HOLOMORPHIC FUNCTIONS WITH POSITIVE REAL PART ON THE UNIT BALL OF C^{n}

BY
John N. McDonald

Consider the set \mathscr{P} of holomorphic functions on the open unit ball B of C^{n} which have positive real part and take the value 1 at 0 . Except in the case where $n=1$, the problem of identifying the extreme elements of the convex set \mathscr{P} is unsolved. Some results on this interesting and natural question have been obtained by Forelli in papers mentioned below and there is a discussion of it in the book of Rudin [7]. It seems, however, that a complete and satisfactory solution is not close at hand.

In this paper we study the relationship between the extreme elements of \mathscr{P} and the extreme elements of the closed unit ball \mathscr{U} of the space $H^{\infty}(B)$ via the representation

$$
\begin{equation*}
f(z)=(1+g(z)) /(1-g(z)) \tag{1}
\end{equation*}
$$

where g is a member of \mathscr{U} which vanishes at 0 . Forelli has shown that the function (1) is an extreme point of \mathscr{P} in the cases where

$$
g(z)=g\left(z_{1}, z_{2}, \ldots, z_{n}\right)=z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}
$$

and

$$
g(z)=c z^{\alpha}=c z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}
$$

where the greatest common divisor of the positive integers α_{j} is 1 and c is a constant chosen so that

$$
\|g\|=\sup \{|g(z)|: z \in B\}=1
$$

See [1], [3]. Forelli has also produced sufficient conditions on a homogeneous polynomial p in order that $(1+p) /(1-p)$ be extreme in \mathscr{P} [3]. One of our main results implies that, if g is a homogeneous polynomial of degree $k \geq 1$ which is also an extreme point of \mathscr{U}, then there exists a polynomial r of degree $\leq k-1$ such that $(1+g+r) /(1-g)$ is an extreme point of \mathscr{P}. We also use our results to derive the examples of Forelli described above, as well as some new examples of extreme members of \mathscr{P}.

Received January 4, 1988.

Main results

Theorem 1. Suppose that an extreme element f of \mathscr{U} is written in the form (1). Then g is an extreme element of \mathscr{U}.

Proof. Suppose that g is not an extreme point of \mathscr{P}. Then, by results due to R. Phelps [4, Lemma 3.1 and Corollary 3.2], there exists a non-zero function h in $H^{\infty}(B)$ such that

$$
\left|g^{2}\right|+|h| \leq 1
$$

Replacing $h(z)$ by $z_{1} h(z)$ if necessary, we may assume that $h(0)=0$. We will show that f is not extreme by showing that

$$
\begin{equation*}
0 \leq \operatorname{Re}\left(\frac{1+g \pm \frac{1}{2} h}{1-g}\right) \tag{2}
\end{equation*}
$$

To verify (2), we first observe that

$$
\operatorname{Re}\left(\frac{1+g \pm \frac{1}{2} h}{1-g}\right)=1-|g|^{2} \pm \frac{1}{2} \frac{\operatorname{Re}(h(1-\bar{g}))}{|1-g|^{2}}
$$

Since $\operatorname{Re}(h(1-\bar{g})) \leq 2|h|$, it follows that

$$
1-|g|^{2} \pm \frac{1}{2} \operatorname{Re}(h(1-\bar{g})) \geq 1-|g|^{2}-|h| \geq 0
$$

Remarks. It is clear that the proof above works for more general domains.
Another necessary condition on extreme points of \mathscr{P} is given by Forelli in [2].

The next result amounts to an observation: namely, that a theorem of Rochberg concerning positive linear operators on the disc algebra [6] can be rephrased as a theorem about holomorphic functions with positive real part on the unit disc D in the complex plane. The proof is almost word for word the same as the one given by Rochberg for his result.

