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1. Introduction

It is the purpose of our paper to show that the whole is greater than the sum
of its parts. Numerous papers have been written concerning various properties
of probability functions defined on semigroups. The simplest structures of
discrete and compact semigroups were considered first (see Martin-Lof [7] and
Mukherjea and Tserpes [11]). Then the completely simple case was dealt with
for properties of random walks (see [11] and [1]). The completely regular case
has been shown by the author in [2]. Also, the special case of matrix
semigroups has been studied relying primarily on the properties of rank (see
Hognas and Mukherjea [5]). We intend to show that these separate studies can
be combined into one harmonious concept. By doing so, the properties
become far more flexible and can be used to prove some unsolved conjectures.

In order to do so, we first need to define the necessary terminology. Most of
this information is available in Clifford and Preston [3], Paalman-deMiranda
[12], Petrich [13], and Mukherjea and Tserpes [11]. Let S be a locally compact,
Hausdorff, second countable topological semigroup. An element x S is
regular provided that there exists some y S such that x xyx. S is
completely regular if x xyx and xy yx; S is a union of maximal pairwise
disjoint subgroups. The properties of S are listed in Clifford and Preston [3].
S is a completely simple semigroup if it contains no proper ideals and

contains an idempotent minimal with respect to the partial ordering e < f if
ef fe e. If S is completely simple then we can write S X G Y
where G eS Se eSe, X E(Se), and Y E,(eS) where e is a minimal
idempotent and the notation E(A) denotes the set

{ f A: f is idempotent }.

Note that S Ugx, gy( gx } G (gy} is a union of maximal disjoint semi-
groups and hence it is also completely regular.
We intend to consider several probabilistic concepts in this paper. Therefore

it is also necessary to define these terms for semigroups. Let X have law/. We
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denote the n-fold convolution iterate by/". If S1, S2,..., Sn are iid of law/
then Z, X1X2... X, is a fight random walk of law/. A left random walk
L,, X,,X,,_ 1... Xx is defined similarly. Although any theorem involving Z,
has its analog for L,, they can have very different properties depending on the
algebraic structure of S. As shown in Martin-Lof [7], a Markov chain defined
on a semigroup can be defined in the usual way so that we can use the
standard notation. In particular, x is recurrent if P(Z N i.o.) 1 for any
neighborhood Nx of x. For x S, x is essential only if xS Sx. Since there
exists f E(S) such that xS fS, if there exists any e S for which
ef e fe then x cannot be essential. Thus a necessary condition for x to be
recurrent is that x be essential and its corresponding idempotent be minimal.
The condition is not sufficient.

Finally, we assume that the support of the process generates S. That is if
S* (y: given a neighborhood N of y there exists some n such that
P((Z N) > 0} then we assume S S*. If this is not the case then we can
get identical results by replacing S by S*, showing e is minimal with respect
to E(S*), and redefining neighborhoods so that N N* ca S*. The arguments
are not anymore difficult but become bulky in terms of added notation.

2. Completely Regular Semigroups

The behavior of random walks defined on a completely regular semigroup S
was shown in Cerrito [2]. To get these results, the minimality of the idempo-
tents was exploited to demonstrate that this behavior depends completely on
the corresponding groups; the study of which can be found in Revuz [14].
Therefore the extension to continuous time will be readily apparent.
We define (X(t): > 0} to be a stochastic process. In particular, we let

X(0) be the initial state of the process and let

Ta inf(t > O: X(t) A),

and for any neighborhood Ny of y S let Px (N) P (Ts < oo) Then x isY Y Y y

recurrent if and only if px(Nx) 1 for every neighborhood of x in G.
Since S is completely regular, we can write S Os e(sGg where Gg is a

topological group for all g E(S). Let x Gs. We want to determine the
various properties of X(t). As we will show, these properties depend very
heavily on the algebraic structure of S. If x is essential then gS Sg and g is
a minimal idempotent. It is dear that no non-essential element can be
recurrent since

