INTERPOLATION SETS FOR LIPSCHITZ FUNCTIONS ON CURVES OF THE UNIT SPHERE

BY
Carme Cascante ${ }^{1}$

Introduction and statement of results

Let B denote the unit ball in \mathbf{C}^{n}, and S its boundary. For $\alpha \in(0,1]$, $\operatorname{Lip}_{\alpha}(B)$ will denote the space of holomorphic functions in B satisfying a Lipschitz condition of order α with respect to the Euclidean distance. For a closed set $I \subset \mathbf{R}$, and $0<\alpha<1, \Lambda_{\alpha}(I)$ will denote the space of Lipschitz functions on I, and $\Lambda_{1}(I)$ the Zygmund class.

We also consider the Koranyi pseudodistance $d(z, w)=|1-\bar{z} w|$, for $z, w \in S$, where

$$
\bar{z} w=\sum_{i=1}^{n} \bar{z}_{i} w_{i}
$$

This defines a pseudodistance only on S, but we will as well consider it when one of the two variables is on \bar{B}.

We will work with a simple (without intersections) periodic curve of class $C^{3} \gamma: \mathbf{R} \rightarrow S$. With a suitable parametrization (arc-length plus a dilatation) we will suppose from now on that γ is 2π-periodic and that there exists $\lambda>0$ such that for each $t,\left|\gamma^{\prime}(t)\right|^{2}=\lambda$. We will write $I=[-\pi, \pi]$ and $\Gamma=\gamma(I)$. We will not distinguish between $\gamma(t)$ and its corresponding parameter on I.

Related to γ we introduce the index of transversality, $T: I \rightarrow \mathbf{R}$, given by

$$
\begin{equation*}
-i T(x)=\overline{\gamma^{\prime}(x)} \gamma(x), \quad x \in I \tag{1}
\end{equation*}
$$

Complex-tangential curves (i.e. $\gamma^{\prime}(t) \in P_{\gamma(t)}$ where $P_{\gamma(t)}$ is the complextangential space at $\gamma(t)$) correspond to $T=0$ and transverse curves to $|T(x)| \geq M$. We introduce the set E of complex-tangential points of Γ, given by

$$
\begin{equation*}
E=\gamma(\{x \in I / T(x)=0\})=\left\{\zeta \in I / T_{\zeta} \Gamma \subset P_{\zeta}\right\} \tag{2}
\end{equation*}
$$

where $T_{\zeta} \Gamma$ is the tangent space of Γ at ζ.

[^0]As it is well known, complex-tangential directions are, in certain sense, twice as regular as the others. In fact (see [R] and [S1]), it can be proved that the restriction to E of each function in $\operatorname{Lip}_{\alpha}(B), \alpha<1$ is in $\Lambda_{2 \alpha}(E)$. Thus it is natural to consider the following definition.

Definition. A closed set $E \subset S$ is an interpolation set for $\operatorname{Lip}_{\alpha}(B)$ $(0<\alpha<1)$, if for any $f \in \Lambda_{2 \alpha}(E)$, there exists $F \in \operatorname{Lip}_{\alpha}(B)$ such that $F_{\mid E}=f$.

Now we can state our main result.
Theorem A. If E is the set of complex-tangential points of Γ and $\alpha \in(0,1)$, $\alpha \neq \frac{1}{2}$ then there exists $S: \Lambda_{2 \alpha}(E) \rightarrow \operatorname{Lip}_{\alpha}(B)$ a linear operator, satisfying $S f_{\mid E}=f$ for each $f \in \Lambda_{2 \alpha}(E)$. In particular, E is an interpolation set for $L_{i p}(B)$.

In case γ is of class C^{∞}, we deduce from the proof of theorem A , that E is also a peak set for $A^{\infty}(B)$, the algebra of holomorphic functions in B, of class $C^{\infty}(\bar{B})$. This result is also a consequence of $[\mathrm{F}-\mathrm{H}]$, where it has been proved that the peak sets and the local peak sets for $A^{\infty}(B)$ coincide, and from the fact (see [R]) that E is locally included in complex-tangential manifolds.

As an immediate corollary to theorem A, we obtain:
Corollary A. For each $\alpha<1, \alpha \neq \frac{1}{2}, \operatorname{Lip}_{\alpha}(B)_{\mid E}=\Lambda_{2 \alpha}(E)$.
These results have already been proved by [B-O] for complex-tangential curves. Our approach in proving them is completely different from the one used in [B-O], and permits for complex-tangential curves to obtain the extreme case $\alpha=\frac{1}{2}$, which was not covered by the methods of [B-O]. More precisely, the following holds:

Corollary B. If Γ is complex-tangential, there exists $S: \Lambda_{1}(\Gamma) \rightarrow$ Lip $_{1 / 2}(B)$ a linear operator satisfying $S f_{\mid \Gamma}=f$ for each $f \in \Lambda_{1}(\Gamma)$. In particular, E is an interpolation set for $\operatorname{Lip}_{1 / 2}(B)$, and $\operatorname{Lip}_{1 / 2}(B)_{\mid \Gamma}=\Lambda_{1}(\Gamma)$.