Theorem 2. Suppose that F is holomorphic and has positive real part on D and that $F(0)=1$. Let

$$
F(\lambda)=1+2 \sum_{n=1}^{\infty} a_{n} \lambda^{n}
$$

be the Taylor series expansion of F. Then, for $n, m \geq 1$,

$$
\left|a_{n+m}-a_{n} a_{m}\right| \leq 4\left(1-\left|a_{n}\right|\right)^{1 / 4}
$$

Proof. By Herglotz's Theorem there exists a measure μ on the unit circle T such that

$$
F(\lambda)=\int_{T} \frac{x+\lambda}{x-\lambda} d \mu(x)
$$

Also, we have

$$
a_{j}=\int_{T} \bar{x}^{j} d \mu(x)
$$

for $j=1,2, \ldots$. Replacing $F(\lambda)$ by $F\left(e^{i \alpha} \lambda\right)$ for appropriate α if necessary, we may assume that a_{n} is a positive real number. Let

$$
S=\left\{x \in T: \operatorname{Re} x^{n} \leq a_{n}-\left(1-a_{n}\right)^{1 / 2}\right\}
$$

Since a_{n} is real, we have

$$
a_{n}=\int_{S} \operatorname{Re} x^{n} d \mu(x)+\int_{T \backslash S} \operatorname{Re} x^{n} d \mu(x)
$$

Thus,

$$
\begin{aligned}
a_{n} & \leq \mu(S)\left(a_{n}-\left(1-a_{n}\right)^{1 / 2}\right)+\mu(T \backslash S) \\
& \leq \mu(S)\left(a_{n}-1-\left(1-a_{n}\right)^{1 / 2}\right)+1
\end{aligned}
$$

It follows that

$$
\begin{align*}
\mu(S) & \leq\left(1-a_{n}\right) /\left(1-a_{n}+\left(1-a_{n}\right)^{1 / 2}\right) \tag{2}\\
& \leq\left(1-a_{n}\right)^{1 / 2}
\end{align*}
$$

Next we observe that

$$
\begin{align*}
\left|a_{n+m}-a_{n} a_{m}\right| & =\left|\int_{T}\left(\bar{x}^{n}-a_{n}\right) \bar{x}^{m} d \mu(x)\right| \tag{3}\\
& \leq\left|\int_{S}\left(\bar{x}^{n}-a_{n}\right) \bar{x}^{m} d \mu(x)\right|+\left|\int_{T \backslash S}\left(\bar{x}^{n}-a_{n}\right) \bar{x}^{m} d \mu(x)\right| \\
& \leq 2 \mu(S)+\sup \left\{\left|\bar{x}^{n}-a_{n}\right|: x \in T \backslash S\right\}
\end{align*}
$$

Also, for $x \in T \backslash S$ we have

$$
\begin{align*}
\left|\bar{x}^{n}-a_{n}\right|^{2} & =1-2 a_{n} \operatorname{Re} \bar{x}^{n}+\left|a_{n}\right|^{2} \tag{4}\\
& \leq 1-2 a_{n}\left(a_{n}-\left(1-a_{n}\right)^{1 / 2}\right)+a_{n}^{2} \\
& \leq 2\left(1-a_{n}\right)+2\left(1-a_{n}\right)^{1 / 2} \\
& \leq 4\left(1-a_{n}\right)^{1 / 2}
\end{align*}
$$

The theorem now follows from (2), (3), and (4).
We recall that each f in \mathscr{P} has a unique expansion of the form

$$
f(z)=1+2 \sum_{j=1}^{\infty} f_{j}(z)
$$

where f_{j} is a homogeneous polynomial of degree j with $\left|f_{j}(z)\right| \leq 1$ for $z \in B$.
Theorem 3. Suppose that f is in \mathscr{P} and that k is a positive integer. If f_{k} is an extreme point of \mathscr{U}, then there exists a polynomial q of degree $\leq k-1$, such that

$$
f=\frac{1+f_{k}+q}{1-f_{k}}
$$

Proof. For fixed $z \in B$, let $F(\lambda)=f(\lambda z)$, where $\lambda \in D$. Then

