THE ISOMETRIES OF $L^{2}(\Omega, X)$

BY
Pei-Kee Lin ${ }^{1}$

1. Introduction

Let X be a complex Banach space. A semi-inner-product (s.i.p.) compatible with the norm is a function $[\cdot, \cdot]: X \times X \rightarrow \mathbf{C}$ such that

$$
\begin{align*}
{[\alpha x+y, z] } & =\alpha[x, z]+[y, z] \text { for } x, y, z \in X \text { and } \alpha \in \mathbf{C}, \tag{1}\\
{[x, x] } & =\|x\|^{2} \text { for } x \in X, \tag{2}\\
|[x, y]| & \leq\|y\| \cdot\|x\| \text { for any } x, y \in X . \tag{3}
\end{align*}
$$

It is known that for any Banach space X, there is a homogeneous semi-innerproduct compatible with the norm, i.e.,

$$
[x, \alpha y]=\bar{\alpha}[x, y] \quad \text { for all } x, y \in X \text { and } \alpha \in \mathbf{C} .
$$

An operator $H: X \rightarrow X$ is hermitian if

$$
[H x, x] \in \mathbf{R} \quad \text { for all } x \in X
$$

Let (Ω, Σ, μ) be a σ-finite measure space and let X be a separable Banach space. A.R. Sourour has shown [5] that if H is a hermitian operator on $L^{p}(\Omega, X), 1 \leq p<\infty, p \neq 2$, then $(H f)(\cdot)=A(\cdot) f(\cdot)$ for some hermitian valued strongly measurable map A of Ω into $\mathscr{B}(X)$ (the set of all bounded operators on X). Using this result, A.R. Sourour [5] proved that if X is a separable Banach space with trivial L^{p}-structure (see [3]) for $1 \leq p<\infty$, $p \neq 2$, and if T is a surjective isometry on $L^{p}(\Omega, X)$, then

$$
(T f)(\cdot)=S(\cdot) h(\cdot)(\Phi(f))(\cdot) \quad \text { for } f \in L^{p}(\Omega, X)
$$

where Φ is a set isomorphism of the measure space onto itself (for definition see [5]), S is a strongly measurable map of Ω into $\mathscr{B}(X)$ with $S(t)$ a surjective isometry of X for almost all $t \in \Omega$, and $h=(d v / d \mu)^{1 / p}$ where $v(\cdot)=$ $\mu\left(\Phi^{-1}(\cdot)\right)$. On the other hand, the hermitian operators and isometries on l^{2}

[^0]are not necessarily of the above forms. But A. Berkson and A.R. Sourour [1] have shown that if
\[

T=\left($$
\begin{array}{ll}
0 & I \\
I & 0
\end{array}
$$\right)
\]

is hermitian on $(X \oplus X)_{2}$, where I is the identity on X, then X is isometrically isomorphic to a Hilbert space. It is natural to ask under what conditions on X, the hermitian operators and isometries on $L^{2}(\Omega, X)$ have the above forms. In this article, we show that if

$$
T=\left(\begin{array}{cc}
0 & T_{1} \\
T_{2} & 0
\end{array}\right)
$$

is a hermitian operator on $(\underline{X \oplus X})_{2}$, where T_{1} and T_{2} are operators on X, then $Y_{1}=\overline{T_{1}(X)}$ and $Y_{2}=\overline{T_{2}(X)}$ are isometrically isomorphic to Hilbert spaces, and there exist two subspaces Z_{1} and Z_{2} of X such that

$$
\left(Z_{1} \oplus Y_{1}\right)_{2}=X=\left(Z_{2} \oplus Y_{2}\right)_{2}
$$

Using this result, we prove that if X is not 1-dimensional and if X is separable with trivial L^{2}-structure and (Ω, Σ, μ) is σ-finite, then the hermitian operators and isometries on $L^{2}(\Omega, X)$ have forms like the hermitian operators and isometries on $L^{p}(\Omega, X)$.

