)l [fl[)

1+ -fR([b- I(bl]f) [b- I(b)]R(f)

+[b-I(b)]R(f)

<-1 Ib I(b) [R(Ifl) + [ (Ib I(b)llfl)

1+ 1 fzIbR(f) R(bf)[

< I([b-I(b)lM*f)+ I(M*([b I(b)lf}) + I(Tbf ).

These first two terms are bounded exactly like K and K, while I(Tb) <
by (4). Hence,

IR([b I(b)] f2)l <_ Ca + 2.

so that

So we have

or

EFII,,I < C/llI.

By (6),

_,F;k ( I,, ) < K’aA ( I )

Whatever the case with I, we have

EF,(I,,)
< X([x" K*(b, M’f, w)(x) + Kr*(b, f, )(x) > Va] 0 I)



472 STEVEN BLOOM

Summing over I gives (7).
Next define p(ct) k([x: M*(Tbf)(x ) > a]). Suppose x U.

any interval containing x. Then
2I and I is

by (3). But if in zZ, , since x E I and x 2I, III > 1/21Ia.I, and so

Iff c 51. Hence, by (4),

f T6f < [Tbf < 2a II.1 _< 10allI.
"I

Thus fiTbf < llalI I, so that M*(Tbf)(x ) < lla. As a consequence,

[x" M*(T,f)(x) > lla] c U21’.

Now X(2Iff) < CX(I), an upshot of the Ap condition [3], so

(8) p(lla) < ZX(2I:) < CZX(I:) C’r(a),
n n

at least for a >_ e.
Now let J, fNal-%(a)da. Since r(a) < X(T) < oe, JN is finite. And

using (7),

fN/3 POp tr(3a) daJN P",/3
3

fo PfeN/3olp-t’r< p3 p aP-t’(3a) da + p3 (3a) da

N/3aP ( )dotP3p N/3ap< (3e)PX(T) + f -o(’a) + p31"K’/ f l’r Ot

Pfo
Choose ,{ so small that 3PK,{ n 1/2. This gives

JN < 2(3e)PX(T) + 2p(3’-)Pf0
This bound is independent of N so we can let N to get

fo=p aP-%(a) da < 2(3e)’X(T) + 2p(3"-x) ’
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Using (8), we get

But

fM*(Tbf )P(x)X(x) dx pfoaP-lp(a) da

llPp ap-lp(lla) da

<_ (lle)PX(T) + Cp aP-l’F(a) da

<_ Clk(r)ep d= c2p aP-lo(a) da.

p P-Io() da [K*(b, M’f, w) + K*(b, f, )] P

c(S(M*f)P-[--SifiPi1.1,)
(by (1) and (2))

cflfl (by Muckenhoupt’s Theorem [7]).

So the first half of the theorem will be proven provided we can show

(9) k(r)Ep <_ cflflpt.
For this,

Tbf(x ) suPl [b T(b)] I(f) I([b T(b)l/)l
xl

< Ib- T(b)lM*f(x) + M*([b- T(b)]f)(x),

SO

For the first of these,

1 fb T(b)iM*f < Sq,(b’w T)Aq(M*f, w-1, T)2r

_< K*(b, M’f, w)(x) for any x T,
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while the other integral is

21 (fTM )X/rfM*([b- T(b)]f ) <_
zr *([b- T(b)lf )

<C b-r(b)llfl

cc(; , r(; -, r)
CK(b,f,#)(x) for anyx T.

X(T)ep < fr[K*(b, M’f, w) + CK*(b, f, if)] ’,

<_

by (1), (2), and Muckenhoupt’s Theorem again, and we have (9).
Conversely, if Tb: LP(I) - LP(,) is bounded, then fix I and let f= Xr

We have

1 flflCI() C-
>- " Tbf ) "X

(Tf)

1 Z[bI(f)
1

Therefore, using Holder’s inequaty a couple of times,

I(Ib I(b)l) I(b- I(b)lX/" -/’)
I(b I(b)I’X)/eI(X-"/)/’

CI()/I(X-"/’)/’I(/-/a)
CI()/I(X-F/’)/FI()I(X/-/’)

CI() by the A conditions.

So b BMO..
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3. Characterizations of weighted BMO

In this section we will apply a technique developed by De Francias in his
proof of the Jones’ Factorization Theorem [8] to the commutator Tb.

A weight v A if M*v(x) < Cv(x) almost everywhere.

THEOREM 3.1. Let w U= A2. Then b BMO if and only if there exists a
u L with uw A and with

Ib(x) I(b)l < Cu(x)w(x)I(u) -1

for almost all x and every interval I containing x.

