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HOLOMORPHIC FUNCTIONS WITH POSITIVE REAL
PART ON THE UNIT BALL OF C

BY

JOHN N. MCDONALD

Consider the set of holomorphic functions on the open unit ball B of Cn

which have positive real part and take the value 1 at 0. Except in the case
where n 1, the problem of identifying the extreme elements of the convex
set is unsolved. Some results on this interesting and natural question have
been obtained by Forelli in papers mentioned below and there is a discussion
of it in the book of Rudin [7]. It seems, however, that a complete and
satisfactory solution is not close at hand.

In this paper we study the relationship between the extreme elements of
and the extreme elements of the closed unit ball of the space H(B) via the
representation

(1) f(z) (1 + g(z))/(1 g(z)),

where g is a member of q/ which vanishes at 0. Forelli has shown that the
function (1) is an extreme point of in the cases where

2g(z) g(,x, z.) + + + z,

and

g( ) cz

where the greatest common divisor of the positive integers % is 1 and c is a
constant chosen so that

IIgll sup{Ig(z)l" z B} 1.

See [1], [3]. Forelli has also produced sufficient conditions on a homogeneous
polynomial p in order that (1 + p)/(1 p) be extreme in [3]. One of our
main results implies that, if g is a homogeneous polynomial of degree k > 1
which is also an extreme point of q/, then there exists a polynomial r of degree
< k 1 such that (1 + g + r)/(1 g) is an extreme point of #. We also use
our results to derive the examples of Forelli described above, as well as some
new examples of extreme members of #.
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Main results

THEOREM 1. Suppose that an extreme element f of all is written in the form
(1). Then g is an extreme element of all.

Proof. Suppose that g is not an extreme point of . Then, by results due
to R. Phelps [4, Lernma 3.1 and Corollary 3.2], there exists a non-zero function
h in H(B) such that

Ig21 + lhl < 1.

Replacing h (z) by zxh (z) if necessary, we may assume that h (0) O. We will
show that f is not extreme by showing that

(2) 0<Re(l+g+1/2h)1-g

To verify (2), we first observe that

Re(l+g+l-gh) =1- Igl2+x2Re(h(1-g))ll-gl2

Since Re(h(1 ,)) < 21h I, it follows that

1- Igl 2+1/2Re(h(1-g))>l- Igl 2 -Ihl 0.

Remarks. It is dear that the proof above works for more general domains.
Another necessary condition on extreme points of is given by Forelli in

[2].
The next result amounts to an observation: namely, that a theorem of

Rochberg concerning positive linear operators on the disc algebra [6] can be
rephrased as a theorem about holomorphic functions with positive real part on
the unit disc D in the complex plane. The proof is almost word for word the
same as the one given by Rochberg for his result.

THOM 2. Suppose that F is holomorphic and has positive real part on D
and that F(0) 1. Let

F(X) 1 + 2 E a,,."
n----1

be the Taylor series expansion of F. Then, for n, m > 1,

lan+m -anaml < 4(1- la,I)x/4.
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Proof.
such that

By Herglotz’s Theorem there exists a measure g on the unit circle T

F(X)=frx+,
Also, we have

aj fJ dl(X),

for j 1, 2, Replacing F(X) by F(eiX) for appropriate a if necessary,
we may assume that a n is a positive real number. Let

S (x e T: Rexn < an (1 an)/2}.
Since an is real, we have

a fsRe xn d#(x) + fr\sRe xn d#(x).

Thus,

an < #(S)(an (1 an)x/-) +/(T \ S)

< l(S)(an 1 (1 an)l/z) + 1.

It follows that

(2) #(S) < (1 an)/(1 a + (1 an)/2)
< (1 an)1/2.

Next we observe that

(3)

an+m anaml fr(n an)m dt(x)

fs(n an)" dl(x) (n n),mdlJ,(x)a

< 2#(S) + sup(ln- anl" x T \ S).
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Also, for x T \ S we have

(4) - al2-- 1 2aRe + lal 2

2<l-2a(an- (1-a,)t/2) +a
n n)1/22(1-a ) +2(1-a

< 4(1 an)1/2.

The theorem now follows from (2), (3), and (4).
We recall that each f in has a unique expansion of the form

1 + 2 E
j-1

where f is a homogeneous polynomial of degree j with If(z)l < 1 for z B.

