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Section 0

Let ZF denote the integral group ring of the finite, abelian group F. The set
of units of ZF is written ZF x. Higrnan’s theorem (see [4]) gives the structure
of Zrx as

zr= T Zrr, (1)

where rr is a non-negative integer, and

r { r}. (2)

Let II II denote any Euclidean norm on CF, that is, a function which takes
non-negative, real values and satisfies:

(1) Ilxll 0 if and only if x 0,
(2) IlXxll IXl Ilxll for x CF, t C,
(3) IIx /yll < Ilxll / Ilyll-
In a recent paper [2] we studied the series

,, ,,(s) E (log Ilxll) -, s C. (3)
xZF
Ilxll > 1

Note. From now on we exclude from any summation those terms which
are undefined, e.g., in the above, those x with Ilxll 1. Since ZFx is a
discrete subset of CF there are only a finite number of these terms and they
clearly do not affect the type of results in which we are interested.

THEOREM A [2, p. 35]. Let rr denote the torsion free rank of ZITM. Then"
(i) tll (s) has half-plane of convergence Re(s) > rr.
(ii) 11 (s) has analytic continuation to Re(s) > rr 1 where it is analytic

apart from a simple pole at s rr. The residue is independent of the choice of
norm I! II.
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Let " denote the group of characters of F, " Hom(F, CX). These can be
used to provide a useful example of a Euclidean norm. For each X ’,
x 2v, r x, CF, let

,x(X) EX(Y)xv. (4)
7

Then

Ilxll Ixl max

gives a Euclidean norm, the first property following from the fact that the x
are independent linear forms.

TH.OREM 1. The series i(s) has analytic continuation to Re(s) > rr 2.
The only singularities in this half-plane are simple poles at s rr and s rr 1.

In [2] we also introduced a refinement of the series (3). Let cll i1(1) denote
the II II-unit ball defined by

cll ii(1) {x cr" Ilxll 1}. (6)

Suppose W is an open subset of cll i1(1) with characteristic function fw. Define

tw, I1(s) E fw(Xl)(lgllxll) -’, s c (7)
xZF

where x xllxll - denotes the central projection of x onto cll i1(1).
In [2, p. 36] we proved the following result.

THEOREM B. There are finitely many points P1,..., P, on cll i1(1) such that:
(i) If W contains all of the Pi then tw, ii(s)- tll ii(s) is analytic in

Re(s) > rr 1.
(ii) If Wcontains none of the Pi then w, (s ) is analytic in Re(s) > rr 1.

Now we will define a set of line segments upon the surface of c i(1) which
we will use to generalise Theorem B. For X ’, let ex denote the idempotent

Ir.I -’ E 2(v)v. (8)

It follows from the orthogonality relations that for x CI’,

x Y’. ex,x(X ). (9)
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Say that a character X ’ is non-degenerate if Q(x)mthe extension of Q
generated by the values of xnis not Q or an imaginary quadratic extension of
Q. Let

Px ex + e (10)

and write E for the set of all Px together with their translates under T (as in
(2)),

E {8#x" X r non-degenerate, r}. (11)

Given any Pi, P1 E, it is clear that the line segment

’ii= Pi + tP, 0<t<l, (12)

lies in c i(1). Let L denote the set of all the L2 for P 4:P2 in E.

THEOREM 2. Suppose W is an open subset of c i(1).
(i) If L c W then w,I I(s) 1 I(s) is analytic in Re(s) > rr 2.
(ii) If W n L and II II denotes any norm then the function tw, I1(s)

is analytic in Re(s) > rr 2.

Note. Suppose K is a totally real extension of Q with n + 1 [K:Q] and
Or denotes the ring of algebraic integers of K. Let

H(x) max {la(x)l}.
a:kR

Our methods apply to the series

U(s) _, logH(x)-’, s C. (13)
xO.

The regulator of K appears in some rather interesting ways in the residues for
the poles of this function at s n and s n 1. The trick of using the "first
approximation" (see the proof of Proposition 1) works well on the Riemann
zeta function and can be used to "rediscover" the local theory of that
function. It might be interesting to see whether the same is true of the series
(15).
The "clustering" phenomenon has some interesting consequences for

Galois-module theory. In [3] a relationship was established with the divisibility
properties of normal integral bases in tame, abelian number fields. These finer
results also have application in this theory and will be published shortly.

In [1], Bushnell initiated the study of questions such as these although he
used the series ExZr Ilxll -. This is difficult to work with because, when
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rr > 1, the singularities are squashed together at s 0 and it seems difficult to
obtain an analytic continuation.

Section I

Important for these finer results is the following definition. Suppose
and x CF has

Ixl I’x(X)l.

Let

Ixl* max {It,(x)l}.
,*x,

We will work mostly inside a subgroup of ZFx of finite (generalised) index,
namely, those x ZFx for which

tx(X)R+ forx ’.

