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UNIVERSALLY MEASURABLE SETS OF FINITELY
ADDITIVE PRODUCT MEASURES

BY

S. C. WILLIAMS

Introduction

In Problem 11 of the Scottish Book (see Mauldin [3]) Banach and Ulam
posed the following problem: Let / be a finitely additive measure on the
power set of the integers which gives each singleton measure zero. Let ZD
denote some product space where each factor space is a copy of the integers.
Let /D denote the finitely additive product measure on the algebra generated
by the cylinder sets of Z which satisfies

for any cylinder 1-IAd (Ad
g: Z for at most finitely many d D). A set

E Zn is said to be n-measurable iff there is only one finitely additive
probability measure on the algebra generated by E and the cylinder sets which
extends n. If a set E is/Z)-measurable for every finitely additive probability
measure which gives singletons measure zero, then E is said to be universally
product measurable. Banach and Ulam asked the question" are the sets "all
pairs of relatively prime integers" or "all sequences of integers converging to
infinity" universally product measurable Later, Mauldin asked whether there
is characterization of universally product measurable sets. See Mauldin [3]. In
this paper it is shown that

(1) E
___
Z 2 is universally product measurable ill" E is a finite union of

rectangles.
(2) For 2 < n < , E

___
Zn is universally product measurable ill" there exist

a finite union of cylinders T and a finite set F of Z so that
n

TAE c__ U P;I(F)
j=l

where pj: Z n ._.> Z is the jth coordinate projection.
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(3) Let N denote the positive integers and Z/ the nonnegative integers. A
subset of Zu is universally product measurable iff for every e > 0, there exists
a finite subset F of Z and a finite partion V (A1, A2,..., Ak) of Z \ F, and
an n N so that if i: V -> Z / with Ei(A) N, then

cardinality of { T V(i)I T E : 7 : T\ E }
(i)

where (i) is the multinomial coefficient

N
i(A1)!i(A2)!.., i(Ak)!

and V(i) is the set of all T
each s 1, 2,..., k,

X Aj2 X Aj Z Z ... such that for

cardinality of ( m IAjm A } ( A )

In each case a more general theorem is developed and the idea of universally
product measurable is compared with the idea of naturally measurable sets in
the work of E. Granirer [2] and the work of Dubins and Margolies [1].

1. Preliminary ideas and finite products

Let X be a nonempty set and B be an algebra of subsets of S. If E
___

X,
then the B-boundary of E is defined to be the set

0hE:= {A B’3CBCEc CUA}.

The set 0 nE is obviously closed under finite intersections and the empty set
is in 0nEifandonlyifEB.
Let M(B) denote the set of finitely additive probability measures on B. If J

is an ideal in B, then set

M(BIJ ) (v M(B)" v(A) Oif A J}.
It is always assumed that J and X J wherever J appears. If K

___
M(B),

then a subset E of X is said to be K-measurable iff for each/ K, there is
only one extension of in M(Be) where Be is the algebra generated by

(e).

PROPOSITION 1. Suppose that K c_ M(B) is weak *-closed and E c_ X. Then
E is K-measurable iff

inf sup#(A) O.
A .OE l.K
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Proof. By the well known result of Hom-Tarski, for any/z M(B) and
E
_

X, E is/z-measurable iff E =/zE where

E=sup(ltA’A BandEA}

and

/zE inf(/zA" A B and A
___
E }.

Easily,

E-/zE= inf /A.
AOnE

Suppose that E is K-measurable. Then for each e > 0 and each /z K,
there is an A, OnE satisfying/z(A,) < e. Since the collection of sets

is a weak* open cover of the compact set K, there is a finite sequence
A1, A2,..., A OBE such that for each / K there is an A satisfying
p,a < e. Thus/z(f’liA) < e. For all/z K and f’lA OBE; i.e.,

inf sup/A 0.
A .OE lx.K

For the converse, it is sufficient to note that

inf sup/A > sup inf /A, Q.E.D.
A .OE p,K KA.OE

Let B and X be as before and let D denote a nonempty set. Let

d.D

where Xd X for each d D. If F is a finite subset of D and for d D,
Ad B, then [Ad]d denotes the cylinder Yld DCd where Ca Ad if d F
and Ca X otherwise. If D is finite, we will often use the standard notation

A1 A2 a3 .--. Let B* denote the set algebra on X* generated by the
cylinder sets, and if J is an ideal in B, then let J* denote the ideal in B*
generated by the set ([Ado]: do D, Ado J}. Also if m M(B), let m*
denote the unique measure on B* satisfying

m*([Aalav) I-I m(At).
d.F
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As is well known the map ," M(B) M(B*) defined by ,(m)= m* is
weak* to weak* continuous. Thus the set

M(BIJ)* (m*" m M(BIJ)}

is weak*-compact. Note that M(B* J*) does not equal M(BIJ)* in general.
The question of universal product measurability will be settled for finite

products.