$$
F(\lambda)=1+2 \sum_{j=1}^{\infty} f_{j}(z) \lambda^{j}
$$

Hence, by the previous theorem, we have

$$
\left|\left(f_{k+m}(z)-f_{k}(z) f_{m}(z)\right) / 4\right|^{4} \leq 1-\left|f_{k}(z)\right|
$$

for $m=0,1,2, \ldots$ Let $g(z)=\left(4^{-1}\left(f_{k+m}(z)-f_{k}(z) f_{m}(z)\right)\right)^{4}$. Then, since $|g(z)|+\left|f_{k}(z)\right| \leq 1$, it follows that $f_{k} \pm g \in \mathscr{U}$. Since f_{k} is an extreme element of \mathscr{U}, we must have $g(z)=0$. Hence, $f_{k+m}(z)=f_{k}(z) f_{m}(z)$ for $m=0,1,2, \ldots$. Returning to the homogeneous expansion for f, we find that

$$
\begin{aligned}
f(z) & =1+2 \sum_{j=1}^{k} \sum_{m=0}^{\infty} f_{j+m k}(z) \\
& =1+2 \sum_{j=1}^{k} \sum_{m=0}^{\infty} f_{j}(z)\left(f_{k}(z)\right)^{m} \\
& =\frac{1+f_{k}(z)+q(z)}{1-f_{k}(z)}
\end{aligned}
$$

where $q=\sum_{j=1}^{k-1} 2 f_{j}$.

Consider a polynomial p which belongs to \mathscr{U} and is homogeneous of degree $k \geq 1$. Let $\mathscr{F}(p)=\left\{f \in \mathscr{P}: f_{k}=p\right\}$. Note that $\mathscr{F}(p)$ is closed with respect to the topology of uniform convergence on compact subsets of B and is convex. If p happens to be an extreme point of \mathscr{U}, then $\mathscr{F}(p)$ is also a face of \mathscr{P}, i.e., if $c f_{1}+(1-c) f_{2} \in \mathscr{F}(p)$, where f_{1} and f_{2} belong to \mathscr{P} and $0<c<1$, then f_{1} and f_{2} belong to $\mathscr{F}(p)$. Since $(1+p) /(1-p) \in \mathscr{F}(p)$, it follows from the Krein-Milman Theorem that $\mathscr{F}(p)$ always contains extreme elements of \mathscr{P}. As the following shows, even more is true.

COROLLARY. If p is a homogeneous polynomial of degree $k \geq 1$ which is also an extreme point of \mathscr{U}, then there exists a polynomial q of degree $\leq k-1$ such that

$$
\begin{equation*}
\frac{1+p+q}{1-p} \tag{5}
\end{equation*}
$$

is an extreme point of \mathscr{P}. Furthermore, every function in $\mathscr{F}(p)$ is a convex combination of at most $\langle k-1\rangle+1$ extreme elements of \mathscr{P} of the form (5), where $\langle k-1\rangle$ is the real dimension of the space of polynomials of degree $\leq k-1$ in n complex variables.

Proof. The existence of an extreme element of \mathscr{P} of the form (5) follows from Theorem 3 and the remarks in the paragraph above. The "Furthermore" part of the corollary follows from a result of Caratheodory which asserts that every member of a compact convex subset K of real m-dimensional space can be written as a convex combination of at most $m+1$ extreme elements of K. See [5].

Examples

First we will establish some notation. S will denote the boundary of B and T^{n} will denote the n-dimensional torus

$$
\left\{t \in C^{n}:\left|t_{j}\right|=1 \quad \text { for } j=1,2, \ldots, n\right\}
$$

We observe that if $t \in T^{n}$ and if $z \in S$, then

$$
t z=\left(t_{1} z_{1}, t_{2} z_{2}, \ldots, t_{n} z_{n}\right) \in S .
$$

We will make use of the normalized Haar measure m on T^{n}. We will use lower case Greek letters without subscripts to indicate multi-indices. Thus, α denotes an n-tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, where the α_{j} 's are non-negative integers. We will write $\alpha \triangleright \beta$ if $\alpha_{j} \geq \beta_{j}$ for $j=1,2, \ldots, n$ and $|\alpha|>|\beta|$, where $|\alpha|=\alpha_{1}+\alpha_{2}$ $+\cdots+\alpha_{n}$. It will be convenient to signify the n-tuple $(0,0, \ldots, 0)$ by 0 .