The proof of theorem A is essentially different for $\alpha<\frac{1}{2}$ and $\alpha>\frac{1}{2}$ and we will use some of the techniques introduced in [N].

In case $\alpha>\frac{1}{2}$, the function $S f \circ \gamma$, where $f \in \Lambda_{2 \alpha}(E)$ is differentiable at each point of E (see [R]), and we obtain an explicit formula for the derivative, in terms of the index of transversality T already introduced.

Finally, Corollary B will be deduced from the proof of Theorem A, using real interpolation methods.

As final remarks on notation, we denote C all the constants, that may change from one occurrence to another, we write $x \preceq y$ or $x=O(y)$ if there exists $M>0$ such that $x \leq M y$ and $x \simeq y$ if $x \preceq y$ and $y \preceq x$.

Acknowledgement. I wish to thank J. Bruna for several remarks and helpful discussions and suggestions about this work.

1. Preliminary results. The case $\alpha<\frac{1}{2}$

In this section we will give the principal tools we need, as well as the proof of Theorem A, when $\alpha<\frac{1}{2}$. We omit the proof of the following elementary lemma.

Lemma 1. $|\gamma(x)-\gamma(y)| \simeq|x-y|$, provided $x \in I$, and $|x-y| \leq \pi$.
The next result gives an estimate of the Koranyi pseudodistance in a neighborhood of the curve Γ, in terms of a suitable projection.

Lemma 2. There exists $\varepsilon>0$ so that for each z in $U=\{z \in \bar{B} / d(z, \Gamma)<\varepsilon\}$ there exists a unique $\gamma\left(x_{z}\right) \in \Gamma,\left|x_{z}\right| \leq \pi$, with $\operatorname{Re} \overline{\gamma^{\prime}\left(x_{z}\right)} z=0$, and such that
(3) $|1-\overline{\gamma(x)} z| \simeq \operatorname{Re}\left(1-\overline{\gamma\left(x_{z}\right)} z\right)$

$$
+\left|\operatorname{Im}\left(1-\overline{\gamma\left(x_{z}\right)} z\right)+T\left(x_{z}\right)\left(x-x_{z}\right)\right|+\left|x-x_{z}\right|^{2}
$$

provided $\left|x-x_{z}\right| \leq \pi$. In particular,

$$
|1-\overline{\gamma(x)} z| \preceq\left|1-\overline{\gamma\left(x_{z}\right)} z\right|+\left|T\left(x_{z}\right)\right|\left|x-x_{z}\right|+\left|x-x_{z}\right|^{2}
$$

Proof of Lemma 2. Given $z \in \bar{B}$, let $\gamma\left(x_{z}\right)$ be a point in Γ where the Euclidean distance from z to Γ is attained. Then

$$
\operatorname{Re} \overline{\gamma^{\prime}\left(x_{z}\right)}\left(z-\gamma\left(x_{z}\right)\right)=0
$$

and in particular, $\operatorname{Re} \overline{\gamma^{\prime}\left(x_{z}\right)} z=0$. Taking z closed enough to Γ, we also obtain the uniqueness of $\gamma\left(x_{z}\right)$.

Using Taylor's development,

$$
\begin{align*}
1-\overline{\gamma(x)} z= & 1-\overline{\gamma\left(x_{z}\right)} z-\left(\overline{\gamma^{\prime}\left(x_{z}\right)} z\right)\left(x-x_{z}\right) \tag{4}\\
& -\left(\overline{\gamma^{\prime \prime}\left(x_{z}\right)} z\right) \frac{\left(x-x_{z}\right)^{2}}{2}+O\left(\left|x-x_{z}\right|^{3}\right)
\end{align*}
$$

Taking modules we get
(5)

$$
\begin{aligned}
\left|1-\overline{\gamma\left(x_{z}\right)} z\right| \simeq & \left.\operatorname{Re}\left(1-\overline{\gamma\left(x_{z}\right)} z\right)-\operatorname{Re}\left(\overline{\gamma^{\prime \prime}\left(x_{z}\right)} z\right) \frac{\left(x-x_{z}\right)^{2}}{2}+O\left(\left|x-x_{z}\right|^{3}\right) \right\rvert\, \\
+ & \mid \operatorname{Im}\left(1-\overline{\gamma\left(x_{z}\right)} z\right)+T\left(x_{z}\right)\left(x-x_{z}\right) \\
& -\operatorname{Im}\left(\overline{\gamma^{\prime}\left(x_{z}\right)}\left(z-\gamma\left(x_{z}\right)\right)\left(x-x_{z}\right)\right. \\
& \left.-\operatorname{Im}\left(\overline{\gamma^{\prime \prime}\left(x_{z}\right)}\right) \frac{\left(x-x_{z}\right)^{2}}{2}+O\left(\left|x-x_{z}\right|^{3}\right) \right\rvert\,
\end{aligned}
$$