Proof Suppose b BMOw.
Theorem 2.1, the commutator

Both w and w-1 are A2 weights, so by

is a bounded operator. Notice that Tb and M* are sublinear operators.
Consider the operator w-1/2Tbw-1/2. We have

flw-/2TbW-1/2fl2 fTb(W-1/2f )2w-X < cfro
so this operator is bounded on L2. By Muckenhoupt’s Theorem,
bounded on LE(w-1), or w-1/EM*w1/2 is bounded on L2. Let

M* is

S* w-1/2M*w1/2 -[- w- 1/2TbW- 1/2.

Then S* is a bounded, positive, sublinear operator on L2. K > IIS*ll. Take
f L2 with f > 0. Define S*" inductively by S*nf S*(S*n-lf), and let

E K-"S*f

So g L2 and

S*g < E K-"S*{"+ 1)f K(g- f) < Kg.

Thus

w-1/2M*w1/2g <_ gg and W-1/2ZbW-1/2g <__ gg.
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Let u= w-1/2g. Since w-/2 and g are in L2, u L1. Also,

M*(wu) M*(w/2g) < Kw/2g K(wu)

so that wu Ax.
Next, let x I. Then

]b(x) I(b)lI(u) < [b(x)I(u) I(bu)l + II(bu) I(b)I(u)l
TbU(X ) + I(IbI(u ) I(bu)[)
TbU(X ) + I(TbU )
Tb(w-X/2g)(x) I(TbW-/2g)
Kw(x)u(x) + KI(wu)
Kw()u(x) + KM*(wu)(x)
(K + K-)w(x)u() (as wu ax)-

Conversely, fix an interval I. Then

I(1- I(b)l) z Ci(u)-Xi(uw) z Cl(u-X)i(uw)

by Cauchy-Schwartz. But uw At, so for almost any x I,

I(uw) z M*(uw)() <_ Cu()w(),
and so I(u-X)I(uw) CI(u-uw) CI(w), and b BMOw.

In the first direction of the proof above, we could include the operator
w/2M*w-1/2 in S* also. Ts would given an additional condition,
wX/M*w-/g Kg, or u A. So we would have both u and wu in A1. Of
course w (w u)/u, so ts is a Jones’ Factorization of w. We have:

COROLLARY 3.2. Let w A. Then b BMO if and only if there exists a
Jones’ Factorization of w, w u/v for u and v in A, for which

Ib() I()1 z Cu(x)(o)-
for almost aH x and for eve interval I containing x.

There is a Hilbert transform version of Theorem 2.1. Let fi denote the
conjugate analytic function for f. Define the commutator Sb by

sg(x) b(x)[() (/)" (x).

Then the result of [1] is:

TaOM 3.3. Let w A2. Then b BMOw if and only if Sb: L2(w)
L(w-) is a bounded operator.
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We will also make use of two simple lemmas which the reader can verify.

LEMMA 3.4. frg fTr,h.

LEMMA 3.5. Let w A2. Then b BMO if and only if

for all f with f andf Ll(w).

<_ cf lzl + ) w

The corresponding Hilbert transform version of 2.1 is"

THEOREM 3.6.
u A for which

Let w A2. Then b BMO if and only if there exists a

SbU
wu

Proof Let b BMOw. By 3.3, Sb: L(w) t2(w-1) is a bounded opera-
tor. Since Sb is also sublinear, we can mimic the proof of 3.1. Let

T wl/2M*w- 1/2 + w- 1/2SbW- 1/2.

Then we can find a nonnegative g L2 with Tg <_ Cg. Put u w-1/2g. Then
we have M*u < Cu and SbU < Cwu. So u A and (SbU)/WU L.

Conversely, if (SbU)/wu L for some u A1, then in particular, u is
bounded below, so that (u + i)-1 is analytic. Fix f with f and f" in Ll(w).
Let

Then
g + i, (f-k i)(U + i)-1.

fblm[(g- i)(u + i)1

fb(gr + flu)

fbrg (bu)" g (by 3.4)

<_ f(su)lgl
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But

and so

fb/"

g= Re f+ if- fu +f
u + i /,/2 + 2’

f u’- + lual
U2 + 12 Iflw U2 + 12 IWC

By Lemma 3.5, b BMO.
Of course, both theorems are valid when w =- 1, the unweighted BMO case.

These are rather suprising characterizations of BMO.

COROLLARY 3.7. The following conditions are all equivalent:
(a) b BMO.
(b) There exists an A weight u for which

[b(x) I(b)[ _< Cu(x)I(u)-
for almost all x and every interval I containing x.

(c) There exists an Ax weight w for which (SbW)/W L.
4. The Matrix Classes 2 and t’2

Let W be a positive definite symmetric n n matrix-valued function on the
unit circle T. W(x) induces a pointwise inner product on C given by
(f, g)w(,)= (W(x)f, g), where the latter if the usual Cn dot product. We
extend this to vector-valued functions:

(f,g)w- 2rl f/W(x)f(x), g(x)) dx.