For more results about isometries on $L^{p}(\Omega, X)$, see [3] and its references.
The author wishes to thank J.E. Jamison for his valuable discussions concerning these results.

2. Hermitian operators on $\left(X_{1} \oplus X_{2}\right)_{2}$

Let X_{1} and X_{2} be two Banach spaces, and let $[\cdot, \cdot]_{1}$ (resp. $[\cdot, \cdot]_{2}$) be a homogeneous s.i.p. compatible with the norm of X_{1} (resp. X_{2}). Then

$$
\left[\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right]=\left[x_{1}, x_{1}^{\prime}\right]_{1}+\left[x_{2}, x_{2}^{\prime}\right]_{2}
$$

is a s.i.p. compatible with the norm $\left(X_{1} \oplus X_{2}\right)_{2}$. If

$$
T=\left(\begin{array}{cc}
0 & T_{1} \\
T_{2} & 0
\end{array}\right)
$$

is a hermitian operator on $\left(X_{1} \oplus X_{2}\right)_{2}$, where $T_{1}\left(\right.$ resp. $\left.T_{2}\right)$ is an operator from $X_{2}\left(\right.$ resp. $\left.X_{1}\right)$ into X_{1} (resp. X_{2}), then

$$
\left[T_{1} x_{2}, x_{1}\right]_{1}+\left[T_{2} x_{1}, x_{2}\right]_{2} \in \mathbf{R}
$$

for any $x_{1} \in X_{1}$, and any $x_{2} \in X_{2}$. Replacing x_{2} by $i x_{2}$ in this expression gives the conclusion that

$$
i\left\{\left[T_{1} x_{2}, x_{1}\right]_{1}-\left[T_{2} x_{1}, x_{2}\right]_{2}\right\} \in \mathbf{R}
$$

Therefore, for any x_{1} in X_{1} and x_{2} in X_{2},

$$
\left[T_{1} x_{2}, x_{1}\right]_{1}=\overline{\left[T_{2} x_{1}, x_{2}\right]_{2}}
$$

(This implies that $T_{1}=0$ if and only if $T_{2}=0$.) So for any x_{1}, x_{1}^{\prime} in X_{1}, and x_{2} in X_{2},

$$
\begin{align*}
{\left[T_{1} x_{2}, x_{1}+x_{1}^{\prime}\right]_{1} } & =\overline{\left[T_{2}\left(x_{1}+x_{1}^{\prime}\right), x_{2}\right]_{2}} \tag{4}\\
& =\overline{\left[T_{2} x_{1}, x_{2}\right]_{2}}+\overline{\left[T_{2} x_{1}^{\prime}, x_{2}\right]_{2}} \\
& =\left[T_{1} x_{2}, x_{1}\right]_{1}+\left[T_{1} x_{2}, x_{1}^{\prime}\right]_{1}
\end{align*}
$$

Similarly, for any $x_{1} \in X_{1}$, and any $x_{2}, x_{2}^{\prime} \in X_{2}$,

$$
\begin{equation*}
\left[T_{2} x_{1},\left(x_{2}+x_{2}^{\prime}\right)\right]_{2}=\left[T_{2} x_{1}, x_{2}\right]_{2}+\left[T_{2} x_{1}, x_{2}^{\prime}\right]_{2} \tag{5}
\end{equation*}
$$

The restriction of $[\cdot, \cdot]_{1}$ to $T_{1} X_{2}$ is a homogeneous s.i.p. compatible with the norm such that

$$
[x, y+z]_{1}=[x, y]_{1}+[x, z]_{1} \quad \text { for any } x, y, z \in T_{1} X_{2}
$$

It is known that any homogeneous s.i.p. satisfying the above property is an inner product. So $Y_{1}=\overline{T_{1} X_{2}}$ is a Hilbert space. Similarly, $Y_{2}=\overline{T_{2} X_{1}}$ is a Hilbert space. But in order to show that there is a subspace Z_{1} (resp. Z_{2}) of X_{1} (resp. X_{2}) such that $X_{1}=\left(Z_{1} \oplus Y_{1}\right)_{2}$ (resp. $\left.\left(X_{2}=Z_{2} \oplus Y_{2}\right)_{2}\right)$, we need to prove the following strong property.