This estimate and the fact that

$$
\begin{aligned}
\left|\operatorname{Im} \overline{\gamma\left(x_{z}\right)}\left(z-\gamma\left(x_{z}\right)\right)\left(x-x_{z}\right)\right| & =O\left(\left|z-\gamma\left(x_{z}\right)\right|^{2}+\left|x-x_{z}\right|^{2}\right) \\
& =O\left(\operatorname{Re}\left(1-\overline{\gamma\left(x_{z}\right)} z\right)+\left|x-x_{z}\right|^{2}\right)
\end{aligned}
$$

give the upper estimate of (3).
By differentiating (1), there exists $\varepsilon>0$ with $\sup _{d(z, \Gamma) \leq \varepsilon}-\operatorname{Re} \overline{\gamma^{\prime \prime}(x)} z>0$. Hence
(6)

$$
\begin{aligned}
|1-\overline{\gamma(x)} z| \succeq & \operatorname{Re}\left(1-\overline{\gamma\left(x_{z}\right)} z\right)+\left|x-x_{z}\right|^{2} \\
& -O\left(\left|x-x_{z}\right|^{3}\right)+s\left|\operatorname{Im}\left(1-\overline{\gamma\left(x_{z}\right)} z\right)+T\left(x_{z}\right)\left(x-x_{z}\right)\right| \\
& -s \mid \operatorname{Im}\left(\overline{\gamma^{\prime}\left(x_{z}\right)}\left(z-\gamma\left(x_{z}\right)\right)\left(x-x_{z}\right)\right. \\
& \left.\quad-\operatorname{Im}\left(\overline{\gamma^{\prime \prime}\left(x_{z}\right)}\right) \frac{\left(x-x_{z}\right)^{2}}{2}+O\left(\left|x-x_{z}\right|^{3}\right) \right\rvert\, \\
\succeq & \operatorname{Re}\left(1-\overline{\gamma\left(x_{z}\right) z}\right)+\left|x-x_{z}\right|^{2} \\
& \quad-O\left(\left|x-x_{z}\right|^{3}\right)+s \mid \operatorname{Im}\left(1-\overline{\gamma\left(x_{z}\right)} z\right) \\
+ & T\left(x_{z}\right)\left(x-x_{z}\right) \left\lvert\,-s\left(\frac{\left\|\gamma^{\prime}\right\|^{2}}{2}\left|z-\gamma\left(x_{z}\right)\right|^{2}+\frac{\left|x-x_{z}\right|^{2}}{2}+\frac{\left\|\gamma^{\prime \prime}\right\|_{\infty}}{2}\left|x-x_{z}\right|^{2}\right)\right.
\end{aligned}
$$

where $0<s \leq 1$. Choosing s conveniently, we may thus obtain the estimate from below, whenever $\left|x-x_{z}\right| \leq \delta(\delta>0$ small enough). And this finishes the lemma, since in $\left|x-x_{z}\right| \geq \delta$ both quantities that appear in (3) do not vanish (see Lemma 1).

For $p>0$, let h_{p} be as in $[\mathrm{N}]$ the holomorphic function in B given by

$$
\begin{equation*}
h_{p}(z)=\int_{I} \frac{d x}{(1-\overline{\gamma(x)} z)^{p}}, \quad z \in \bar{B} \backslash \Gamma . \tag{7}
\end{equation*}
$$

Then the following estimate of h_{p} holds:
Lemma 3. Let $p \in(0,1)$. Then

$$
\begin{equation*}
\operatorname{Re} h_{p}(z) \simeq\left|h_{p}(z)\right| \simeq \int_{I} \frac{d x}{|1-\overline{\gamma(x)} z|^{p}} . \tag{8}
\end{equation*}
$$

Proof of Lemma 3. If $x \in I$ and $z \in B$, then $\operatorname{Re}(1-\overline{\gamma(x)} z)>0$. Hence

$$
\operatorname{Re}(1-\overline{\gamma(x)} z)^{p} \simeq|1-\overline{\gamma(x)} z|^{p},
$$

for each $p \in(0,1)$. \diamond
We can now state a result concerning the boundary behavior of h_{p}.
Proposition 1. If $p \in\left(\frac{1}{2}, 1\right)$, then

$$
\begin{equation*}
\left|h_{p}(z)\right| \simeq\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1 / 2-p}, \quad z \in \bar{B} \backslash E \tag{9}
\end{equation*}
$$

where $r_{z}=\left|1-\overline{\gamma\left(x_{z}\right)} z\right|$.
Proof of Proposition 1. The estimate from below of (9) follows from Lemma (3) of Lemma 2, whereas the upper estimate is a consequence of Lemma 2 and the following technical result concerning real integrals (putting $a_{z}=\operatorname{Re}\left(1-\overline{\gamma\left(x_{z}\right)} z\right), b_{z}=\operatorname{Im}\left(1-\overline{\gamma\left(x_{z}\right)} z\right), T=T\left(x_{z}\right)$.