This inner product induces a Hilbert space L2(W).
The moving average operator Ah is given by

Ahf(x) rx+hJx_hf(t) dr.

The matrix weight W is in if

Ilhhfll L-(w) <- CIIfll L(w)

with C independent of h > 0.
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’////’2 is the matrix analog of Muckenhoupt’s A2 class. The maximal function

given by

./gwf(X) sup(W(x)I(f ), I(f )) 1/2
x.l

So the average is maximal with respect to the L2(W) norm. We say W d/4’ 2
provided

for all f L2(W). Notice that in one dimension, d/t’ 2 =o2 A2. For a
further discussion of these classes see [2] where some of the material that
follows has already appeared.

THEOREM 4.1. Let W U*AU, where U is unitary, U* is adjoint, A
diagonal, and the diagonal entries of A, kk A 2. Iffor each r andj,

Urj BMOv/xrrX-kl for k 1,2, n,

then W dg
2.

This is an application of Theorem 2.1, with the proof virtually identical to
the proof of Theorem 5.1 in [1], so we omit the proof.

Let’s examine the converse of this theorem. In one sense, this depends on
the diagonalization of W. For each x, W(x) can be diagonalized, in a way
that is unique only up to the order in which the eigenvalues appear. By mixing
up that order as we vary x, we lose all control over the entries of U and A. We
deal with that problem by restricting in turn to diagonalizations in which first
U is nice, and then A. If we assume that W has a diagonalization U*AU in
which U is continuous, then the kk all belong to A2.

THEOREM 4.2. Let A be diagonal, U continuous and unitary. If W U*AU
belongs to d2, then the diagonal entries of A, kk A2.

Since ._ is trivially contained in d/t’2, this theorem applies to dg
2 as well.

For the analysis of U, we will restrict our attention to two dimensions.

THEOREM 4.3. Let U be a 2 2 unitary matrix and let

o)
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Then if W U*AU ’9_,

luijl BMO7,- o BMOx/- for each Uij.

Before proving these, we need some preliminary results.

LEMMA 4.4. Suppose the moving average A2h is a bounded operator on

L2(W), with norm IIA=hll K. Then for any f L2(W) and x T,

(AhW(x)Ahf(x), Ahf(x)) < 4K2Ah(Wf f )(x).

Proof Let X be the characteristic function of (x h, x + h). Since

Ahf(x) =Ah(fx)(x )

and

Ah(Wf f )(x) Ah(Wfx, fx)(x),

we lose no generality in assuming that f is supported in (x h, x + h). Using
that, we obtain

as asserted.

LEMMA 4.5. If W , then so is W-1.

Proof Since Ah is bounded on L2(W), so is its adjoint A’, given by

Af W-1Ah(Wf ).
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Hence

So indeed, W- z,2.

Proof of Theorem 4.2.
element. Then

Let g be a scalar function and e a standard basis

So the moving average operators are bounded on the scalar L2(wrr)’s, and
hence Wrr A _, as is their sum, tr W tr A. In particular, this trace is in L1,
and since each Xkk > 0, each Xk L also. By Lemma 4.5, so is each ,1.
We will show that X Xl A2, i.e., that

I(X) I(X-x) < C for all intervals I.

Since X and X- L, this is trivial if I is large. We will restrict our attention
to I [0, h] with h small. Transformation by a constant unitary matrix does
not affect za so U(O)WU(O)* s with the same norm-constant K. So we
may assume that our unitary matrix U had U(0)= In, the identity matrix
(Sij)- By the continuity assumption, given e > 0, there exists a 8 > 0 such that

(1) luij(x) ijl < e whenever Ixl < .
Moreover, U is uniformly continuous, so this i is independent of our
normalization (setting U(O)

Let A be the operator

Af Ah/2f(h/2) - (t) dr.

By Lemma 4.4,

(AWAf Af ) < 4KZA(Wf f) for all f L2(W).
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Taking f= X-lU*el, (Wf, f) X-1, so

(AWAf Af ) < 4KAX-1.

Let A be A but with 0 )t in place of X, and put W U*AU. Since W is
positive definite, (A WAf, Af) > O, and so

(2) ( A WAf Af ) ( A ITVAf Af ) < 4K2AX -1.

Now we express wij in terms of X and #ij by

Wij--" Ukjlkikkk kUljlli "-
k=l

so that

( A WAf Af)= EA(w)AfrAUs
r,s

_.,A(XfilrU.s)AfrAf, + (AITVAf, Af),

and (2) becomes

(3) ZA()llrUls)A/rAfs <_ 4K2Ak -1

Notice that X-filr.
We now take h < . The terms in the sum of (3) are of four types"

Case 1. r=s= 1. Here

A()t[u11[2)[A(.-1u11)[2 >_ (1 e)4A()k)A(.-1)2 by (1).