Write Rx for this subgroup.
In {}2 we will show how to lift the results back to ZF x.
Suppose 1 > e > 0 and Ne(L) denotes the open cylinder of radius e about

L (the metric is that induced by I). Given Pxl, Px2 E with X,X2 1
define

Then, for x R we have

x xlxl-x N(L) c Rx2

if and only if

<e forff,X,,,, i=1,2, (14)

and
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Suppose n, n are positive integers. For each n suppose L(i), L(i)

are n real, linearly independent linear forms on R,. Define

ni

L(0 (x) E LO(x) x R’. (15)ni+l
jl

Let N E_ n, V R,, and let Vz denote the integer points of V. Also,
extend the L)0 to V in the obvious way and define

H(x) may. {LJ.i)(x)). (16)

Define

F(s) E H(x) -s. (17)
x Vz

Recall from [2] the following facts:
(1) F(s) is absolutely convergent on Re(s) > N.
(2) F(s) has analytic continuation to Re(s) > N- 1 where it is analytic

apart from a simple pole at s N.
(3) Write SN+ for the symmetric group on N + letters. Fix an ordering

of the N + t symbols

(i,j), l <i<t,l <j<ni+ l.

Then Slv+t acts on the set of forms {L. }. Write oL) for the effect of o Sv+t

upon L). Also, let

C {X . RN" gLll(x) >.... >_. oLlnl+l(X) >_. >_. oLtnt+l(X)}. (18)

Clearly

U Co"
o6 SN+ T

Write B for the set of all boundaries of the c i.e. the set of all x Wv where
at least one of the inequalities in (18) is an equality. Let Ot(s) denote any
function of s C which is analytic on the half-plane Re(s) > M. Then

E H(x) -s= ON-I(S), (19)
x- Vz

CxfB f

where cx denotes the unit cube with centre x.
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(4) Define

I(s) fnN H(y) dy,
-0

c, (20)

where O is some open ball which contains the origin. The function I(s) has
analytic continuation to the whole plane where it is analytic apart from a set
of simple poles at the points s 1, 2,..., N.

PROPOSITION 1. The function F(s)- I(s) has analytic continuation to the
half-plane Re(s) > N 2 with a simple pole at s N 1.

Proof. We can ignore the finite number of x for which c q 0 4: . Write

x Vz

Now we will use a first approximation to the mean value theorem to write the
integral in the form

H(x + t,,) for some with Itxl 1.

Case (i). c The bound on tl implies

n(x + tx)= H(x) + O(1).

Thus, the sum in (21) over all such x is

E
x Vz,

H(x)-{1-(1 +O(H(x)-)) -}

E
x Vz,

+

by remark (3).

Case (ii). cx N B . For these x we have

H(y) LO(y) y cxforsome(i, j).

We claim that in this case

H(tx) cij + O(H(x) -1) (22)
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where cij is constant. That is

IH(tx)-Cijl < ilftts)lx)l
where f(s) is analytic function which is independent of x. We will prove this
later.
Now to proceed, write (using case (i))

F(s) -I(s)
XE VZ,

cxcaB= O

H(x)-*(1 -(1 + H(G)/H(x)) -) + 01v_=(s )

=s
xE Vz

cOB-- O

H(G)H(x)-I-s + ON_:(S )

 Ec,
i, j xVz,

H(x)-- + Ou__(s)

By remarks (2) and (3) the inner sum has analytic continuation to Re(s) >
N 2 with only a simple pole at s N- 1.

Notice that the coefficient in the first term is non-zero so the singular
behaviour of F(s) at s N- 1 is determined by that of I(s) at N- 1 and
by that of F(s) at s N. Also observe that the constant E cij is a combina-
tional constant multiplied by the product of the inverse determinants of the
sets of the forms Li)(x).

Finally, we prove the claim (22). Fix a pair (i, j). By the integral mean
value theorem write

where y runs through cx. This is

q’)(x) 1 +

Expand this to order O(LO(x) -x) to obtain

LJi)(x)-’fc(1 -sL’)(y)L’)(x)-)dy + O(LJi)(x) -2)

LO(x)-S(1- sLO(x)I,y) + O(LO(x)) -2
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where lij fcx Li)(Y)dy). Now compare with equation (22) and extract the
1/s root to obtain

L(ji)(tx) Iij -1- O( LSi)(x)) -1.

Regrouping terms, we have proved that

F(s)- I(s)= _cij E H(x) + Ov-2(s)
i, j x Vz,

CxtB--

Next we will identify the contribution to the singular behaviour at s N
and s=N- 1.

Suppose x co. Then

H() oZi(), H()* oe().

Suppose aij, flij are non-negative constants with
the set of all x R with

a12 O. Let Y denote

H(x) >_ oL(ji)(x) + aij, i= i,...,t j= 1,...,n

or

H(x)* >_ aLi)(x) + aij, i= 1,..., j 1,..., l’l i.