Lemma 4. Let $p \in\left(\frac{1}{2}, 1\right)$ and $a \geq 0, b, T \in \mathbf{R}$, satisfying $a+|b|+T^{2}>0$. Then

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{d x}{\left(a+|b+T x|+x^{2}\right)^{p}}=O\left(\left(a+|b|+T^{2}\right)^{1 / 2-p}\right) \tag{10}
\end{equation*}
$$

Proof of Lemma 4. Denoting by $I_{p}(a, b, T)$ the integral of (10), it is immediate to verify that for each $\lambda>0, I_{p}\left(\lambda a, \lambda b, \lambda^{1 / 2} T\right)=\lambda^{1 / 2-p} I_{p}(a, b, T)$. Hence, it suffices to prove that the function I_{p} is continuous on the compact
set

$$
K=\left\{(a, b, T) / 0 \leq a \leq 1, b, T \in[-1,1], a+|b|+|T|^{2}=1\right\}
$$

And this continuity is a consequence of the finiteness of the integral near zero $(p<1)$, and near $\infty\left(p>\frac{1}{2}\right)$. \diamond

Remark 1. Defining

$$
\begin{equation*}
S_{p} f(z)=\int_{I} K_{p}(x, z) f(x) d x, \quad f \in C(\Gamma) \tag{11}
\end{equation*}
$$

where

$$
K_{p}(x, z)=\frac{1}{h_{p}(z)} \frac{1}{(1-\overline{\gamma(x)} z)^{p}}
$$

Lemma 3 and Proposition 1, give that $S_{p} f \in A(B)$ and interpolates f on E, so that E is an interpolation set for $A(B)$. This could be also deduced from [N], since the set of complex tangential points of Γ is locally included in complex-tangential manifolds of the unit sphere (see [R]).

We need to obtain estimates of the radial derivative $R h_{p}$ of the function h_{p}. However, the methods used until now, based on the projection already obtained in Lemma 2, do not permit to get the desired bounds (essentially because the exponent of $(1-\gamma(x) z)$ in $R h_{p}$ is greater than one). The following lemma gives a more accurate projection onto the curve.

Lemma 5. There exists $\varepsilon>0$ so that for each z in $U=\{z \in \bar{B} / d(z, \Gamma)<\varepsilon\}$, there exists $\gamma\left(x_{z}^{*}\right) \in \Gamma,\left|x_{z}^{*}\right| \leq \pi$, and $m_{z}=m(z) \in \mathbf{R}$, such that

$$
\begin{equation*}
|1-\overline{\gamma(x)} z| \simeq m_{z}+\left|T\left(x_{z}^{*}\right)\right|\left|x-x_{z}^{*}\right|+\left|x-x_{z}^{*}\right|^{2} \tag{12}
\end{equation*}
$$

provided $\left|x-x_{z}\right| \leq \pi$, where

$$
m_{z} \simeq \inf _{x \in I}|1-\overline{\gamma(x)} z| \quad \text { and } \quad\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right) \simeq\left(r_{z}+T\left(x_{z}\right)^{2}\right)
$$

Proof of Lemma 5. In Lemma 2 we have obtained a point $\gamma\left(x_{z}\right) \in \Gamma$, such that

$$
\begin{align*}
|1-\overline{\gamma(x)} z| \simeq & \operatorname{Re}\left(1-\overline{\gamma\left(x_{z}\right)} z\right) \tag{13}\\
& +\left|\operatorname{Im}\left(1-\overline{\gamma\left(x_{z}\right)} z\right)+T\left(x_{z}\right)\left(x-x_{z}\right)\right|+\left|x-x_{z}\right|^{2}
\end{align*}
$$

Without loss of generality, we can suppose that $x_{z}=0$. We let

$$
a_{z}=\operatorname{Re}(1-\overline{\gamma(0)} z), \quad b_{z}=\operatorname{Im}(1-\overline{\gamma(0)} z)
$$

and distinguish two possibilities:

$$
\begin{align*}
& T(0)^{2} \leq C r_{z} \tag{i}\\
& T(0)^{2}>C r_{z} \tag{ii}
\end{align*}
$$

where $C>0$ is a constant that will be fixed later. In case (i), it suffices to choose $x_{z}^{*}=0, m_{z}=r_{z}$. Writing

$$
|1-\overline{\gamma(x)} z| \preceq m_{z}+|T(0)||x|+x^{2}
$$

we get the upper estimate of (12). For the estimate from below, it suffices to choose $\varepsilon>0$ and $k \geq 1$ such that

$$
\begin{equation*}
\varepsilon\left(r_{z}+|T(0)||x|\right) \leq k\left(x^{2}+a_{z}+\left|b_{z}+T(0) x\right|\right) \tag{14}
\end{equation*}
$$

since $a_{z}+\left|b_{z}+T(0)\right|+x^{2} \geq x^{2}$. And (14) will follow if there exists $\varepsilon>0$ and $k \geq 1$ with

$$
\begin{equation*}
k x^{2}+(1-\varepsilon) r_{z} \geq(1+\varepsilon)|T(0)||x| \tag{15}
\end{equation*}
$$