Let x and y be two linearly independent elements. If any s.i.p. $[\cdot, \cdot]$ compatible with the norm satisfies

$$
[y, \alpha x+\beta y]=[y, \alpha x]+[y, \beta y], \quad \alpha, \beta \in \mathbf{C}
$$

then $\operatorname{span}(x, y)$ is isometrically isomorphic to l_{2}^{2}. So if $0 \neq y=T_{1} z \in T_{1} X_{2}$ and $x \in X_{1}$ are linearly independent, then by (5) x and y satisfy (5^{\prime}); hence, $\operatorname{span}(x, y)$ is isometrically isomorphic to l_{2}^{2}.
(i) Without loss of generality, we may assume that $\|y\|=1=\|x\|$ and $\|x+\alpha y\| \geq 1$ for any $\alpha \in \mathbf{C}$. So there exists a linear function f such that $\|f\|=1=f(x)$ and $f(y)=0$. We can find a homogeneous s.i.p. compatible
with the norm so that $[y, x]=0$. If $\|\alpha x+\beta y\|=1$, then

$$
|\beta|=|[y, \beta y]|=|[y, \alpha x]+[y, \beta y]|=|[y, \alpha x+\beta y]| \leq 1
$$

So we may choose the homogeneous s.i.p. compatible with the norm which satisfies $[x, y]=0$.
(ii) Let Y denote the subspace $\operatorname{span}(x, y)$. We claim the norm of Y is smooth on

$$
Y \backslash(\{\alpha y: \alpha \in \mathbf{C}\} \cup\{\alpha x: \alpha \in \mathbf{C}\})
$$

Suppose $\|\alpha x+\beta y\|=1$, and $|\alpha| \neq 1 \neq|\beta|$. If the norm is not smooth at $\alpha x+\beta y$, then there exist two homogeneous s.i.p., $[\cdot, \cdot]_{1}$ and $[\cdot, \cdot]_{1}$, compatible with the norm which satisfy

$$
\begin{align*}
0= & {[x, y]_{1}=[x, y]_{1^{\prime}}=[y, x]_{1}=[y, x]_{1^{\prime}}, } \tag{6}\\
& {[\cdot, \alpha x+\beta y]_{1} \neq\left.[\cdot, \alpha x+\beta y]_{1^{\prime}}\right|_{Y} } \tag{7}
\end{align*}
$$

But by (4) and (2),

$$
[y, \alpha x+\beta y]_{1}=[y, \alpha x]_{1}+[y, \beta y]_{1}=\bar{\beta}=[y, \alpha x+\beta y]_{1^{\prime}}
$$

and

$$
[\alpha x+\beta y, \alpha x+\beta y]_{1}=1=[\alpha x+\beta y, \alpha x+\beta y]_{1^{\prime}}
$$

We get a contradiction.
(iii) We claim that for any $0 \leq \alpha \leq 1$, there is a unique $\beta \geq 0$ such that $\|\alpha x+\beta y\|=1$. Suppose this is not true. Then we must have $\alpha=1$, and we may choose a homogeneous s.i.p. compatible with the norm such that $[y, x+\beta y]=0$. But this contradicts the fact $\beta=[y, x+\beta y]$. Similarly for any $0 \geq \alpha \geq-1$, there is a unique $\beta \geq 0$ such that $\|\alpha x+\beta y\|=1$.
(iv) For $0 \leq \alpha \leq 1$ (resp. $0 \geq \alpha \geq-1$), let $f(\alpha)$ be the unique non-negative real number such that $\|\alpha x+f(\alpha) y\|=1$. Since the norm is smooth on

$$
Y \backslash(\{\beta y: \beta \in \mathbf{C}\} \cup\{\beta x: \beta \in \mathbf{C}\})
$$

