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1. Introduction

We are interested in finding a class of kernels M such that we have the
maximal operator

sup p.v. fnK(x y)f(y)
KM "R

bounded on some L spaces. As a first approach, we consider the dimension
of the space n to be bigger than 1 and let K have the form h(lxl)2(x’)/Ixl n

where fi is a homogeneous function, continuous with mean 0 on S_, and h
is a radial function. These kernels could be gotten, for example, when we
decompose a kernel K, satisfying the growth condition of Calder6n-Zygmund
kernels K(x) < C xl n, into its radial and spherical parts

Eh(r)Y(x’) /Ixl
/

where Yk are the spherical harmonics. In this paper we consider the case when
M is the set with the radial function h satisfying

We show that for 1 < S < 2, the maximal operator is bounded on L’(R"),
p > s,,/(s,,_). And this range of p is the best possible.

Here, we should remark that some ideas of the proof are from the paper of
J. Duoandikoetxea and R.L. Rubio de Francia [21, and [31 of E.M. Stein.

2. Result and proof

THEOREM. Let n > 2 and fi C(S-t) with fsn-xf]()do() 0 where
do is the surface measure of Sn- and is of homogeneous of degree zero. Let

T(f)(x) sup
h fh(lYl) (Y) f(x y) dy
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where the supremum is over the set Ilhll zs<+, dr/r) 1. Then

for 1 < S < 2, p > S,/(Sn_x). This range ofp is the best possible.

Proof We first show that the range of p is limited. We assume

1
f(x) Ixl n-a’

0 < Ixl < 10,

0, Ixl > 10,

where a < 1. Thus T(f), by duality, is simply

X(X r) do()
s’

() Ix rl
dr 11/$’

where X is the characteristic function of the set Ixl < 10.
For each x, Ixl < 1, let x’ x/Ixl. Then

>_ f(ld) Ix rl

1 [s’fs.-,f() ]x’/r,- 1 n-a do()

since X(x r) 1 when Ixl 1. Denote by I(x’, r) the integral over S"-1.
Let B be a ball in R centered at x’ with radius e. We are going to pick e > 0
small enough so that () is basically constant on the set B N S-1. Now we
wish to estimate the rate of growth of I(x’, r) as r approaches 1. We have

I(x’,r)
ns"-’ Cns"-’

It is clear that as r close to 1, I2 is bounded by

For 11, we use a change of variable to the tangent plane of S-1 at x’. Since
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r > 1 we have

X X
for x’ G B S-x

We can pick a suitable point P on the tangent plane at x’ such that

X + IPI

The change of variable is the mapping q: P. Letting IPI and u
1 1/r we have

ll(X’,r) > Cfo(u tn--2
2 + t2)(n-a/2)

Cu +a fe/u
n 2

"0 (1 + t2)(n-a)
dt.

This means that I(x’, r) blows up at least on the order of r- 11-1+ as r
approaches 1. Thus T(f)(x)= oo when fx21I(x ’, r)lS’dr oo or a <_ 1/S.
This implies that T(f) is not in any Zq space when a < l/S, or correspond-
ingly, when

f Le(R) forp<Sn/(Sn-1).

To rule out the case p Sn/(Sn 1), we simply let

f(x) Ixl-"+l/S(logl/Ixl) -x
xl l <x0(x).

Now, let us consider the case S’ 2. By duality,

fs_xf(,)f(x rt2) do(;) 7

1/2

1/2

Let us take a smooth function p(r) supported on {r11/2 < Irl < 2} and
EkP(2kr) 1. We define the partial sum operators

Skf=p(2klxl)f(X).
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Since f F_,j( Sk+jf ) for any k,

Ss
J

E r(/)(x),
J

where the last two inequalities are obtained by applying Minkowski’s inequal-
ity. First, let us compute

By Plancherel’s theorem, and Fubini’s theorem, the last equality is domi-
nated by

k <lxl<2 +x .-x

We claim that the term in parentheses is bounded by

for some positive number a. Applying the cancellation of f, it is easy to see
the term in parentheses is bounded by c2klxl. On the other hand, by the
second mean value theorem, the term in parentheses is bounded by

2

fs_,(li)e’2*’" ao(li) dr
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The integral in the absolute value sign is bounded by 1 and (2klxl(- ,/).
x’)-x; hence it is less than (2klxl(- /)- x’) where 0 < a < 1. So

(1) ii (s)ll _
_< C min(2, (2s)

Next, we compute the LP-norm of Tf. For p >_ 2, there exists a function g in
L(p/2)’ such that

By Fubini’s theorem, the formula above becomes

,Ig( + 2krf ) d() 7 dx

where Mg denotes the classical Hardy-Littlewood Maximal function. By the
Littlewood-Paley theorem and the fact that the maximal function, Mg, is
bounded on LP(Rn) for 1 < p < oo, we have

(2) II. Clllll..
Interpolating between (1) and (2), and applying Minkowski’s inequality, we
have

T(f) I1 -< cIIfll,
if2 <p <

Before we show the case 2n(2n 1) < p < 2, we need the following lemma.

LEMMA.
2n > p > 2 then

S, rl

Let gk(x, r) be the arbitrary functions, defined on Rn R+. If
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Proof. As above, if p > 2, there exists a function h in L(p/2)’(Rn) such
that the left hand side of above equation equals

2
dr )

1/2

fs._Xf(t2)gk(X 2krt2, r) do(l) --h(x) dx

Following the same procedure as above, it is easy to see the above formula is
dominated by

where Ms(h) denotes the spherical maximal function. The lemma follows by
the fact that Ms(h ) is bounded on Lr(Rn) if r > n/(n 1) (see [1], [3]). The
lemma is proved.

Now we prove the case 2n/(2n 1) < p < 2. By a duality argument, there
exist functions gk(x, r) defined on Rn x R+ with II II IlgkllLd/llllL’ <-- 1
such that

T .(f)I1 = f](l)(Sk+f )(x 2kr) da(,)gk(x, r) -7 dx.
n-1

After changing variables and applying Htilder’s inequality and the lemma, the
LP-norm of T(f) is dominated by II(Z,klSk+2fl2)/21. Again, by the
Littlewood-Paley theorem, we have

(3) IIT (f) II. cllfll.,

if 2 > p > 2n/(2n 1). The case, S 2, is proved by interpolating between
(1) and (3). On the other hand, it is dear that T(f) is dominated by the
Spherical maximal function if S 1.
To show that Tf is bounded on L’(R), for 1 < S < 2, it suffices to show

that the operator

h(r, x) ._,f]()f(x rl) do(l) :
is bounded, where h (r, x) is an arbitrary measurable function and the LS-norm
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of h (., x) is not bigger than I for every x. Therefore we may define a family of
operators,

T f(x) fo lh(r, x)[tx- /2)Ssign(h(r, x))

x rl ) do( )

where a are complex numbers. It is clear that T’f Tf if a 2(1 1/S).
Then we have our theorem by interpolating between Re(a) 0 (the bounded-
ness of the operator corresponds to S 1) and Re(a) 1 (the S 2 case).

Remark. In [6], it was pointed out that when S oo, there exists a
function f L ’, 1 < p < oo so that the maximal operator acting on f yields
an identically infinity function.
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