THEOREM 2. Let n be a positive integer. Then E

_
Z" is universally product

measurable iff there is a T B*, T c_ E, such that E \ T can be covered by
finitely many rectangles each of which has at least one side finite. If n 2, then
E is universally measurable iff E B*.

Proof Let X Z, let J be the set of finite subsets of Z, B the power set of
Z, and K M(BIJ)*. Then E (___ Z"= X*) being universally product mea-
surable is the same as being K-measurable.

Suppose E is K-measurable. Since K is weak*-compact, Proposition 1
implies there exists A ORE so that supper v(A) < n-". Since A B*, A is
the finite union of cylinder sets. We will show that if

T= C X C2X-.- XCnC_A

then one of C1,..., C, is a finite set.
Suppose not. Since each of C1,..., C, is an infinite, there exist m1,... m,
M(B]J) so that mi(Ci) 1 for each i. Define

m
m + +m

Then m M(BIJ) and

1m*(T) I-Ira(A,) >_ I-I-ff
1

which contradicts m*(T) < (l/n)".
The converse is obvious. Also the statement of the theorem, concerning Z2,

follows from the fact that an arbitrary subset of a rectangle, which has one
side finite, is a finite union of rectangles.
Theorem 2 can obviously be generalized to the following statement: If X is

a set, B an algebra of subsets of X, J an ideal in B, and n N, then E
_
X"

is M(BlJ)*-measurable iff there exist T B* and U J* so that EAT
_

U.
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2. Infinite products

Unlike the case of finite product spaces, we gain totally new universally
product measurable sets in infinite product spacesmthat is, we find sets which
differ from B* sets by more than a set of universal product measure zero. In
order to find a characterization for these sets we shall begin in a more abstract
setting.
As before, let X, B, and J be a set, an algebra and an ideal respectively. A

set of one to one transformations G is said to be a B J-transformation group
whenever the following six conditions hold: Let T, T1, T2 be elements of G.

(1) There exist A1 and A2 J so that

Domain(T) X\A and Range(T) X\A2.

(2) If A B \ J, then T(A) := ( T(x)[x Domain(T) fq A ) B \ J.
(3) IfA J, thenT(A)J.
(4) T-1 G.
(5) TIT2 :---- T1 T2 T_l(Domain T1 a.
(6) For each finite B-partition V of X and each finite subset H of G, there

exists a finite B-partition, W, of X which refines V and so that for each
T H, and A W, there exist C W so that for T(A), C J.
Condition (6) should be compared with the idea of an "adequate tiling" in

the setting of amenable groups; see Dubins and Margolies [1]. Note also if
each T G has finite order, then (6) is satisfied.
For each finite B-partition V of X, a subgroup G v of G is defined by

G, ( T G[ if A V, then there exists C V so that T(A)AC J }.

This subgroup induces a natural equivalence class of orbits on V, ]z, by

A v ( C V there exists T Gv so that T(C) AA J }.

A subset { A )/k__ of V is said to be a cross section of V if

U[Ai] V and JAil (q [Aj] f if i:C:j.

If A B and E___X, then A is said to border E if A AE:/: :/:A\E.
Given V, we define the set

borderv(E ) := {A VIA borders E)
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and also given A V, a partial border is defined by

borderv, , (E) { C [A] v[C borders E }.

Let M(BIJIG) denote the set

(m M(BlJ)’if T G, and A B, m(T(A)) (A)).

THEOREM 3. Suppose G is a B J-transformation group. A subset E of X is

M(BIJ G)-measurable ifffor each e > O, there exists a finite B-partition V of X
so that

# borderv, A (E)
#[Alv

for each A V\ J, (where #C is the cardinality of C).

Proof First we show sufficiency. Suppose rn M(BIJIG), e > 0, and V is
a B-partition so that for all A V\ J,

# borderv, A(E ) <e. #[A]v.

Now, [A borderv E OnE. Thus we only need show m(U borderv E) < e. Let
A1, A.,..., A, be a cross section of V. Since re(A)= 0 for any A J, we
have

m(l,.JbordervE) E
# brderv"’ E #JAil v. m(Ai)#[Ai]v

< .,e. #[Ai] v. m(Ai)
--E.