$f(\alpha)$ is differentiable on $0<\alpha<1$ (resp. $-1<\alpha<0$) and there exists c such that

$$
[\cdot, \alpha x+f(\alpha) y]=c\left\{\left[\cdot,-f^{\prime}(\alpha) x\right]+[\cdot, y]\right\}
$$

But $[\alpha x+f(\alpha) y, \alpha x+f(\alpha) y]=1$ and $[y, \alpha x+f(\alpha) y]=f(\alpha)$. We have

$$
c=\frac{1}{-\alpha f^{\prime}(\alpha)+f(\alpha)}
$$

and f satisfies

$$
\frac{1}{-\alpha f^{\prime}(\alpha)+f(\alpha)}=f(\alpha) \quad \text { and } \quad-\frac{f^{\prime}(\alpha) f(\alpha)}{1-f^{2}(\alpha)}=\frac{1}{\alpha}
$$

So $1-f^{2}(\alpha)=c \alpha^{2}$. Since $f(1)=0=f(-1)$,

$$
f(\alpha)=\sqrt{1-\alpha^{2}}
$$

and $\operatorname{span}(x, y)$ is a Hilbert space. (Note: if $[x, y]=0$ then $\left[x, e^{i \theta} y\right]=$ $e^{-i \theta}[x, y]=0$ for any $\theta \in \mathbf{R}$.)

Since Y_{1} is reflexive, Y_{1} is a proximinal subspace, i.e. for every $x \in X_{1}$, there is $y \in Y_{1}$ such that

$$
\|x-y\|=\inf _{y^{\prime} \in Y_{1}}\left\|x-y^{\prime}\right\|
$$

Let

$$
Z_{1}=\left\{z \in X_{1}:\|z\|=\inf _{y \in Y_{1}}\|z-y\|\right\}
$$

We claim that Z_{1} is a vector space. Let $0 \neq z \in Z_{1}$ and $0 \neq y \in Y_{1}$. Since $\operatorname{span}(y, z)=l_{2}^{2},[y, z]=0,\{y, z\}$ is an orthogonal basis of $\operatorname{span}(y, z)$, and

$$
[y, z]=0=[z, y]
$$

So if z^{\prime} is another element in Z_{1}, then $\left[y, z^{\prime}\right]=0=\left[z^{\prime}, y\right]$, and $\left[z+z^{\prime}, y\right]=0$. But $\operatorname{span}\left(z+z^{\prime}, y\right)$ is a Hilbert space. So $\left[y, z+z^{\prime}\right]=0$ and $z+z^{\prime} \in Z_{1}$. The verification that $X_{1}=\left(Z_{1} \oplus Y_{1}\right)_{2}$ is left to the reader. Similarly, there exists a subspace Z_{2} of X_{2} such that $X_{2}=\left(Y_{2} \oplus Z_{2}\right)_{2}$.

Remark 1. It is known that if

$$
H=\binom{T_{1}, T_{2}}{T_{2}, T_{4}}
$$

is a hermitian operator on $\left(X_{1} \oplus X_{2}\right)_{2}$, then

$$
\binom{T_{1}, 0}{0, T_{4}}
$$

is hermitian and T_{1} (resp. T_{2}) is a hermitian operator on X_{1} (resp. X_{2}) (see [4]). So

$$
\binom{0, T_{2}}{T_{3}, 0}
$$

is hermitian.
If X contains a nontrivial l^{2} complemented Hilbert space, then it must contain a one-dimensional l^{2} complement. So we have proved the following theorem.

Theorem 1. Suppose that X_{1} and X_{2} are two Banach spaces such that there is no subspace Z_{1} (resp. Z_{2}) of $X_{1}\left(\right.$ resp. $\left.X_{2}\right)$ which satisfies $X_{1}=\left(Z_{1} \oplus \mathbf{C}\right)_{2}$ (resp. $\left.X_{2}=\left(Z_{2} \oplus \mathbf{C}\right)_{2}\right)$. If

$$
H=\left(\begin{array}{ll}
T_{1} & T_{2} \\
T_{3} & T_{4}
\end{array}\right)
$$

is a hermitian operator on $\left(X_{1} \oplus X_{2}\right)_{2}$, then $T_{2}=0\left(\operatorname{resp} . T_{3}=0\right)$, and T_{1} (resp. T_{4}) is a hermitian operator on $X_{1}\left(\right.$ resp. $\left.X_{2}\right)$.