If ε and η are chosen satisfying $(1+\varepsilon) C=\eta(1-\varepsilon)$, then from (i) we obtain

$$
(1+\varepsilon)|T(0)||x| \leq(1+\varepsilon) \eta x^{2}+(1-\varepsilon) r_{z}
$$

estimate that gives (15) with $k=(1+\varepsilon) \eta$. That finishes the case (i). For (ii), let x_{z}^{*} be a real number satisfying

$$
\begin{equation*}
b_{z}+T(0) x_{z}^{*}=0 \tag{16}
\end{equation*}
$$

Choosing C sufficiently big, formula (16) gives that x_{z}^{*} is in I. From (16) we also get that

$$
\begin{equation*}
a_{z}+\left|b_{z}+T(0) x\right|+x^{2}=a_{z}+|T(0)|\left|x-x_{z}^{*}\right|+x^{2} \tag{17}
\end{equation*}
$$

If $g(x)$ is the function on the right hand side of (17), and $C \geq 2$, then $\min _{x \in I} g(x)=g\left(x_{z}^{*}\right)$. We then define

$$
\begin{equation*}
m_{z}=g\left(x_{z}^{*}\right)=a_{z}+x_{z}^{* 2} \tag{18}
\end{equation*}
$$

Since $T(0)$ and $T\left(x_{z}^{*}\right)$ differs in a term which is $O\left(\left|x_{z}^{*}\right|\right)$, the estimate (12) will
follow once we have proved

$$
|1-\overline{\gamma(x)} z| \simeq m_{z}+|T(0)|\left|x-x_{z}^{*}\right|+\left|x-x_{z}^{*}\right|^{2}
$$

which is a consequence (using (13) and (16)) of

$$
\begin{equation*}
a_{z}+|T(0)|\left|x-x_{z}^{*}\right|+x^{2} \simeq m_{z}+|T(0)|\left|x-x_{z}^{*}\right|+\left|x-x_{z}^{*}\right|^{2} \tag{19}
\end{equation*}
$$

The definition of m_{z} already gives the upper estimate of (19), whereas the estimate from below is also a consequence of the definition of m_{z}, since

$$
m_{z}+\left|x-x_{z}^{*}\right|^{2} \preceq m_{z}+x^{2}+x_{z}^{* 2} \preceq m_{z}+x^{2} \preceq a_{z}+|T(0)|\left|x-x_{z}^{*}\right|+x^{2}
$$

and that finishes the proof of (12).
From (12) we also deduce that $m_{z} \simeq \inf _{x \in I}|1-\overline{\gamma(x)} z|$. For the second relation we write (notice that we are in the case $T(0)^{2}>C r_{z}$),

$$
m_{z}+T\left(x_{z}^{*}\right)^{2} \preceq a_{z}+x_{z}^{* 2}+T(0)^{2} \preceq a_{z}+\frac{r_{z}^{2}}{|T(0)|^{2}}+|T(0)|^{2} \preceq r_{z}+T(0)^{2}
$$

The converse estimate is proved in an analogous way.
Remark 2. From the last proof we obtain in particular, that if Γ is complex-tangential then Lemma 5 is valid with $x_{z}^{*}=x_{z}, m_{z}=r_{z}$.

Now we can state the result concerning the behavior of the radial derivatives of the function h_{p}.

Proposition 2. Suppose $p \in\left(\frac{1}{2}, 1\right)$. Then for $z \in U \backslash E$,

$$
\begin{equation*}
R h_{p}(z)=O\left(\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{-1 / 2-p}\right) \tag{20}
\end{equation*}
$$

Proof of Proposition 2. We need a technical lemma concerning real integrals.

Lemma 6. Let $\alpha>0, q>0, m \geq 0, T \in \mathbf{R}$, with $m+T^{2} \neq 0$. Then

$$
\begin{align*}
& \int_{0}^{\pi} \frac{x^{\alpha}}{\left(m+|T| x+x^{2}\right)^{q}} d x \tag{21}\\
& \quad= \begin{cases}O\left(m^{\alpha-q+1}\left(T^{2}+m\right)^{-(\alpha+1) / 2}\right), & \text { if } \alpha<q-1 \\
O\left(\left(T^{2}+m\right)^{(\alpha+1) / 2-q}\right) & \text { if } q-1<\alpha<2 q-1\end{cases} \tag{i}
\end{align*}
$$

Proof of Lemma. We will prove (i) first. If

$$
\varepsilon=\frac{2 m}{|T|+\sqrt{T^{2}+4 m}}
$$

we break the integral on the left hand side of (21) in two parts, corresponding to $x \leq \varepsilon$ and $x \geq \varepsilon$. Hence

$$
\begin{aligned}
\int_{0}^{\pi} & \frac{x^{\alpha}}{\left(m+|T| x+x^{2}\right)^{q}} d x \\
& =\int_{0}^{\varepsilon} \frac{x^{\alpha}}{\left(m+|T| x+x^{2}\right)^{q}} d x+\int_{\varepsilon}^{\pi} \frac{x^{\alpha}}{\left(m+|T| x+x^{2}\right)^{q}} d x \\
& =I+I I .
\end{aligned}
$$