Now, in order to show necessity, suppose E is M(BIJIG)-measurable yet
there is an e > 0 so that

# borderv, a Esup >_ e
v\J #[A]v for all V

By Proposition 1, there is an L OnE so that

supremum rn (L) < e.
mM(BIJIG)

Let Q be the set of all finite B-partitions of X and let R be the set of all finite
subsets of G. Then D .’= Q R is a directed set when given the direction
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(V, F) < (W, K) iff W refines V and F is a subset of K. Since each element
(V, F) of D has only finitely many predecessors, using condition (6) on G, one
may choose a net { Wcv F) ) V, F) O SO that"

(i)
(ii)
(iii)
(iv)

W(V, F) Q for each (V, F).
W(V, F) refines both V and ( L, X\ L ).
W(V, F) refines WCV, F1) if (Vt, F1) < (V, F).
If A WCV, F and T F, then there exist C WCV, F SO that
CAT(A) J.

Now for each (V, F) D choose rn M(BIJ) so that

(t)
(tt)

m(C) m(A) if A W(V,F and C [A]w(v F), and
m6.J(A W(v,F)[di borderw, A E > e. #[A]w))= 1.

Denote this choice by m(V,F). Since M(BIJ) is compact, one can choose a
subnet ( m(v v), }d D, which converges to some element, say #, of M(B[J).
We need to show that g is invariant under G. Let T G and A B.

Abbreviate m (v, F) by rn d, and lV(v v) by Wd. There exist a b D’ so that if
d > b, then (V, r)d refines ((A, X\A ), (T }). Further, by (iv) and (f),

m,(T(A)) Y’ md(T(C))= E rod(A)= rod(A)
C_A, C_A,
C- Wa C- Wa

By taking limits, #(T(A))= #(A), i.e., / M(BIJIG). This allows us to
conclude #(L) < e.
We shall now calculate /(L) directly. Temporarily fix d D’ and let

At,..., Ak be a cross section of Wd. Using the fact that U borderw E
_

L, we
have

> e" m,(U(A WaI# borderwd, a E > e. #[A]wa})

by (it). Thus/(L) > e, a contradiction. Q.E.D.

At this point we should compare this with results on naturally measurable
subsets of amenable groups. If H is an amenable group, then E

_
H is said to

be naturally measurable if v(E) =/(E) for any v,/ M(P(H), ( }, H’)
where P(H) is the power set of H, and H’ is the group of left translates on H.
The idea is to restrict elements of M(P(H), { ), H’) down to the naturally
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measurable sets in order to gain a measure totally defined by the group’s
action on itself. In general, the set of naturally measurable sets is not an
algebra, but rather a linear space. See Dubins and Margolies [1]. In the setting
of Theorem 3, X need not be a group and the problem is one of extension not
restriction. However, if for example, X is an accessible group, G X’, and B
is an algebra contained in the naturally measurable sets, then B’ defined as the
set of M(B, ( }, X’)-measurable sets will also be a subset of the naturally
measurable sets. However, since B’ will be an algebra, it can never be all of the
naturally measurable sets.
We can now use Theorem 3 to establish our main characterization of

universally product measurable sets. Let D be an infinite set, and recall that
X* denotes Xn. If F is a finite subset of D and p: F B, then (p) denotes
the cylinder set 1-I Aj where A p(j) if j F and Aj X otherwise.

THEOREM 4. Let X, B, J be as before and let D denote an infinite set. A
subset E of X* is M(BlJ)*-measurable ifffor each e > 0 there is a finite subset F
of D, a set A J, and a finite partition V of X\ A, so that for every function
i: V - Z+ satisfying ,i(C) #F, we have

# { /" F -o V: (q ) borders E and #/- 1(C) i(C) for all C V }
(i)

where ( ) is the multinomial coefficient (#F) /I-I[ (C) ].

Proof For any finite set F of D, and any permutation rr: F -o F, we define
T,: X* -o X* by T((Xd)dO)= (Yd)dD where yd X,(d if d F and
Yd Xd if d F. Let G be the set of all such T. Then G is a B* [J*-transfor-
mation group on X*. But it is a well known result that the set of extreme
points of the set M(B*IJ*IG) is M(BIJ)*, and that for each/ M(B*IJ*IG),
there is a countably additive probability measure on the weak* Baire sets of
M(BIJ) so that

fm*(a) d(m) for all a B*

See Phelps [4]. This integral representation allows us to note that a set E is
M(B IJ)*-measurable iff it is M(B* J* G)-measurable. We only need to check
that the characterization of M(B* J* G)-measurability given in Theorem 3 is
the same as the characterization stated in Theorem 4.