3. The isometries on $L^{2}(\Omega, X)$

We say a complex Banach space has property (*) if there is a subspace Y of X such that $X=(Y \oplus \mathbf{C})_{2}$. Since $\mathbf{C}=0 \oplus \mathbf{C}, \operatorname{dim}(X)>1$ if X does not have the property (*). Before proving the main theorems, we need the following lemma.

Lemma 2. Let X be a complex Banach space without property (*). Then $L^{2}(\Omega, X)$ does not have property (*).

Proof. Suppose this is not true. Then there is f in $L^{2}(\Omega, X)$ such that if f and g are linearly independent, then $\operatorname{span}(f, g)$ is isometrically isomorphic to l_{2}^{2}.
(i) Let $A=\operatorname{supp}(g)$. If $\left.f\right|_{A} \neq 0$, then

$$
\begin{aligned}
& \int_{A}\|f(t)+g(t)\|^{2} d \mu+\int_{\Omega \backslash A}\|f(t)\|^{2} d \mu \\
&=\|f+g\|^{2}=\|f\|^{2}+\|g\|^{2} \\
&=\int_{A}\|f(t)\|^{2} d \mu+\int_{A}\|g(t)\|^{2} d \mu+\int_{\Omega \backslash A}\|f(t)\|^{2} d \mu
\end{aligned}
$$

So $\operatorname{span}\left(\left.f\right|_{A}, g\right)$ is isometrically isomorphic to l_{2}^{2}.
(ii) Since $0 \neq f \in L^{2}(\Omega, X)$, there is $x \neq 0$ in X such that for any $\varepsilon>0$,

$$
\mu\{t:\|f(t)-x\|<\varepsilon\}>0 .
$$

Let $A_{\varepsilon}=\{t:\|f(t)-x\|<\varepsilon\}$, and let y be any element in X such that $[y, x]=0$ and $\|y\|=\|x\|$. Let T be the mapping from $\operatorname{span}(x, y)$ onto $\operatorname{span}\left(\left.f\right|_{A_{e^{\prime}}} y \cdot \chi_{A_{e}}\right)$ such that

$$
T(x)=\left.f\right|_{A_{\varepsilon}} \text { and } T(y)=y \cdot \chi_{A_{e}}
$$

Then

$$
\|T\| \cdot\left\|T^{-1}\right\| \leq \frac{1}{(1-\varepsilon)^{2}}
$$

This implies that $\operatorname{span}(x, y)$ is isometrically isomorphic to l_{2}^{2} for any y such that $[y, x]=0$. We get a contradiction.

By the technique in [5], we have the following theorems.
Theorem 3. Assume that for each $n \in \mathbf{N}, X_{n}$ is a separable complex Banach space without property (*) and $\left(\Omega_{n}, \Sigma_{n}, \mu_{n}\right)$ is σ-finite. An operator H on $\left(\Sigma \oplus L^{2}\left(\Omega_{n}, X_{n}\right)\right)_{2}$ is hermitian if and only if

$$
H\left(\left(f_{n}\right)(\cdot)\right)=\left(A_{n}(\cdot) f_{n}(\cdot)\right)
$$

for hermitian valued strongly measurable maps A_{n} of Ω_{n} into $\mathscr{B}\left(X_{n}\right)$.
Proof. Suppose that $A \in \Sigma_{n}$ with $\mu_{n}(A) \neq 0$. Then

$$
\begin{aligned}
& \left(\sum\left(L^{2}\left(\Omega_{m}, X_{m}\right)\right)_{2}\right. \\
& \quad=\left(L^{2}\left(A, X_{n}\right) \oplus L^{2}\left(\Omega_{n} \backslash A, X_{n}\right) \oplus\left(\sum_{m \neq n} \oplus L^{2}\left(\Omega_{m}, X_{m}\right)\right)_{2}\right)_{2}
\end{aligned}
$$