THEOREM 3. Suppose that f is in and that k is a positive integer. Iffk is
an extreme point of ql, then there exists a polynomial q of degree <_ k 1, such
that

l+fk+q
f= 1-A

Proofi For fixed z B, let F(,) f(hz), where h D. Then

F(X) 1 + 2 E fj(z)M.
j--1

Hence, by the previous theorem, we have

I(.fk+m(g) fk(g)fm(g))/414 <_ 1 Ifk(z)l
for m 0,1,2, Let g(z) (4-i(fk+m(Z) f(Z)fm(Z)))4. Then, since
Ig(z)l / Ifk(Z)l--< 1, it follows that fk + g q/" Since fk is an extreme
element of q/, we must have g(z)= 0. Hence, fk+m(Z)=fk(Z)fm(Z) for
rn 0, 1, 2, Returning to the homogeneous expansion for f, we find that

k 0

f(z)= l + 2 Y’. E f+mk(z)
j--1 m-O

k 00

I + 2 E .- fi(z)(f(z)) m
j--’l m--O

1 + fk(Z) + q(z)
1 f(z)

where q
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Consider a polynomial p which belongs to q/and is homogeneous of degree
k > 1. Let ’(p) { f : fk P }" Note that ’(p) is dosed with respect
to the topology of uniform convergence on compact subsets of B and is
convex. If p happens to be an extreme point of q/, then ’(p) is also a face
of , i.e., if cfl + (1- c)f2 (p), where fl and f2 belong to and
0 < c < 1, then ft and f2 belong to ’(p). Since (1 + p)/(1 -p) ’(p),
it follows from the Krein-Milman Theorem that ’(p) always contains
extreme dements of . As the following shows, even more is true.

COROLLARY. Ifp is a homogeneous polynomial of degree k > I which is also
an extreme point of all, then there exists a polynomial q of degree < k 1 such
that

l+p+q

is an extreme point of . Furthermore, every function in (p) is a convex
combination of at most (k- 1) + 1 extreme elements of of the form (5),
where (k- 1) is the real dimension of the space of polynomials of degree
<_ k 1 in n complex variables.

Proof The existence of an extreme dement of a of the form (5) follows
from Theorem 3 and the remarks in the paragraph above. The "Furthermore"
part of the corollary follows from a result of Caratheodory which asserts that
every member of a compact convex subset K of real m-dimensional space can
be written as a convex combination of at most m + 1 extreme elements of K.
See [5].

Examples

First we will establish some notation. S will denote the boundary of B
and T" will denote the n-dimensional torus

(tc"’ltyl=l for j 1,2,..., n}.

We observe that if Tn and if z S, then

tz ( txzx, t2g2,... lngn) S.

We will make use of the normalized Haar measure m on T". We will use lower
case Greek letters without subscripts to indicate multi-indices. Thus, a denotes
an n-tuple (ax, a2,..., a,), where the aj’s are non-negative integers. We will
write a, fl if etj > fl for j 1,2,..., n and lal > I#1, where lal at + a2
+ + a,. It will be convenient to signify the n-tuple (0, 0,..., 0) by 0.
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LEMM 1. Suppose that f is a member of a and has the Taylor expansion
f(z) F,aaza and the homogeneous expansion f(z) ,ko.Ofk(Z) for z B.
Then

(6)

and

(7) E [fk(z)[ 2 < 1.
k--0

Proof By Parseval’s identity,

frlf(tz)12 dm(t)
II/ll 2

<1.

The inequality (7) follows by a similar argument.

2 Then g is an extreme point ofLEMM 2. Let g(z) z + z + +zn.

Proof. We will show that, if h H(B) and g + h q/, then h O. Let

E h (z)
k-O

be the homogeneous expansion of h. By (7) we have

Ig(z) +/- h2(z)l 2 / E Ihk(z)l 2 1.
k,2

Suppose that x S R. Then g(x) 1. Since Ig(x) +/- h2(x)l 2 < 1, it
follows that h2(x) ---0. Since h z is homogeneous of degree 2, it follows
immediately that h 2 vanishes on B Rn. Hence, h 2 must vanish on all of C.
A similar argument shows that hk vanishes for k 2.
The following result was first obtained by Forelli in [1].

THOIM 4. Let g be as in Lemma 2. Then f (1 + g)/(1- g) is an
extreme element of .