Px(X(t) (S) c) Px(X(t) ti gS (S$)) > 0
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and

p(N) E p,y(S)py,(N,) < 1.
yS

Thus we consider Gs where g is a minimal idempotent and for any neighbor-
hood Nx of x,

Px(X(t) Nx) Px(X(t) Nx Gs).
Therefore we can define a corresponding process Y(t) on Gs so that for any
measurable A c Gs, A A* N G, and Ys(t) gX(t)g. Then for y

Py(Yg(t) A) Py(gX(t)g A) P(ygX(t)g A) Py(X(t) A*)

since yg y. Therefore the properties of X(t) are identical with those of Y(t)
if the initial state X(0) of the process lies in Gs. The converse is also true. That
is, if for g E(S) we define a stochastic process Ys(t) on Gs then for any
random variable X(0) defined on S of law II0 we define X(t) on S so that

Px(X(t)A)=P(Ys(t)A) for xGs.
That is, if Yg(t) has law/g(t) then/(t) IIo(t)Ys(t) for X(t) of law/.

If g E(S) such that g is not minimal in E(S) then for any element
x Gg, x must be transient with respect to X(t) regardless of the recurrence
properties of Yg(t). If g is minimal then x is recurrent with respect to X(t) if
and only if it is recurrent with respect to Ys(t). Thus

S=TOR

where

T (Gs" g is not minimal}

and

R { Gs: g is minimal}

and any stochastic process X(t) defined on S is reducible to R, a completely
simple and completely regular subsemigroup for S. Also, if g E(T) either
there exists e R such that e < g or there exists a sequence (f) in E(t) such
that g fn for some n and fx > > fn > In this case, Ss T and
Ps(X(t) T)= 1 so that transience becomes a permanent condition. Thus
we can write S T t3 T2 t3 R where no dement in Tt is a minimal idempo-
tent and for any g E(T2) there exists e E(R) such that e < g. Therefore
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we have the following theorem:

THEOREM 2.1. Let S T U T2 R be completely regular where Tt, T2, R
are defined as above and let ( X(t): t > O) be any stochastic process defined on S.
Then for any g E(R), Yg(t) defined by

P(Yg(t) A) P(X(t) A 63 Gg)

defines a stochastic process on the topological group Gg such that for any x Gg,
Pxx 1 with respect to X(t) if and only if Ox, 1 with respect to Yg(t).
Moreover no element of Rc can be recurrent. However, for any y T2,
Py(TR < 0) 1 whereas for any y Tt, Py(X(t) Tt) 1 so that T2 consists

offinite transience and TI consists of infinite transience.

3. Completely simple semigroups

Everything that is known concerning the properties of random walks
defined on completely simple semigroups can be found in Mukherjea and
Tserpes [11]. However, since S is also completely regular, all the properties of
random walks found in Cerdto [1] remain valid. There is one conjecture
involving S X G Y that remains unsolved although several attempts
have been made for G compact (see Mttkherjea, Sun, and Tserpes [10]) and G
discrete (see Ladsse [6]). By using the results for completely regular semi-
groups, the conjecture can now be proven:

THEOREM 3.1. Let S X G Y be a completely simple semigroup. Then
S is recurrent if and only if G is recurrent.

Proof. Let Z, XiX2... X. be a recurrent random walk of law # defined
on S. Then there exists x S such that x --, x i.o. There exists f idempotent
in S such that xS fS Sf since a recurrent dement must be essential.
Therefore fS is a group such that P(Z. fS) 1 for all n. For any y S,
xy fS so that xyf fxy xy. Define Y Xf. Let N be a neighborhood
of x in fS, Nx Nx* t fS. Then

Px ( YY2... Y, Nx i.o.) Px ( XfX2f X, N* N fS )
--. Px ( XtXz X, - N* i.o.) 1.