By Lemma 2, neither $\left(L^{2}\left(\Omega_{n} \backslash A, X_{n}\right) \oplus\left(\sum_{m \neq n} \oplus L^{2}\left(\Omega_{m}, X_{m}\right)\right)_{2}\right)_{2}$ nor $L^{2}\left(A, X_{n}\right)$ has property (*). So if H is a hermitian operator on $(\Sigma \oplus$ $\left.L^{2}\left(\Omega_{m}, X_{m}\right)\right)_{2}$, then

$$
\begin{aligned}
& H\left(\left(L^{2}\left(\Omega_{n} \backslash A, X_{n}\right) \oplus\left(\sum_{m \neq n} \oplus L^{2}\left(\Omega_{m}, X_{m}\right)\right)_{2}\right)_{2}\right) \\
& \quad \subseteq\left(L^{2}\left(\Omega_{n} \backslash A, X_{n}\right) \oplus\left(\sum_{m \neq n} \oplus L^{2}\left(\Omega_{m}, X_{m}\right)\right)_{2}\right)_{2}
\end{aligned}
$$

and

$$
H\left(L^{2}\left(A, X_{n}\right)\right) \subseteq L^{2}\left(A, X_{n}\right)
$$

By Theorem 3.1 and Theorem 4.2 in [5], we have proved the theorem.
TheOrem 4. Assume that for each $n \in \mathbf{N}, X_{n}$ (resp. Y_{n}) is a separable complex Banach space with trivial L^{2}-structure and $\operatorname{dim}\left(X_{n}\right)>1\left(\operatorname{resp} . \operatorname{dim}\left(Y_{n}\right)\right.$ $>1)$, and $\left(\Omega_{n}, \Sigma_{n}, \mu_{n}\right)\left(\operatorname{resp} .\left(\Omega_{n}^{\prime}, \Sigma_{n}^{\prime}, \psi_{n}^{\prime}\right)\right)$ is σ-finite. If for any $i \neq j, X_{i}$ (resp. Y_{i}) and $X_{j}\left(\right.$ resp. $\left.Y_{j}\right)$ are not isometrically isomorphic, and if T is a surjective isometry from $\left(\Sigma \oplus L^{2}\left(\Omega_{n}, X_{n}\right)\right)_{2}$ onto $\left(\Sigma \oplus L^{2}\left(\Omega_{n}^{\prime}, Y_{n}\right)\right)_{2}$, then

$$
T\left(\sum \oplus f_{n}\right)(\cdot)=S(\cdot) h(\cdot)\left(\Phi\left(\sum \oplus f_{n}\right)\right)(\cdot)
$$

where π is a permutation on \mathbf{N}, Φ is a set isomorphism from $\cup_{n=1}^{\infty} \Omega_{n}$ onto $\cup_{n=1}^{\infty} \Omega_{n}^{\prime}$ such that $\Phi\left(\Omega_{n}\right)=\Omega_{\pi(n)}, S$ is a strongly measurable map of $\cup_{n=1}^{\infty} \Omega_{n}$ into $\bigcup_{n=1}^{\infty} \mathscr{B}\left(X_{n}, Y_{\pi(n)}\right)$ with $S(t)$ an isometry from X_{n} onto $Y_{\pi(n)}$ for almost all $t \in \Omega_{n}$, and

$$
h=\sum\left(\frac{d\left(\mu_{n} \circ \Phi^{-1}\right)}{d \mu_{\pi(n)}^{\prime}}\right)^{1 / 2}
$$