Lemma 1. Suppose that f is a member of \mathscr{U} and has the Taylor expansion $f(z)=\sum_{\alpha} a_{\alpha} z^{\alpha}$ and the homogeneous expansion $f(z)=\sum_{k=0}^{\infty} f_{k}(z)$ for $z \in B$. Then

$$
\begin{equation*}
\sum_{\alpha}\left|a_{\alpha} z^{\alpha}\right|^{2} \leq 1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|f_{k}(z)\right|^{2} \leq 1 \tag{7}
\end{equation*}
$$

Proof. By Parseval's identity,

$$
\begin{aligned}
\sum_{\alpha}\left|a_{\alpha^{2}} z\right|^{2} & =\int_{T^{n}}|f(t z)|^{2} d m(t) \\
& \leq\|f\|^{2} \\
& \leq 1
\end{aligned}
$$

The inequality (7) follows by a similar argument.
Lemma 2. Let $g(z)=z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}$. Then g is an extreme point of \mathscr{U}.
Proof. We will show that, if $h \in H^{\infty}(B)$ and $g \pm h \in \mathscr{U}$, then $h=0$. Let

$$
h(z)=\sum_{k=0}^{\infty} h_{k}(z)
$$

be the homogeneous expansion of h. By (7) we have

$$
\left|g(z) \pm h_{2}(z)\right|^{2}+\sum_{k \neq 2}\left|h_{k}(z)\right|^{2} \leq 1
$$

Suppose that $x \in S \cap R^{n}$. Then $g(x)=1$. Since $\left|g(x) \pm h_{2}(x)\right|^{2} \leq 1$, it follows that $h_{2}(x)=0$. Since h_{2} is homogeneous of degree 2, it follows immediately that h_{2} vanishes on $B \cap R^{n}$. Hence, h_{2} must vanish on all of C^{n}. A similar argument shows that h_{k} vanishes for $k \neq 2$.

The following result was first obtained by Forelli in [1].
Theorem 4. Let g be as in Lemma 2. Then $f=(1+g) /(1-g)$ is an extreme element of \mathscr{P}.

Proof. We note that the homogeneous expansion of f is

$$
f(z)=1+2 \sum_{k=1}^{\infty}(g(z))^{k}
$$

Hence, $f \in \mathscr{F}(g)$. Recall that, by Theorem 3, a function f_{1} belongs to $\mathscr{F}(g)$ if and only if it is of the form

$$
f_{1}(z)=\frac{1+g(z)+q(z)}{1+g(z)}
$$

where q is a homogeneous polynomial of degree at most 1 . But as the argument used by Rudin in his book [7, p. 412] shows, any degree one homogeneous polynomial q for which the function f_{1} belongs to \mathscr{P} must vanish. Thus the face $\mathscr{F}(g)$ contains only one element. It follows that f is extreme.

Next we consider monomials of the form $h(z)=c z^{\alpha}$, where c is chosen so that $\|h\|=1$. For convenience sake we will assume that c is a positive real number. First we will develop necessary and sufficient conditions for h to be an extreme element of \mathscr{U}. We begin by observing that in the case where $n>1$ and $|\alpha|=1, h$ is not an extreme point of \mathscr{U}. For if, say $h(z)=z_{1}$, then, since

$$
\left|z_{2}\right|^{2} \leq 1-\left|z_{1}\right|^{2} \leq 2\left(1-\left|z_{1}\right|\right)
$$

it follows that

$$
\left|z_{1} \pm 2^{-1} z_{2}^{2}\right| \leq\left|z_{1}\right|+\left|z_{2}^{2} / 2\right| \leq 1
$$

Thus, h is not an extreme point of \mathscr{U}. The case where $|\alpha|$ and $n>1$ is handled by the following:

Lemma 3. If $|\alpha|$ and $n>1$, then h is an extreme point of \mathscr{U} if and only if $\alpha_{j}>0$ for $j=1,2, \ldots, n$.