Also for f to be essential, f must be minimal with respect to the partial
ordering on the idempotents of S. Therefore fS -- G and G is recurrent.
Now consider a recurrent measure o defined on G. Write

S= U (gx) G {hy}.
x,y
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For now assume (g, hy) is a countable set. Let x be a recurrent element in G
but x eS Se. Then for any measurable set contained in

(g.} x x

we define Oxy(A) (eAe). Note that since e is a minimal idempotent,
eAe eSe G. Let (exy) be a sequence of constants such that Y’., yexy---- 1.
Then we define a measure It on S such that

x,y

for any measurable set A in S, A U,,, y(gx) x Axy
0forallA cSand

x (hy). Clearly, It(A) >

#(S) E o.y(A.y)e.y E lexy
x, y x, y

=1

so that It is well defined. Note also that if the support of o generates G, then
the support of It generates S. Let A c S be a measurable set. Define Y eXe.
Then P(Y G) 1 so that for A* eAe,

P(Y A*) P(eXe A*) P(X A) It(A).

Since A Ux, y(gx) x Axy x (hy),

It(A) E x,(A,,)exy E o(eAye)ey
x, y x, y

E o(a,).
x,y

Therefore P(X1... Xn A) Px(YI... Yn A*) implies that It is recurrent
on S. Note that the recurrent states of S are equal to (fS: f is a minimal
idempotent). But every idempotent is minimal so that every element is
recurrent.

Finally, if the set ((gz, by)) is uncountable we use a density function
defined on ( g, hy) for which fff(g, hy) dx dy 1 and let

o(A)

and proceed as before.

oy(A)f(g,, hy) dxdy

QED

If S T U T2 U R is completely regular, then we have already shown that
for any stochastic process X(t) defined on S, X(t) is recurrent if and only if
for some g E(R), the corresponding process Ys(t) is recurrent on Gs. We
want to generalize Theorem 3.1 above so that if Ys(x) is defined in Gs then we
can construct a recurrent process on S. If g E(R) then we can employ the
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same argument used in Theorem 3.1 to get

where

Oxy, t(A ) et(eAe).

However, since no dement in Tx T2 can be recurrent we can consider any
measures 1, 2 defined on S for which/xx(Tx) =/2(T2) 1. Then by defin-
ing II 0 so that YI0(R ), II0(Tx), II0(T2) > 0 we have for any A c S,

P(X(t) A) IIo(R)P(X(t ) A R) + 1-Io(Tx)/(A 0 T)
+

recurrent on S with R {recurrent states} and we have:

THEOREM 3.2. Let S TI T2 R be completely regular and let R X
G Y be nonempty. Then S is recurrent if and only if G is recurrent.

We will now generalize Theorem 3.2 to S where S is an arbitrary regular
semigroup. If there exists no dement x S such that xS Sx then S has no
essential element and hence no possible recurrence. Therefore we consider
x S for which xS Sx, so that there exists a minimal idempotent e S
for which xS eS c Se. In this case, eS is a two-sided ideal of S. From
Clifford and Preston [3], eS is a completely simple semigroup and eS Se.

If x S is not essential, it must be transient. If x is essential then we can
define the process (Y,) on eS so that for A eS, A A N eS, we have
Px(Y, A) Px(X A*) and (X) is recurrent on eS if and only if (Y) is
recurrent.

If there exists 0 S such that 0. x 0 for all x S then it is dear that
Po(X 0) 1 for any x so that 0 must be recurrent and absorbing and any
process defined on S must be recurrent but not of very much interest.
Therefore we only need to consider semigroups for which the zero dement has
measure zero. In particular, if

P{(x,y):x,yS and xy=O} >0

then no dement of S can be recurrent. If the above set has zero probability
then the zero element can be removed from the discussion by defining
S’ S {0}. For any regular semigroups, we have the following result:

THEOREM 3.3. Let S be an arbitrary regular semigroup and let x S. If
xS q Sx then x cannot be recurrent for any stochastic process defined on S. If
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xS c Sx andfor all y S for which xy E(S), xy is not minimal then x is not
recurrent. If S does not have a removable zero then zero is the only recurrent
element for any process. If the zero is removable then xS X* x G x Yx* is
completely simple such that Px(Xn xS) 1 for all n and xS is recurrent with
respect to a process only if the corresponding process defined on G is recurrent.