Since

$$
\varepsilon \simeq \frac{m}{\left(m+T^{2}\right)^{1 / 2}}
$$

and in $x \leq \varepsilon, m+|T| x+x^{2} \simeq m, I$ is bounded as follows:

$$
\begin{equation*}
I \preceq \int_{0}^{\varepsilon} \frac{x^{\alpha}}{m^{q}} d x \simeq m^{-q} \varepsilon^{\alpha+1} \simeq m^{\alpha-q+1}\left(T^{2}+m\right)^{\alpha+1 / 2} \tag{22}
\end{equation*}
$$

which is an estimate like (i). In $x \geq \varepsilon, m+|T| x+x^{2} \simeq|T| x+x^{2}$. Hence, II is bounded as follows:

$$
\begin{align*}
I I & \preceq \int_{\varepsilon}^{\pi} \frac{x^{\alpha}}{\left(|T| x+x^{2}\right)^{q}} d x \tag{23}\\
& =|T|^{\alpha-2 q+1} \int_{\varepsilon /|T|}^{\pi /|T|} x^{\alpha-q}(1+x)^{-q} d x
\end{align*}
$$

In order to estimate (23), we distinguish two possibilities
(a)

$$
T^{2} \leq 4 m
$$

(b)

$$
T^{2}>4 m
$$

In case $(\mathrm{a}), \varepsilon \simeq \sqrt{m}$, and in consequence (23) is bounded by

$$
|T|^{\alpha-2 q+1} \int_{\varepsilon /|T|}^{\pi /|T|} x^{\alpha-2 q} d x=O\left(\varepsilon^{\alpha-2 q+1}\right)
$$

which also implies (i) (notice that in case (a), $T^{2}+m \simeq m$). In case (b), $\varepsilon \simeq m /|T|$. Hence, (23) is bounded by

$$
\begin{aligned}
& |T|^{\alpha-2 q+1}\left\{\int_{\varepsilon /|T|}^{1} x^{\alpha-q} d x+\int_{1}^{\pi /|T|} x^{\alpha-2 q} d x\right\} \\
& =|T|^{\alpha-2 q+1}\left(\left(\frac{\varepsilon}{|T|}\right)^{\alpha-q+1}+O(1)\right) \simeq|T|^{-q} \varepsilon^{\alpha-q+1}
\end{aligned}
$$

an estimate that also gives (i).
For (ii), it suffices to use a similar argument of the one done in Lemma 4 since the condition $q-1<\alpha<1$ gives the finiteness of the integral of (21), near 0 and near ∞. \diamond

Following with the proof of Proposition 2, from the definition of h_{p} we obtain

$$
\begin{equation*}
R h_{p}(z)=p \int_{I} \frac{\overline{\gamma(x)} z}{(1-\overline{\gamma(x)} z)^{p+1}} d x \tag{24}
\end{equation*}
$$

Applying (i) of Lemma 6 to $m=m_{z}, T=T\left(x_{z}^{*}\right)$, we obtain

$$
\begin{equation*}
\left|R h_{p}(z)\right|=O\left(m_{z}^{-p}\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{-1 / 2}\right) \tag{25}
\end{equation*}
$$

and the problem is that in general m_{z} and $\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)$ are not of the same type. That is why we distinguish between two possibilities

$$
\begin{equation*}
T\left(x_{z}\right)^{2} \leq C r_{z} \tag{i}
\end{equation*}
$$

where $C>0$ will be chosen later. In case (i), $r_{z} \simeq r_{z}+T\left(x_{z}\right)^{2}$, and since then $x_{z}^{*}=x_{z}$ and $m_{z}=r_{z}$ (see proof of Lemma 5), the estimate (25) gives (20). Hence it suffices to prove (20) in case (ii). Breaking the integral defining h_{p} in two parts,

$$
h_{p}(z)=\int_{I_{z}} \frac{d x}{(1-\overline{\gamma(x)} z)^{p}}+\int_{I \backslash I_{z}} \frac{d x}{(1-\overline{\gamma(x)} z)^{p}}=I+I I,
$$

where $\varepsilon>0$ will be fixed later, and $I_{z}=\left\{x /\left|x-x_{z}\right| \leq \varepsilon\left|T\left(x_{z}\right)\right|\right\}$, we will estimate both parts separately. If ε is sufficiently small and C is chosen conveniently, then in I_{z},

$$
\begin{equation*}
\left|\overline{\gamma^{\prime}(x)} z\right| \simeq\left|T\left(x_{z}\right)\right| \tag{26}
\end{equation*}
$$

since

$$
\begin{aligned}
\overline{\gamma^{\prime}(x) z} & =\overline{\gamma^{\prime}\left(x_{z}\right)} \gamma\left(x_{z}\right)+\left(\overline{\gamma^{\prime}(x)}-\overline{\gamma^{\prime}\left(x_{z}\right)}\right) \gamma\left(x_{z}\right)+\overline{\gamma^{\prime}(x)}\left(z-\gamma\left(x_{z}\right)\right) \\
& =-i T\left(x_{z}\right)+O\left(\left|x-x_{z}\right|\right)+O\left(r_{z}^{1 / 2}\right) \\
& =-i T\left(x_{z}\right)+\left(\varepsilon+\frac{1}{C^{1 / 2}}\right) O\left(\left|T\left(x_{z}\right)\right|\right) .
\end{aligned}
$$