Proof. Suppose that $\alpha_{j}>0$ for $j=1,2, \ldots, n$ and that v is a function in $H^{\infty}(B)$ with $\|h \pm v\| \leq 1$. We will show that $v=0$. Denoting the Taylor series expansion of v by $v(z)=\Sigma_{\beta} v_{\beta} z^{\beta}$, from (6) we have

$$
\left|c z^{\alpha} \pm v_{\alpha} z^{\alpha}\right|^{2}+\sum_{\beta \neq \alpha}\left|v_{\beta} z^{\beta}\right|^{2} \leq 1
$$

Since all of the α_{j} 's are positive, there is a point w on S such that $c w^{\alpha}=1$ and no w_{j} is zero. Thus,

$$
\left|1 \pm v_{\alpha} w^{\alpha}\right|^{2}+\sum_{\beta \neq \alpha}\left|v_{\beta} w^{\beta}\right|^{2} \leq 1
$$

leads to $v_{\beta}=0$ for every β.
Next we assume that one of the α_{j} 's, say α_{1}, is zero. Suppose that z is a point of B. Let

$$
a=\left(1-\left|z_{1}\right|^{2}\right)^{1 / 2} \quad \text { and } \quad w=\left(0, z_{2} / a, z_{3} / a, \ldots, z_{n} / a\right)
$$

Since $w \in B$, it follows that $a^{-|\alpha|}|h(z)|=|h(w)| \leq 1$. Thus,

$$
|h(z)| \leq\left(1-\left|z_{1}\right|^{2}\right)^{|\alpha| / 2} \leq 1-\left|z_{1}\right|^{2} .
$$

It follows that $\left|h(z) \pm z_{1}^{2}\right|<1$, and, hence, that h is not extreme in \mathscr{U}.
From now on we will assume that α is a multi-index with $\alpha_{j}>0$. We will characterize the face $\mathscr{F}(h)$. Recall that f_{1} is a member of $\mathscr{F}(h)$ if and only if it is of the form

$$
f_{1}(z)=\frac{1+h(z)+q(z)}{1-h(z)}
$$

where q is a polynomial of the form

$$
q(z)=\sum_{0<|\beta|<|\alpha|} q_{\beta} z^{\beta},
$$

and where

$$
\begin{equation*}
0<1-|h(z)|^{2}+\operatorname{Re}((1-\overline{h(z)}) q(z)) \tag{8}
\end{equation*}
$$

for $z \in B$. We will see that (8) imposes strong restrictions on the coefficients of q.

Lemma 4. \quad Suppose that (8) holds and that, for some $\beta, q_{\beta} \neq 0$. Then $\alpha \triangleright \beta$.
Proof. Let $H(z)$ denote the right hand side of (8). An easy calculation shows that

$$
\int_{T^{n}} H(t z) \bar{t}^{\beta} d m(t)= \begin{cases}q_{\beta} z^{\beta}-\bar{q}_{\alpha-\beta}(\bar{z})^{\alpha-\beta} c z^{\alpha} & \text { if } \alpha \triangleright \beta \tag{9}\\ q_{\beta} z^{\beta} & \text { otherwise. }\end{cases}
$$

It follows that, if β fails to satisfy $\alpha \triangleright \beta$, then

$$
\begin{equation*}
\left|q_{\beta} z^{\beta}\right| \leq \int_{T^{n}} H(t z) d m(t)=1-|h(z)|^{2} . \tag{10}
\end{equation*}
$$

Hence, $\left|(h(z))^{2} \pm q_{\beta} z^{\beta}\right| \leq 1$. By the extremality of $(h(z))^{2}$, we have $q_{\beta}=0$.
Lemma 5. Suppose that (8) holds and that y is a point of $S \cap R^{n}$ such that $c y^{\alpha}=1$. If $\alpha>\beta$, then, either $\left|q_{\beta} y^{\beta}\right|<2$, or $\alpha=2 \beta$.