Again, we can write S Tx t3 T2 t3 R where E(Tt)= (g E(S): there
exists (f,) S for which g > f > f2 > ), E(T2) (g E(S): there
exists e S(R) for which g > e }, and R is a union of completely simple
semigroups. Thus we can extend Theorem 3.2 as follows:

THEOREM 3.4. Let S T U T2 R be regular with T1, T2, R defined abooe.
Then x S is recurrent with respect to X(t) if and only if there exists
E G F R completely simple such that xS E G x F and x is recur-
rent with respect to Y(t) where

P(Y(t) A) P(X(t) eAe) for e xS.

Conversely if there exists some E G F c R which is recurrent with respect
to a process defined on G then a recurrent process can be constructed for S.

4. Limits of convolution iterates

In addition to the recurrence properties of random walks, considerable
interest in semigroups has centered on the limit properties of convolutions (see
Mukherjea and Nakassis [7] and [8] and Larisse [6]). In particular, Csiszar [4]
determined just when a limit exists when S is a group. We extend his result to
semigroups using the techniques of the previous section.

THEOREM 4.1. Let {p,,,} be a sequence ofprobability measures defined on
the completely regular semigroup S. Then.if X, has law #,, either

tim sup K) 0
n---, 00 x.S

.for every compact set K c S or there exists a consequence (an) of constants in
S such that for any k > O, XkXk+l... Xa has a limiting distribution as

Proof. We can write S I,Js E(s)Gs 13s(gS tq Sg). Since Gg is closed
with respect to the topology on S, for any x Gs,
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Therefore

P,,(X... X, K) sup sup Px(X-.. X Gg t K).
G xGs

Clearly then if for every g E(S),

lim sup P,,( X... X,, Gg K) 0
O0 $ . Gs

for every compact set K c S then a(K) 0 for all K. Therefore we assume
there exists g E(S) for which

lim sup P,( Xx... X,, Gg K) > 0
n--,oo KGg

for some compact K c S. Y, gX,,g for all n. Then for any K

However (Y) is a sequence of random variables defined entirely in Gs such
that

as(K ) lim sup P,,(Yt... Y. K) > 0
rt oo x . Gg

for some compact K c Gs. By Csiszar [4], there exists a sequence { a, } c Gs
such that YkYk+... Y.a, has a limiting distribution as n ---, oo. Since Yk
gXkg and g commutes with every element in Gs we have

gXkgXk+ g gX,,ga ,, XkXk+ X,,ga ,,

and for every K, XkXk+x... X,ga, has a limiting distribution as n
QED

Remark 1. From Csiszar [4], either a(K) 0 or a(K) 1. Let Xk have
law gk- Then we can write

tim tktk+l nan Ok

where ,, represents point mass at x. Then linlk ooO’k 0"oo exists. Moreover,
ooo is idempotent so that o ooo and for any k, %00o ooo. Therefore ooo is a
Haar measure defined on some compact subgroup of H Gs so that this limit
is unique given the choice of g E(S) and also of H. In addition, the Ok’S are
H-uniform and XtX2... X converges with probability one mod H.
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Remark 2. It is possible to extend Theorem 4.1 to the more general regular
semigroups. However, more care must be taken since for any g E(S), gSg
remains a subgroup of S but it ceases to be an ideal. However, for any
g E(S), we can define Y/= gXig. Then for x - gSg,

for measurable A c S. Therefore if for all g,

lim sup P(X...XK)=0
n oo x gSg

for any compact K then we are finished. If not, then

1 lim sup Px(Yx...Y gKg)= lim sup P(X...XK)
n oo x-gSg n--* oo x.gSg

so that there exists { an } c gSg such that for any k, YkYk+t... Ynan has a
limiting distribution as n oo. In particular, for any A S,

P(XkXk+x... Xnga A) P(YkYk+I... Ynan gag) ok(gAg )
asn oo.