In particular, $\overline{\gamma^{\prime}(x)} z \neq 0$ in I_{z}. Integrating I by parts,

$$
\begin{aligned}
& \quad \begin{aligned}
& \int_{I_{z}} \frac{d x}{(1-\overline{\gamma(x)} z)^{p}} \\
&= \frac{1}{p-1}\left[\frac{1}{\left(\overline{\gamma^{\prime}(x)} z\right)(1-\overline{\gamma(x)} z)^{p-1}}\right]_{x_{z}-\varepsilon \mid T\left(x_{z}| |\right.}^{x_{z}+\varepsilon \mid T\left(x_{z}| |\right.} \\
& \quad+\frac{1}{p-1} \int_{I_{z}} \frac{\overline{\gamma_{z}^{\prime \prime}(x)} z}{\left(\overline{\gamma^{\prime}(x) z}\right)^{2}} \frac{d x}{(1-\overline{\gamma(x)} z)^{p-1}} \\
&= \frac{1}{p-1} \frac{1}{\left(\overline{\gamma^{\prime}\left(x_{z} \pm \varepsilon\left|T\left(x_{z}\right)\right|\right)} z\right)\left(1-\overline{\gamma\left(x_{z} \pm \varepsilon\left|T\left(x_{z}\right)\right|\right)} z\right)^{p-1}} \\
& \quad+\frac{1}{p-1} \int_{I_{2}} \frac{\overline{\gamma^{\prime \prime}(x)} z}{\left(\overline{\gamma^{\prime}(x)} z\right)^{2}} \frac{d x}{(1-\overline{\gamma(x)} z)^{p-1}} \\
&= h_{p}^{1}(z)
\end{aligned} \\
&
\end{aligned}
$$

It can be easily checked that there exists $r_{0}>0$ such that for every point $r z$, $r \geq r_{0}$, in the radius joining 0 and z, the pseudodistance from z to Γ is attained at $\gamma\left(x_{z}\right)$. Hence, it does make sense to take the radial derivative of
h_{p}^{1}, and we obtain

$$
\begin{aligned}
R h_{p}^{1}(z)=\frac{1}{p-1}[\mp & \frac{1}{\left(\overline{\gamma^{\prime}\left(x_{z} \pm \varepsilon\left|T\left(x_{z}\right)\right|\right)} z\right)\left(1-\overline{\gamma\left(x_{z} \pm \varepsilon\left|T\left(x_{z}\right)\right|\right)} z\right)^{p-1}} \\
& \pm \frac{(p-1) \gamma\left(x_{z} \pm \varepsilon\left|T\left(x_{z}\right)\right|\right)}{} \overline{\left(\overline{\gamma^{\prime}\left(x_{z} \pm \varepsilon\left|T\left(x_{z}\right)\right|\right)} z\right)\left(1-\overline{\gamma\left(x_{z} \pm \varepsilon\left|T\left(x_{z}\right)\right|\right)} z\right)^{p}} \\
& -\int_{I_{z}} \frac{\overline{\gamma^{\prime \prime}(x) z}}{\left(\overline{\gamma^{\prime}(x)} z\right)^{2}} \frac{d x}{(1-\overline{\gamma(x)} z)^{p-1}} \\
& +(p-1) \int_{I_{z}} \frac{\overline{\gamma^{\prime \prime}(x)} z}{\left.\overline{\gamma^{\prime}(x)} z\right)^{2}} \frac{d x}{(1-\overline{\gamma(x)} z)^{p}} \\
= & (1)+(2)+(3)+(4) .
\end{aligned}
$$

By Lemma 2 and (26),

$$
\begin{aligned}
\text { (1) } & \preceq \frac{\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1-p}}{\left|T\left(x_{z}\right)\right|} \simeq\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1 / 2-p}, \\
\text { (2) } & \preceq \frac{1}{\left|T\left(x_{z}\right)\right|^{2 p+1}} \simeq\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{-1 / 2-p}, \\
\text { (3), (4) } & \preceq \frac{1}{\left|T\left(x_{z}\right)\right|}\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1-p} \simeq\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1 / 2-p}, \\
\text { (5) } & \preceq \frac{1}{T\left(x_{z}\right)^{2}}\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{-1 / 2-p},
\end{aligned}
$$

where in (4) we have also used Lemma 6. Differentiating $I I$ and applying Lemmas 2 and 4, we obtain

$$
\begin{aligned}
R I I & \preceq \int_{I I_{z}} \frac{d x}{|1-\overline{\gamma(x)} z|^{p+1}} \\
& \preceq \frac{1}{T\left(x_{z}\right)^{2}} \int_{\mathbf{R}} \frac{d x}{|1-\overline{\gamma(x)} z|^{p}} \preceq\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{-1 / 2-p},
\end{aligned}
$$

an estimate which finishes the proof of the lemma.