Proof. In the case where $\alpha \gg$ it follows from (9) that

$$
\begin{equation*}
\left|q_{\beta} z^{\beta}-\bar{q}_{\alpha-\beta}(\bar{z})^{\alpha-\beta} c z^{\alpha}\right| \leq 1-\left|c z^{\alpha}\right|^{2} . \tag{11}
\end{equation*}
$$

Let y be a point of $S \cap R^{n}$ with $c y^{\alpha}=1$. Then it follows from (11) that

$$
q_{\beta} y^{\beta}=\bar{q}_{\alpha-\beta} y^{\alpha-\beta}
$$

Let $z=\left(a y_{1}, y_{2}, \ldots, y_{n}\right)$, where $0<a<1$. Then using (11) we obtain

$$
\left|q_{\beta} y^{\beta}\right|\left|a^{\beta_{1}}-a^{2 \alpha_{1}-\beta_{1}}\right| \leq 1-a^{2 \alpha_{1}}
$$

Dividing both sides of this inequality by $1-a$ and then letting a approach 1 we get

$$
\left|q_{\beta} y^{\beta}\right|\left(\alpha_{1}-\beta_{1}\right) \leq \alpha_{1}
$$

Replacing β by $\alpha-\beta$ leads to

$$
\left|q_{\beta} y^{\beta}\right| \beta_{1} \leq \alpha_{1}
$$

A similar argument shows that

$$
\left|q_{\beta} y^{\beta}\right|\left(\alpha_{j}-\beta_{j}\right) \leq \alpha_{j} \quad \text { and } \quad\left|q_{\beta} y^{\beta}\right| \beta_{j} \leq \alpha_{j}
$$

for $j=2,3, \ldots, n$. If none of the inequalities above is strict, then it follows that $\alpha_{j}=2 \beta_{j}$ for $j=1,2, \ldots, n$, i.e., $\alpha=2 \beta$. If at least one of the inequalities above is strict, it follows that, for some $j,\left|q_{\beta} y^{\beta}\right| \alpha_{j}<2 \alpha_{j}$. Thus, $\left|q_{\beta} y^{\beta}\right|<$ 2. The lemma follows immediately from the two preceding inequalities.

Lemma 6. Let (8) hold. If $q_{\beta} \neq 0$, then there is a real number A such that $\beta=A \alpha$.

Proof. It follows from Lemma 4 that $\alpha \triangleright \beta$. Also, if $\alpha=2 \beta$, there is nothing to prove. We may, therefore, assume that $\alpha \neq 2 \beta$.

Let $r_{\beta}=\operatorname{Re} q_{\beta} \neq 0$. Consider the function

$$
K(x)=1-\left|x^{\alpha}\right|^{2}+r_{\beta} x^{\beta}-r_{\alpha-\beta} c x^{2 \alpha-\beta}
$$

where x varies over $S \cap R^{n}$. It is clear that K is non-negative and that $K(y)=0$ if $c y^{\alpha}=1$. Using the operators $x_{j} \partial / \partial x_{j}$ together with the method of Lagrange multipliers, we obtain a real number C such that

$$
-2 \alpha+r_{\beta} y^{\beta} \beta-r_{\alpha-\beta} y^{\alpha-\beta}(2 \alpha-\beta)=-2 C y^{*}
$$

where $y^{*}=\left(y_{1}^{2}, y_{2}^{2}, \ldots, y_{n}^{2}\right)$. It follows from $r_{\beta} y^{\beta}=r_{\alpha-\beta} y^{\alpha-\beta}$ that

$$
\left(1+r_{\beta} y^{\beta}\right) \alpha-r_{\beta} y^{\beta} \beta=C y^{*}
$$