Therefore for every K, XkXk/ 1... Xngan also has a limiting distribution and
Theorem 4.1 is also true if completely regular is replaced by regular. These
limits have the same properties listed in Remark 1.
We now apply the above result to the special case of stochastic matrices. Let

{ Pn ) be a sequence of matrices and define

ek, n PP+l en.
We want to determine under what conditions P,, has a limit as n --, o and
also the behavior of that limit. As we will show, these limits depend primarily
on rank. We also provide an algorithm for finding this limit.
For any element P, in the above sequence, we can define a random variable

X, such that P(X, P,) 1. Then

P(X,.n X,X,+t... Xn P,n) 1.

First we dispose of the trivial case. If there exists some k and some n such that
P,, 0 then it is clear that lim,_.ooP,. 0. Therefore we can assume no
such k and n exist so that rank P,, > 1. We define A to be the idempotent
matrix of rank r which has r ones along the main diagonal and zeros
elsewhere. Let S be the semigroup of m m matrices. Then for any r, ASA
is a subgroup of S consisting of all matrices with only r nonzero entries along
the main diagonal. Note that A,SA is not an ideal of S and S is a regular
semigroup that is not completely regular.
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Given any r, we can define a product on ASA so that Yn, A XnAr"

Then if a, is the element in the first row, first column of P,, for ak,

akak+l.., ant

P(Yk,Yk+,... Y,,, ak,,,h) 1

for all k and n. The extension to arbitrary r is immediate. If a : 0 for all n
then Paxa;,x(Yk,1... Y,I Ax) I and we can apply Theorem 4.1. If a, 0
then we can use elementary row-column operations to achieve the same result
at the expense of complications in notation. Therefore, for convenience we
assume a : 0. By Theorem 4.1,

PAla-,ln(XkXk+I... Xh A1) --> 1 as n oo.

By using the extension to r, if rank Pk, >-- r for all k and n then

-, 1 as -,

for some matrix K of rank r with the only nonzero elements of K on the main
diagonal. The matrix K K(k, n) depends on both k and n. By Theorem 4.1,
Pk, ,,AA converges to a matrix Mk, such that An ArSA r. We want to show
that Pr, itself has a limit. We have assumed with no loss of generality that
the first r rows and columns of Pk, n are independent. Define X’ to be the
r r matrix consisting of the r r partition of X for any matrix X. Then

P;,nAtn -- g,
where A;, M are diagonal matrices. Note that A; depends only on the
product of the entries in P and not on Pk, ,,. Therefore if

converges then we have

where

ai,. ( P1) ii( P2) ii ( Pn) ii

-A’ Mk’ asnak, n k,r ,r

A’ lim(a )k,r k,n

If P,, is a sequence of stochastic matrices then P, consists of the recurrent
states of the corresponding Markov chain thus duplicating the results of [8] as
to the properties of the limits. To consider the entire matrix Pk, ,,, there exist
invertible matricesQk ., Rk,. such that

Q, ,,Pk, ,,R, ,,
0 0
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so that

lim Pk, lim ( P{’,"
"= Q*’"

0 0)R-10 k,n

which exists provided lim Qk.n and lim Rk.. exist. Note that the existence of
these limits can proceed as outlined above. That is, to find the limit of Qg.. we
need only consider the product of the diagonal elements.

Finally, we extend our results to infinite matrices. If Pk,. has finite rank, the
argument is identical to the above. Therefore assume that Pk.. is infinitely
dimensional. However, we can also write

P . Qg-.x.( P’" O )R-10 0 k,.

SO that the existence of a limit for Pk.. depends completely on the existence of
limits for Qk.., P{.., R-lk,. and the generalization to infinite dimensional
matrices is identical.

In any case, if lim. ooPk, Qk exists then by Remark 1,

exists and must equal a Haar measure defined on some compact subgroup of
S. However since we are using strictly point mass, this subgroup must consist
of exactly one element. Thus

Qo A where r min (rank Q) min (rk).
k k

What we have shown in this paper is a complete characterization of
recurrence for regular semigroups and also a general means of determining the
existence of limits of infinite convolutions.
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