First let’s consider a boundary defined as follows: Given a finite subset F of
D, A J, and a finite partition V of X\A into sets in B \ J, then

W= W(F,V):= ((k)lk: F--) VW (A}}
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is a B*-partition of X*. Further if q," F V (i.e., () J*), then

[(q)]w ((0)10" F V and :b-l(c) ::1-1(C) for C tEE V).

Defining i" V --. Z+ by i(C) #q-l(C), we see that #[(q)]w (i). Thus

borders E)

is the same number as

# { " F V[ (q,) borders E and #0-1(C) i(C) for all C }
(i)

This easily establishes sufficiency.
For necessity we only need to show that for each finite B*-partition U of

X*, there is a finite subset F of D, an A J, and a finite partition V of X\ A
into B \ J sets so that if W W(F, V), then

,,, # borderw, c E
) sup < sup

c #[C]
C.J* CJ*

# borderu, c E

Since elements of U are finite unions of cylinders, one can find a finite
subset F of D and a finite B-partition V’ of X so that W(V’, F) refines U. Let

V= {C V’ICfJ ) and A=U(c V’ICJ}.

Then W IV(V, F) is our candidate. In order to establish the inequality (*)
for this choice, we first make the following observations:

(a) Let G(F) be the subgroup of G consisting of all T,, where rr: F F.
Then G(F) is a subgroup of Gv and G(F) generates the same orbit structure
on Was G W.

(b) For every T Gv, there exists a r: F F so that T, has the same
action on U as T has.

Let A1, A2,..., A be a cross section of the elements of U which are not in
J* and let C () for some q: F V. Since C J*, we have

U[C]w C--- U[Ai]U

Now

(c) ::[C]w E;q:{D [C]wlD c_ Ai}[Ai]
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since the number of elements of [C]w contained in D is the same as the
number in D2 if D [D2] v. However if B IV, B

_
C U, and B borders

E, then C must also border E. Thus

# borderw, c(E ) < Z#(D [C]wlD
_
A,)# borderv, A,(E )

which implies

# borderw, c(E )
<

[ClwlDC_Ai}#[Ai] v # borderv, A,(E
#[Clw #[cl 

Now using (c), we see that

# border w, c (E)

is less than or equal to a convex combination of

# borderv, , (E)
1,...,k,

which implies (*). Q.E.D.

3. Examples

We will now develop some examples concerning universal product measura-
bility in the case of infinite products. If V is a finite collection of disjoint
infinite subsets of Z so that Z \ U V is a finite set and if F is a finite subset of
N, then the pair (F, V) will be called a partition generator. We make the
following abbreviation" if E

___
Z TM, then

(E,F,V,i)
# ( q" r VI (q) borders E and #q- X(A) i(A) for all A V }

(i)

and

(E, F, V):= sup(E, F, V, i)

where the sup is taken over all i" F Z+ satisfying ,i(A) #F. Using the
ideas at the end of the proof of Theorem 4, it is not hard to show that if
(F’, V’) is a partition generator refining (F, V) (i.e., F

___
F’ and V’ refines V
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modulo a set in J) then for any E
___
ZN,

(E, F’, V’) < (E, F, V).

From Theorem 4 and the above fact, we derive the characterization of
universally product measurable promised in the introduction" E

___
Z TM is

universally product measurable if for each e > 0, there is a finite set G, a finite
partition V of Z \ G, and M N, so that (E, (1,..., M }, V) < e.

In actual calculations we do not wish to check every structural number
(E, F, V). The next proposition states that we only need to check certain such
structural numbers in special cases. For any finite subset F of N, let IntF E
denote the set

((xi)iN ZNI if (Yi)iN ZN and Yi Xi for each F,

then (Yi)i N E ).
If (F, V) is a partition generator, then let Int (F, V)E denote the set

U((q)lb. F V,(+) c E}.