Applying the same argument with β replaced by $\alpha-\beta$ and again using

$$
r_{\beta} y^{\beta}=r_{\alpha-\beta} y^{\alpha-\beta}
$$

we obtain a real number D such that

$$
\alpha+r_{\beta} y^{\beta} \beta=D y^{*} .
$$

Thus,

$$
\left(-C+D+D r_{\beta} y^{\beta}\right) \alpha=(C+D) r_{\beta} y^{\beta} \beta
$$

To complete the argument in the case $r_{\beta} \neq 0$ we need only observe that, by Lemmas 4 and $5, C+D=\left(2+r_{\beta} y^{\beta}\right)|\alpha|$ does not vanish.

The case where $\operatorname{Re} q_{\beta}=0$, but $\operatorname{Im} q_{\beta} \neq 0$ is handled in a similar fashion.
Suppose now that the greatest common divisor of the integers $\alpha_{j}, j=$ $1,2, \ldots, n$ is 1 . Then it is not hard to show that the conditions $\beta=A \alpha$ and $\alpha \triangleright \beta \triangleright 0$ are incompatible. It follows that if $\operatorname{gcd}\left\{\alpha_{j}\right\}=1$, then $q_{\beta}=0$ for each β with $|\alpha|>|\beta|$. Hence, $\mathscr{F}(h)$ reduces to the single element $(1+h) /(1$ $-h)$. Since $\mathscr{F}(h)$ is a face of \mathscr{P} it follows that $(1+h) /(1-h)$ is an extreme point of \mathscr{P}.

Consider the case where $\operatorname{gcd}\left\{\alpha_{j}\right\}=k>1$. Let $\theta=k^{-1} \alpha$. It is not hard to show that the conditions $\beta=A \alpha$ and $\alpha \triangleright \beta \triangleright 0$ imply that $\beta=m \theta$ for some integer m with $0<m<k$. It follows that the polynomial q above takes the form

$$
q(z)=\sum_{m=1}^{k-1} q_{m \theta} z^{m \theta}
$$

Let c_{1} be a positive constant chosen so that the function $h_{1}(z)=c_{1} z^{\theta}$ satisfies $\left\|h_{1}\right\|=1$. It is easily seen that $h=\left(h_{1}\right)^{k}$. The polynomial q can be written in the form $q(z)=q^{*}\left(c_{1} z^{\theta}\right)$, where q^{*} is the polynomial in one variable of degree $\leq k-1$ defined by

$$
q^{*}(u)=\sum_{m=1}^{k-1} q_{m \theta} c_{1}^{-m} u^{m}
$$

Using this notation, (8) can be written in the form

$$
0 \leq 1-\left|\left(c_{1} z^{\theta}\right)^{k}\right|^{2}+\operatorname{Re}\left(\left(1-\left(c_{1} \bar{z}^{\theta}\right)^{k}\right) q^{*}\left(c_{1} z^{\theta}\right)\right)
$$

or, equivalently,

$$
0<\operatorname{Re} \frac{1+\left(c_{1} z^{\theta}\right)^{k}+q^{*}\left(c_{1} z^{\theta}\right)}{1-\left(c_{1} z^{\theta}\right)^{k}}
$$

Let $\mathscr{P}_{1, k}$ denote the set of functions of the form

$$
f^{*}(u)=\frac{1+u^{k}+q^{*}(u)}{1-u^{k}}
$$

where q^{*} is a polynomial in one variable of degree $\leq k-1$ with $q^{*}(0)=0$, and $f^{*}(u)$ has positive real part when $|u|<1$.

The conclusions of the preceding discussion can be summarized by the following:

Theorem 5. (a) If $\operatorname{gcd}\left(\alpha_{j}\right)=1$, then $\mathscr{F}(h)$ reduces to a single point and $(1+h) /(1-h)$ is an extreme point of \mathscr{P}.
(b) If $\operatorname{gcd}\left(\alpha_{j}\right)=k>1$, then $\mathscr{F}(h)$ consists of all functions of the form $f(z)=f^{*}\left(c_{1} z^{\theta}\right)$, where $f^{*} \in \mathscr{P}_{1, k}, \theta=\alpha / k$, and $c_{1}=c^{1 / k}$.