Proof. Let $A \in \Sigma_{n}$ such that $\mu_{n}(A)>0$. If H is the hermitian projection from the space $\left(\Sigma \oplus L^{2}\left(\Omega_{m}, X_{m}\right)\right)_{2}$ onto $L^{2}\left(A, X_{n}\right)$, then $H_{1}=T H T^{-1}$ is a hermitian projection. By Theorem 3,

$$
T H T^{-1}\left(\left(f_{m}\right)(\cdot)\right)=\left(P_{m}(\cdot) f_{m}(\cdot)\right)
$$

where $P_{m}(t)$ is a hermitian projection on X_{m} for almost all $t \in \Omega_{m}$. By the proof of Theorem 5.2 in [5], $P_{m}(t)=I$ or 0 for almost all $t \in \Omega_{m}$. By Theorem 3.1, Corollary 3.2 and the proof of Theorem 5.2 in [5], we have

$$
T f(t)=A(t)(h(t)(\Phi f)(t))
$$

where Φ is a Boolean isomorphism from $\cup \Sigma_{n}$ onto $\cup \Sigma_{n}^{\prime}$, and $A(t)$ is an isometry from X_{n} onto Y_{m} if $t \in \Omega_{n}$ and $\Phi(t) \in \Omega_{m}^{\prime}$. But if $n \neq n^{\prime}$, then Y_{n} (resp. X_{n}) is not isometrically isomorphic to $Y_{n}^{\prime}\left(\right.$ resp. $\left.X_{n^{\prime}}\right)$. So $\Phi\left(\Sigma_{n}\right)=\Sigma_{\pi(n)}^{\prime}$ where π is a permutation of \mathbf{N}.

Let m be Lebesgue measure on $[0,1]$, and let X be any Banach space. It is known that $L^{2}([0,1], m, X)$ is isometrically isomorphic to $L^{2}\left([0,1], m,\left(\sum_{n=1}^{\infty}\right.\right.$ $\left.\oplus X)_{2}\right)$. So we have the following theorem.

Theorem 5. Assume that for each $n \in \mathbf{N}, X_{n}$ (resp. Y_{n}) is a separable complex Banach space with trivial L^{2}-structure. Then $L^{2}\left([0,1], m,\left(\Sigma \oplus X_{n}\right)_{2}\right)$ and $L^{2}\left([0,1], m,\left(\Sigma \oplus Y_{n}\right)_{2}\right)$ are isometrically isomorphic, if and only if for each $n \in \mathbf{N}$, there exists m (resp. m^{\prime}) such that $X_{n}\left(\right.$ resp. $\left.Y_{n}\right)$ and $Y_{m}\left(\right.$ resp. $\left.X_{m^{\prime}}\right)$ are isometrically isomorphic.

Proof. We only need to show that it is a necessary condition. By Lemma 2, the space

$$
\left(\sum \oplus L^{2}\left(\Omega_{n}, X_{n}\right)\right)_{2}
$$

has property (*) if and only if X_{n} has property (*) for some $n \in \mathbf{N}$. This implies that if $\operatorname{dim}\left(X_{n}\right)=1$ for some $n \in \mathbf{N}$, then $\operatorname{dim}\left(Y_{m}\right)=1$ for some $m \in \mathbf{N}$.

Let T be a surjective isometry from

$$
\left(\left(\sum \oplus L^{2}\left(\Omega_{n}, X_{n}\right)\right)_{2} \oplus L^{2}\right)_{2}
$$

onto

$$
\left(\left(\sum \oplus L^{2}\left(\Omega_{n}^{\prime}, Y_{n}\right)\right)_{2} \oplus L^{2}\right)_{2}
$$