PROPOSITION 5. If E
___
Zr, { F/}= is an increasing sequence of subsets of

N with UiFi N, andfor eachj N, (F, Vj) is apartition generator with Vj+I
refining Vj. and there is Cj J* so that

Int E \ Int, v)E
_

Cj.

and

Int(Zr \ E) \ Int(, .(Zr \ E)
_

Cj.,

then

inf (E, V, F) lim (E, Fj., V) inf(E, Fj., V).
(V, F) jo j

Proof We begin by showing that for each j N,

(E, Fj., F) i(E, Fj., W)

We may suppose that W refines Vj.. Let h" W --, Vj. be defined by A h(A).
Fix i: V---> Z / so that EAwI(A)= #Fj.. For each A V, choose A’
h-(A). Now define g: V---> W by g(A)= A’, and define i’: W---> Z / by
i’(C) i(A) if g(A) C and i’(C) 0 if g(A) 4: C for all A Vj.. Now if



462 s.c. WILLIAMS

: F. --, Vj and (tk) borders E then (g q) must also border E (otherwise

(go)_IntFE or <go) Glnt6ZN\E.
Since (g ) j*, this will imply that either (g ) (+)

___
IntCE., v)E or__. Int (, ZN \ E which contradicts that < q ) borders E). Thus

(E, Fj, ., i) (E, Fj, W, i’)

from which it follows that (E, Fj., Vj.)= (E, Fj, W). Now for any partition
generator (F, V), there is a j N so that F

___
F. Thus

(E, Fj+I, Vj+I) _< (E, Fj, Vj) _< (E, Fj, V) <_ (E,F,V). Q.E.D.

Example 1. We will begin with an easy example showing that for infinite
product spaces we gain totally new universally product measurable sets, i.e.,
sets which differ from B* sets by more than a set of universal product measure
zero.

Let A be an infinite subset of Z so that A2 Z \A is also infinite. Let
E U,(g’k) where q:(1,2,...,2k) {A1, A2} is defined by k(i) A if
is odd or is2k and =A2 if i= 2,4,...,2k- 2.
For V (A, A2} and F (1,...,2k} and ’Fk V, (k) borders E iff

(j) A1 if j is odd and A 2 if j is even. Thus

(kV)2

0ask o,(E, Fk, V) (2k)!

which implies that E is universally product measurable.
We need to show that E differs from each finite union of cylinders by more

than a null set. If T B*, then there is a finite partition W of Z, a k N, and
a C G (,#" Fk --* W } so that W refines V and

Choose infinite sets B, B2 W so that B
___
A and B2 A2. Define ’0" Fk

W as follows" o(J) is B if j is odd and is B2 if j is even. For i= 1,2
define i: F,+ W by

and q,(2k + 1) q,(2k + 2) B,.

Then <tl> E and (2) G Z \ E, <)1> 1,3 <2> ----- <t0>, and both <tl> and
(q’2) are not null sets. If 0 C, then (2) --- TAE and if 0 C, then
() G TAE. In either case we are done.
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Example 2. We will discuss two necessary conditions for universal product
measurability which often give quick ways of showing that a set E is not
universally product measurable. The first one is as follows" Give Zr its usual
product topology. If E

___
Zr is universally product measurable, then if

A1 A2 )< XA X Z x Z is a subset of the topological boundary
of E then at least one of the Ai’s is finite. This statement follows from the fact
that for any C OE, the topological boundary of E is a subset of C. This
criterion allows us to conclude that any set like

(xn) Zr lim x m}n c

is not universally product measurable. We may also conclude that if E is
universally product measurable, then the topological boundary of E is a null
set. However, we shall see that there are clopen sets of Zr which are not
universally product measurable.

This brings us to the second necessary condition: If E is universally product
measurable, then there exist a partition generator (F, V) so that for each
A V if p: F (A}, then either (tpA) __C E or (A) - Z\ E.

Here is the proof. Let (F, V) be such that (E, F, V) < 1. Now tpa is the
only p satisfying p-(A)= #F. Thus (E,F, V, iA) (0,1) where A is
defined by ia(A)= #F. Thus (tpA) E or (p)_ Z\E since
(E, F, V, i,) 0. Q.E.D.
We now give an easy example of a clopen set of Zr which is not universally

product measurable. Let A1, A2,... be a partition of Z into infinitely many
infinite sets. Let E be the set

1,2,...) whereq’(1,2,...,i) {A).

Clearly, E is a clopen set. In order to see that E is not universally product
measurable, let B1, B2,..., B, be disjoint infinite sets so that Z \ UB is finite
and let M be in N. There is a k<n so that BkCAt+l is infinite. If
:(1,2,..., M} (Bk} then () borders E which implies E is not univer-
sally measurable by our second condition.
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