PROPOSITION 2.

E H(x) -’= 0,,_:().
x.Vz
xY

Proof.

Tijki

Given i, j, k, 1 let Tjkt denote the set

( w’. n(x) < ’)() + ,,, z(), < t)(x) + .,}.
Let T denote the union of all possible Tijkl. Choose the cx

(i) TcUxcx,
(ii) Cxn T: ,
(iii) Cx1 q Cx2 if x = X2.

Clearly, given any s C with Re(s) > 0 we have

so that

E H()
X tU. Vz
x.T

<-- Clfc_on( y ) dy
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where r Re(s)> 0, and c denotes Uxvznr cx and, as before O denotes
some open ball containing the origin. It is sufficient to estimate the integral.
Change the variables and this becomes a finite sum of integrals of the form

where

Li, L > Li L
ni ni

Lq >_ Zj + c2,

L > L + cs, (i, j) 4: (a, b), (k, l) (1,1),

L] < L + ca,

L < L + c5.

Make the transformation

ni

then our integral is majorised by one of the form

where the Oj are N variables which satisfy inequalities of the form

e,e: >_ > c > 0,

01 <03+C7,

02 < 04 + C8, CT, Cs > 0.

Do the 0,..., 05 integrals first to obtain the finite sum of integrals of the
form

1 1 fdOl., d04(101 + a202 -I- a303 + 2404 + As) N-4-r1-r N-4-r

over the re#on

O1 < 3 + C7
0_ < 04 + c,

01,02 03, 04 --. C6 > O,

where AI,..., As are positive constants.
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Translating r it is sufficient to prove that the integral

fdO .., dO4(alO + A202 + A303 + A404 + A5) -r+4

is defined for r > 2. Do the 01 integral for 0 < 01 < 0 + C7 and the 02
integral for 04 < 02 < 04 + c8. We obtain

Finally, do the 03, 04 integrals and we obtain

1 1 1
4-r 3-r 2-r 1{(C9+C10+Cll + C4--r

1-r
4-r 4--r--(C9 -I" 11 (C10 "t- 11) )

However, it is clear that the expression inside the brackets vanishes when
r 3 or r 4 and these zeros cancel any potential singularities.

Section 2

To show how these results apply, suppose Q is an algebraic cl_osure of Q
with f] Gal(QIQ). We assume that the values of X r lie in Q so that
acts. upon F in the obvious natural way. If to is any orbit then the field
Q, Q(x) is independent of X to because Gal(Q(x)IQ) arises naturally as
a quotient of ft. Choose any X to then the map

x (,x(X))o (23)

yields an isomorphism

Qr _-- I-IQo. (24)

Let M denote the (unique) maximal order of Qr. The map (23) gives rise to
two further isomorphisms

M --- l-I 0, MX-= I-Iox (25)

where O denotes the ring of algebraic integers of Q,. Let R denote the
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group on the right hand side of (25) which consists of totally real, positive
units:

This group corresponds to the subgroup M of Mx, say. For each o there is a
logarithmic map

L" u,o - at’+l, u (log u)o

where o is viewed as an dement of 60. The components extend to t,o + 1 real
linear forms on Rt. These forms obviously sum to zero on Rt and any to, of
the forms are linearly independent. Do this for each o then we are in the set-
up of 1. The results there imply that the series,

’ (log Ixl) -, s (2,
x.M

has analytic continuation to Re(s) > rr 2 with simple poles at s rr and
s=rr=l.

Also, with L as in 0 if L O W ,
Z fw(Xl)(log ]xl) Orr-E(S)"
x.M

These results follow because each of these sums is itself a finite sum of
expressions dealt with in 1.

First we show how to lift these results to Mx. Choose a system of coset
representatives for M in Mx, a,..., a,,. Choose 0 < e < 1 and let R
denote those x M with

for all q ’ with I(ax)l laxl. Notice that for x Ri, with e suffi-
ciently small,

log laxl c + log Ixl, (26)

while for the others we have at least

log Ia,xl log Ixl + o(1). (27)
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Break up the sum defining i(s) and expand using (26) and (27),

m m

tl i(s) E E (log Ixl) -*- s E c E (log Ixl)-- + O_2(s)
i=1 x.l,.J R iffil XU R

m m

+ E E (log Ixl) + s Y’, E O(1)(log Ixl) -1-
iffiffil xU R i--1 xql..J R

m

m E (log Ixl) -- s E c, E (log Ixl) -1- + o_2(s)
x.M iffiffil xU R

where we have absorbed the last sum into the Orr_2(S ) by the results in [2].
The analytic continuation for the first sum comes from the above theorem
while that for the second comes again from [2].

In the same way we can obtain the analytic continuation of the series where
we sum over ZI" x rather than the larger group Mx. This follows by choosing a
finite number of coset representatives and grouping the terms appropriately.
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