We claim that $T\left(L^{2}\right) \subseteq L^{2}$ (so $T^{-1}\left(L^{2}\right)=L^{2}$ and $T\left(L^{2}\right)=L^{2}$). If this is not true, then there is an $f \in L^{2}$ such that $T(f) \notin L^{2}$.
(i) For any

$$
g \oplus h \in\left(\left(\sum \oplus L^{2}\left(\Omega_{n}, X_{n}\right)\right)_{2} \oplus L^{2}\right)_{2}
$$

if $g \oplus h$ and $0 \oplus f$ are linear independent, then

$$
\operatorname{span}(g \oplus h, 0 \oplus f) \quad \text { and } \quad \operatorname{span}(T(g \oplus h), T(0 \oplus f))
$$

are isometrically isomorphic to l_{2}^{2}. So if

$$
T(0 \oplus f) \quad \text { and } \quad \bar{g} \oplus \bar{h} \in\left(\left(\sum \oplus L^{2}\left(\Omega_{n}^{\prime}, X_{n}\right)\right)_{2} \oplus L^{2}\right)_{2}
$$

are linear independent, then

$$
\operatorname{span}(T(0 \oplus f), \bar{g} \oplus \bar{h})
$$

is isometrically isomorphic to l_{2}^{2}.
(ii) By the assumption, there is an $n \in \mathbf{N}$ such that $A=\operatorname{supp}(T(0 \oplus f))$ $\cap \Omega_{n}^{\prime}$ has measure greater than 0 . By the proof of Lemma 2, if $\operatorname{supp}(\bar{g}) \subseteq A$, and if \bar{g} and $\left.T(0 \oplus f)\right|_{A}$ are linearly independent, then $\operatorname{span}\left(\bar{g},\left.T(0 \oplus f)\right|_{A}\right)$ is
isometrically isomorphic to l_{2}^{2}. This implies that $L^{2}\left(A, Y_{n}\right)$ has property (*). We get a contradiction.

If

$$
T\left(\left(\sum \oplus L^{2}\left(\Omega_{n}, X_{n}\right)\right)_{2}\right) \nsubseteq\left(\sum \oplus L^{2}\left(\Omega_{n}^{\prime}, Y_{n}\right)\right)_{2}
$$

then there is

$$
g \in\left(\sum \oplus L^{2}\left(\Omega, X_{n}\right)\right)_{2}
$$

such that $T(g \oplus 0)=\bar{g} \oplus \bar{h}$ for some $\bar{h} \in L^{2}$. But $T\left(L^{2}\right)=L^{2}$, so there exists $h \in L^{2}$ such that $T(0 \oplus h)=0 \oplus \bar{h}$. This implies

$$
\|g \oplus-h\|=\|T(g \oplus-h)\|=\|\bar{g} \oplus 0\|<\|\bar{g} \oplus \bar{h}\|=\|g \oplus 0\|
$$

So we get a contradiction and we must have

$$
T\left(\left(\sum \oplus L^{2}\left(\Omega_{n}, X_{n}\right)\right)_{2}\right) \subseteq\left(\sum \oplus L^{2}\left(\Omega_{n}, X_{n}\right)\right)_{2}
$$

By the proof of Theorem 4, for each n, there is an m such that X_{n} is isometrically isomorphic to Y_{m}. Similarly, for each n there is an m^{\prime} such that Y_{n} is isometrically isomorphic to $X_{m^{\prime}}$.

Acknowledgement. The author would like to thank the referee for his valuable suggestions.

References

1. E. Berkson and A.E. Sourour, The hermitian operators on some Banach spaces, Studia Math., vol. 52 (1974), pp. 33-41.
2. F.F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Series, Cambridge Univ. Press, 1971; "II," 1973.
3.. P. Greim, "Isometries and L^{p}-structure of separably valued Bochner L^{p}-spaces" in Measure theory and its applications," Lecture Notes in Math., no. 1033, Springer, New York, 1983, pp. 209-218.
3. R.J. Fleming and J.E. Jamison, Hermitian and adjoint abelian operators on certain Banach spaces, Pacific J. Math., vol. 52 (1974), pp. 67-85.
4. A.E. Sourour, The isometries of $L^{p}(\Omega, X)$, J. Functional Analysis, vol. 30 (1978), 276-285.

Memphis State University
 Memphis, Tennessee

[^0]: Received September 22, 1987.
 ${ }^{1}$ Research supported in part by the National Science Foundation.