Part (a) of Theorem 5 was proved by Forelli by other methods in [3].
It is a simple exercise to show that $\mathscr{P}_{1,2}$ consists of all functions of the form

$$
f^{*}(u)=\frac{1+u^{2}+a u}{1-u^{2}}
$$

where $-2 \leq a \leq 2$. Thus, in the notation of Theorem 5 the extreme elements of $\mathscr{F}\left(\left(c_{1} z^{\theta}\right)^{2}\right)$ are

$$
\frac{1+c_{1} z^{\theta}}{1-c_{1} z^{\theta}} \text { and } \frac{1-c_{1} z^{\theta}}{1+c_{1} z^{\theta}}
$$

The collection $\mathscr{P}_{1,3}$ consists of functions of the form

$$
f^{*}(u)=\frac{1+u^{3}+a u+b u^{2}}{1-u^{3}}
$$

where $\operatorname{Re} f^{*}(u)$ is positive for $|u|<1$. As a consequence of the condition $\operatorname{Re} f^{*}(u)>0$ for $|u|<1$, we have $b=\bar{a}$. Let

$$
F(u)=\left|1-\bar{u}^{3}\right| \operatorname{Re} f^{*}(u)
$$

Then

$$
r\left(1-r^{4}\right) a=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i t} F\left(r e^{i t}\right) d t
$$

Thus, for $0<r<1$

$$
r\left(1-r^{4}\right)|a| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(r e^{i t}\right) d t
$$

Hence,

$$
|a| \leq \frac{1-r^{6}}{r\left(1-r^{4}\right)}
$$

A straightforward calculation shows that $|a| \leq 3 / 2$. Thus, the set of complex numbers

$$
A=\left\{a:\left(1+u^{3}+a u+\bar{a} u^{2}\right) /\left(1-u^{3}\right) \in \mathscr{P}_{1,3}\right\}
$$

is a convex subset of the disk $\{a:|a| \leq 3 / 2\}$. It can be shown by a tedious argument that $3 / 2 \in A$. Hence, the function

$$
f_{1}^{*}(u)=\frac{1+u^{3}+1.5 u+1.5 u^{2}}{1-u^{3}}
$$

is an extreme point of the set $\mathscr{P}_{1,3}$. It follows that the function

$$
f_{1}(z)=\frac{1+\left(c_{1} z^{\theta}\right)^{3}+1.5 c_{1} z^{\theta}+1.5\left(c_{1} z^{\theta}\right)^{2}}{1-\left(c_{1} z^{\theta}\right)^{3}}
$$

is an extreme element of $\mathscr{F}\left(\left(c_{1} z^{\theta}\right)^{3}\right)$.

References

1. F. Forelli, Measures whose Poisson integrals are pluriharmonic, II, Illinois J. Math., vol. 19 (1975), pp. 584-592.
2. \qquad A necessary condition on the extreme points of a class of holomorphic functions, Pacific J. Math., vol. 73 (1977), pp. 81-86.
3. \qquad , Some extreme rays of positive pluriharmonic functions, Canadian J. Math., vol. 31 (1979), pp. 9-16.
4. R. Phelps, Extreme positive operators and homomorphisms, Trans. Amer. Math. Soc., vol. 108 (1963), pp. 265-274.
5. \qquad , Lectures on Choquet's Theorem, Van Nostrand, Princeton, N.J., 1966.
6. R. Rochberg, Which linear maps of the disk algebra are multiplicative, Pacific J. Math., vol. 38 (1971), pp. 207-212.
7. W. Rudin, Function theory in the unit ball of C^{n}, Springer-Verlag, New York, 1980.

Arizona State University
Tempe, Arizona