Case 2. r= 1, s4:1. Now

IA(XtllUls)A(UllX-1)A(,-1tls)I <_ e2A()k)A()k-1)2 also by (1).

Case 3. r 1, s 1. This is identical to case 2.

Case 4. r, s 4: 1.
So (3) gives

The terms in this case are all bounded by e4A ( )k )A ( X-) 2.

A(X)A(X-1)[(1 E)4- 2(n 1)e2- (n 1)2e4] _< 4K.
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By taking e sufficiently small, we have

A(,)A(X-1) < 8K 2,

which is the A2 condition for h III < 8.
The proof of Theorem 4.3 proceeds by reducing the study of W to the study

of the matrix

f0
U

where the weights are reciprocals. It is interesting that these reciprocal weight
pairs are so fundamental to the problem. In current work in conjunction with
Ron Kerman, we are finding that reciprocal weight pairs are fundamental in
the study of wide ranges of operators.

LEMM 4.6.
diagonal. Then

Let W U*AiU 2 for 1 and 2, where U is unitary, A

W U*(AIA2)I/Zu 2 also.

Proof
operators

Let B be the logarithms of W/and let T be the analytic family of

1 1(1T exp -zB + - )B2]Ahexp[ -1 1(1-)B2].z -zB - z

By hypothesis, TO and T are bounded operators on L2(I,). One easily verifies
that the conditions needed for complex interpolation hold, and so T1/2 is a
bounded operator. Since the Bi’s commute

T1/2 W1/2AhW- 1/2,

and the boundedness of this operator on L2(In) is equivalent to W 2.

LEMM 4.7. If

then so is

W= U*( 0)U20 /

1= U*(/0 h0) U"
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Proof Let

j=( 0 1
-1 0)"

Since~ J is constant~ and un.i_tar_y, J.*WJ ’2- But J*WJ lZV, the transpose
of W. Since (Wf, f) (tWf, f), W must be in ’2 also.

LEMMA 4.8. If

then so is

U*( 0)u a,0 /

U*
o )o

Uo

Proof. By 4.7,

U*
0 2,

By 4.5, its inverse

U* -1 0 )U (’-2-
0 k -1

This lemma now follows from 4.6.

Proof of Theorem 4.3.
matrices of the form

By the previous lemma, it suffices to study

Let

Since lal Idl and Ibl Icl, we must show lal, Ibl BMOx+/-.
Fix an interval I and let A be the operator
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By Lemma 4.4,

(AWAf Af ) < C(Wf f)

for some constant C independent of f and I. Set f W-lel. Since (Wf, f)
(e1, f) fl, we have

(1) aWx(hfx) + Aw221Af212 + 2ReAw2AfAf2 < CAf.

Now f2 a(X-1 2) -2 and w22 fl, so (1) is

aw(afl)- aflafl <_ Cafl,

or AwAf Iaf=l 2 C. Since

fx-- lal2- + Ibl2 and wx-- lal2X -t- Ibl2)x -,
this says

L1 + L2 + L < C

where

L A(lal2X)A(IblX) IA(a;k)l :,
L A(laIX-1)A(IbI2X-1) IA(aX-)I,
g

3 A(lal2,)A(lal2,-) + A(Ibl2,)A(Ibl2,-) 2ReA(a},-)A(b,).

By Cauchy-Schwartz, L and L2 > 0. For L3,

12ReA(aX-)A(bX)l <_ 2[A(lal2,-x)A(Ibl2X-)A(lal2;k)A(Ibl2X)] /2

so that

L > [A(IaI2X)I/2A(IaI2X-1)1/2- A(lb12i)1/2A(lb12k-1)1/212 >0o
So each L < C. We will use L to show that Ibl BMOx-1. A similar
argument with L2 would give bl BMOx, and since L and L2 are symmet-
ric in a and b, the same holds for a I.
Using Cauchy-Schwartz again,

IA(aX)l 2 _< A(lal21blX)A(Ibl X)
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soLt< Cgives

(2) a(lalZx)a(IblZX)- A(lal21blX)a(IblX) <_ C.

Also,

a(Ibl3X)A(Ibl) a(Ibl2X)2
>_ 0.

Adding this to (2) and using the fact that a12 q_ bl 2 1 yields

(3) A(X)A(IblZX)- A(IblZA) <_ C.

Let u bl and introduce the inner product

(f, g) - X,

with the corresponding norm II II. In this notation, (3) is

C Illll=llull = (1, u

(11111" Ilull + (1, u))(lllll" Ilull- (1, u))
>-11111" Ilull(lllll" Ilull- (1, u))

1
II 1 II u II ull -

11111 - u

Let ct II u II/II 1 II- We have shown that

I(h)- u- c,I _< 2C.

Finally,

by (4), and hence u Ibl BMOx-a.
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