Proof We note that the homogeneous expansion of f is

f(z) 1 + 2 E (g(Z)) k"
k--1
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Hence, f ’(g). Recall that, by Theorem 3, a function ft belongs to ’(g)
if and only if it is of the form

1 + g(z) + q(z)
1 +g(z)

where q is a homogeneous polynomial of degree at most 1. But as the
argument used by Rudin in his book [7, p. 412] shows, any degree one
homogeneous polynomial q for which the function ft belongs to must
vanish. Thus the face ’(g) contains only one dement. It follows that f is
extreme.
Next we consider monomials of the form h(z) cza, where c is chosen so

that Ilhll 1. For convenience sake we will assume that c is a positive real
number. First we will develop necessary and sufficient conditions for h to be
an extreme element of q/. We begin by observing that in the case where n > 1
and al 1, h is not an extreme point of ag. For if, say h(z) zt, then, since

Iz212 < 1 Izxl 2 < 2(1 Izl),
it follows that

Iz + 2-z221 _< Izl + Iz22/21-< 1.

Thus, h is not an extreme point of q/. The case where al and n > 1 is
handled by the following:

ctj

LV.MMA 3. Zflal and n > 1, then h is an extreme point of ql if and only if
> 0 forj 1,2,..., n.

Proof Suppose that % > 0 for j 1, 2,..., n and that o is a function in
H(B) with IIh + oil-< 1. We will show that v 0. Denoting the Taylor
series expansion of o by v(z) Z,lvlzl, from (6) we have

Icz + ozl 2 + . IolzlJ[ 2 < 1.

Since all of the %’s are positive, there is a point w on S such that cw 1
and no w is zero. Thus,

I1 + vaw’[ 2 + ., Ivawal 2 < 1

leads to va 0 for every/3.
Next we assume that one of the %’s, say at, is zero. Suppose that z is a

point of B. Let

a (1 [zt[2)t/2 and w (0, z2/a, za/a,..., z,/a).
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Since w B, it follows that a-lallh(z)l Ih(w)[ 1. Thus,

Ih(z)l < (1- IzxlZ) Il/z < 1 Izxl 2.

It follows that Ih(z) + zl < 1, and, hence, that h is not extreme in
From now on we will assume that a is a multi-index with aj > 0. We will

characterize the face ’(h). Recall that fx is a member of ’(h) if and only if
it is of the form

1 + h(z) + q(z)
1 -h(z)

where q is a polynomial of the form

q(z)= E q#z#,
0<l/l<lal

and where

(8) 0<1-Ih(z)12 + Re((1- h(z))q(z))
for z B. We will see that (8) imposes strong restrictions on the coefficients
of q.

LEMM 4. Suppose that (8) holds and that, for some fl, qa O. Then a I ft.

Proof. Let H(z) denote the fight hand side of (8). An easy calculation
shows that

(9) fr,H(tz)/ dm(t) ( q/Jz/J 7q-/(’)-/cz’ if a,fl

q/z otherwise.

It follows that, if fl fails to satisfy alfl, then

(10) Iqaza fr,H(tz) dm(t)= 1- Ih(z)l 2.

Hence, I(h(z))2 +/- qlzll < 1. By the extremality of (h(z))2, we have qa

LEMMA 5. Suppose that (8) holds and that y is a point of S q Rn such that
cy 1. If a, then, either qOyOl < 2, or a 2.

Proof

(11)

In the case where alfl it follows from (9) that
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Let y be a point of S R" with cy" 1. Then it follows from (11) that

Let z (ay1, Y2,..., Y), where 0 < a < 1. Then using (11) we obtain

Iq#y#l la a2al-/h[ < 1 a 2al.

Dividing both sides of this inequality by I a and then letting a approach 1
we get

Replacing fl by a B leads to

A similar argument shows that

Iqyl(%- By) % and Iqylfly %

for j 2, 3,..., n. If none of the inequalities above is strict, then it follows
that % 2fig for j 1, 2,..., n, i.e., a 2. If at least one of the inequali-
ties above is strict, it follows that, for some j, Iq#y#l% < 2%. Thus, Iq#y#l <
2. The lemma follows immediately from the two preceding inequalities.

Let (8) hold. If q# :k O, then there is a real number A such that

Proof. It follows from Lemma 4 that afl. Also, if a 2fl, there is
nothing to prove. We may, therefore, assume that a 2ft.

Let r Re q# 0. Confider the function

K(x) 1 Ix"l 2 + rxO-
where x varies over S Rn. It is clear that K is non-negative and that
K(y) 0 if cy 1. Using the operators xgO/Oxg together with the method
of Lag,range multipliers, we obtain a real number C such that

2a + rayafl r._ay"-a(2a fl) 2Cy*,

where y* (yx2, y22,..., y2). It follows from rly# r_ly"-# that

(1 + r#y
/ ) a r#y#fl Cy*
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Applying the same argument with fl replaced by a fl and again using

r/yl r._ /jy"- fl,

we obtain a real number D such that

Thus,

a + rfly#fl Dy*.

(-C + D + Drya)a (C + D)ray#.

To complete the argument in the case ra 4= 0 we need only observe that, by
Lemmas 4 and 5, C + D (2 + raya)lal does not vanish.
The case where Re qa 0, but Im qfl, 0 is handled in a similar fashion.
Suppose now that the greatest common divisor of the integers ai, j

1, 2,..., n is 1. Then it is not hard to show that the conditions fl Aa and
a l fl l0 are incompatible. It follows that if gcd{ai} 1, then q 0 for
each fl with lal > 1/31. Hence, #-(h) reduces to the single dement (1 + h)/(1

h). Since #’(h) is a face of # it follows that (1 + h)/(1 h) is an extreme
point of .

Consider the case where god{ aj} k > 1. Let 0 k-la. It is not hard to
show that the conditions fl--Aa and aflO imply that /3 mO for some
integer m with 0 < m < k. It follows that the polynomial q above takes the
form

k-1

q(g) Z qme2m#"
m--1

Let cx be a positive constant chosen so that the function hi(z) clz satisfies
Ilhxll 1. It is easily seen that h (h)k. The polynomial q can be written in
the form q(z)= q*(cxzO), where q* is the polynomial in one variable of
degree < k 1 defined by

k-1

q*(u) E qmoCmllm"
m---1

Using this notation, (8) can be written in the form

0_<1-I(cz’)’l= + Re((1- (cx’))q’(cz’))
or, equivalently,

0<Re
1 + (ClZO) k + q*(cxz’ )

1 (cxz’) ’
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Let gax, k denote the set of functions of the form

f*(u) 1 + u + q*(u)
k

where q* is a polynomial in one variable of degree < k 1 with q*(0) 0,
and f*(u) has positive real part when lul < 1.
The conclusions of the preceding discussion can be summarized by the

following:

THEOREM 5. (a) If gcd(ai) 1, then ’(h) reduces to a single point and
(1 + h)/(1 h) is an extreme point of .

(b) If god(ai) k > 1, then ’(h) consists of all functions of the form
f(z) f*(cz), where f* , k, a/k, and c c/.

Part (a) of Theorem 5 was proved by Forelli by other methods in [3].
It is a simple exercise to show that x,2 consists of all functions of the form

f*(u) l+u2+au
1 U2

where -2 a < 2. Thus, in the notation of Theorem 5 the extreme elements
of ’((clz)2) are

l + clz and
1- cz

1- cz 1 + cxz"
The collection x,3 consists of functions of the form

f*(u) 1 + u + au + bu2

1 U3

where Ref*(u) is positive for ul < 1. As a consequence of the condition
Ref*(u) > 0 for lul < 1, we have b . Let

Then

F(u) I1 alRe/*(u).

1 f:"e-"F(re")dt.r(1 r4)a ,o
Thus, for 0 < r < 1

r(1 r4)lal < ---- fo2F(reit) dt.
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Hence,

1 r6

r(1 r4)

A straightforward calculation shows that al 3/2. Thus, the set of complex
numbers

A {a’(1 +u3+au+Su:)/(1-u3) 1,3},
is a convex subset of the disk { a" lal < 3/2}. It can be shown by a tedious
argument that 3/2 A. Hence, the function

1 + us + 1.5u + 1.5u 9-

3

is an extreme point of the set #1,3. It follows that the function

1 + (cxz)3+ 1.5cxz + 1.5(czO) 9-

1 (ClZa)3

is an extreme element of ..:((ClZ)3).

REFERENCES

1. F. FORELLI, Measures whose Poisson integrals are pluriharmonic, II, Illinois J. Math., vol. 19
(1975), pp. 584-592.

2. A necessary condition on the extreme points of a class of holomorphic functions, Pacific J.
Math., vol. 73 (1977), pp. 81-86.

3. Some extreme rays of positive pluriharmonic functions, Canadian J. Math., vol. 31
(1979), pp. 9-16.

4. R. PHELPS, Extreme positive operators and homomorphisms, Trans. Amer. Math. Soc., vol. 108
(1963), pp. 265-274.

5. Lectures on Choquet s Theorem, Van Nostrand, Princeton, N.J., 1966.
6. R. ROCIaBERG, Which linear maps of the disk algebra are multiplicative, Pacific J. Math., vol. 38

(1971), pp. 207-212.
7. W. RUDIN, Function theory in the unit ball of Cn, Springer-Veflag, New York, 1980.

ARIZONA STATE UNIVERSITY
TEMPE, ARIZONA