Remark 3. If γ is of class C^{∞}, the same kind of argument gives that

$$
\left|R^{k} h_{p}(z)\right|=O\left(\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1 / 2-p-k}\right), \quad k \geq 0
$$

and R^{k} is the $k^{\text {th }}$-iterated radial derivative. Then the function $F_{p}=e^{-h_{p}}$ is in $A^{\infty}(B)$ and (see Lemma 3) satisfies $\left|F_{p}\right|<1$ on $\bar{B} \backslash E, F_{p}=1$ on E. That is, E is a (P)-set for $A^{\infty}(B)$. This is also (as we have already said at the introduction) a consequence of $[\mathrm{F}-\mathrm{H}]$, where it has been proved that the peak sets and the local peak sets for $A^{\circ}(B)$ coincide.

Now we can prove the following result.
Theorem 1. Let $\alpha \in\left(0, \frac{1}{2}\right)$, and $p \in\left(\alpha+\frac{1}{2}, 1\right)$. Then $S_{p} f \in \operatorname{Lip}_{\alpha}(B)$ for each $f \in \Lambda_{2 \alpha}(\Gamma)$ and if $\gamma\left(x_{0}\right) \in E, S_{p} f\left(\gamma\left(x_{0}\right)\right)=f\left(x_{0}\right)$. In particular, if $S^{p}=$ $S_{p} \circ \mathscr{E}^{(0)}: \Lambda_{2 \alpha}(E) \rightarrow \operatorname{Lip}_{\alpha}(B)$, where $\mathscr{E}^{(0)}$ is the linear extension operator given by Whitney's extension theorem (see [S1]), then S^{p} is a linear operator that gives the interpolation.

Proof of Theorem 1. If $p \in \Lambda_{2 \alpha}(\Gamma)$, and $p \in\left(\alpha+\frac{1}{2}, 1\right)$, we will see

$$
\begin{equation*}
\left|R S_{p} f(z)\right|=O\left((1-|z|)^{\alpha-1}\right) \tag{27}
\end{equation*}
$$

a condition which implies that $S_{p} f$ lies in $\operatorname{Lip}_{\alpha}(B)$ (see [R, page 107]). Since $\int_{I} K_{p}(x, z) d x=1$ (see Remark 1), (27) is equivalent to

$$
\left|\int_{I}\left(f(x)-f\left(x_{z}^{*}\right)\right) R_{z} K_{p}(x, z) d x\right|=O\left((1-|z|)^{\alpha-1}\right)
$$

provided $z \in U$, and x_{z}^{*} is as in Lemma 5. But

$$
\begin{aligned}
\int_{I}(f(x) & \left.-f\left(x_{z}^{*}\right)\right) R_{z} K_{p}(x, z) d x \\
= & R\left(\frac{1}{h_{p}(z)}\right) \int_{I}\left(f(x)-f\left(x_{z}^{*}\right)\right) \frac{1}{(1-\overline{\gamma(x)} z)^{p}} d x \\
& +\frac{1}{h_{p}(z)} \int_{I}\left(f(x)-f\left(x_{z}^{*}\right)\right) R_{z}\left(\frac{1}{(1-\overline{\gamma(x)} z)^{p}}\right) d x=I+I I
\end{aligned}
$$

and it suffices to obtain estimates like (27) for I and $I I$. Propositions 1, 2, and

Lemma 5 give

$$
R\left(\frac{1}{h_{p}(z)}\right)=O\left(\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{p-3 / 2}\right)
$$

Hence

$$
\begin{aligned}
& I \preceq\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{p-3 / 2} \int_{I} \frac{\left|x-x_{z}^{*}\right|^{2 \alpha}}{|1-\overline{\gamma(x)} z|^{p}} d x \\
& \quad \preceq\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{\alpha-1}
\end{aligned}
$$

where the last estimate is a consequence of Lemma 5, and of (ii) of Lemma 6 (notice that $p-1<\alpha<2 p-1$).

Applying Proposition 2 and (i) of Lemma 6, we get that II is bounded as follows

$$
\begin{aligned}
I I & \preceq\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{p-1 / 2} \int_{I} \frac{\left|x-x_{z}^{*}\right|^{2 \alpha}}{|1-\overline{\gamma(x)} z|^{p+1}} d x \\
& \preceq\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{p-1} m_{z}^{\alpha-p} \\
& \preceq(1-|z|)^{\alpha-1} .
\end{aligned}
$$

Since $m_{z} \succeq 1-|z|$ (see Lemma 5), this finishes the theorem. \diamond

2. The case $\alpha \geq \frac{1}{2}$

In this section we will deal with functions in $\Lambda_{2 \alpha}(E), \alpha \geq \frac{1}{2}$. The techniques that we will use here are more involved than the ones used before. We will consider the functions h_{p} already introduced in last section, but now the parameter p needs to be greater than one. When $p<1$, the estimate $\operatorname{Re} h_{p}(z) \simeq\left|h_{p}(z)\right| \simeq\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1 / 2-p}$ (which implies in particular that $\operatorname{Re} h_{p}>0$ on $\bar{B} \backslash E$) was essential for the proof of the interpolation results. However, if $p>1$ this global result does not hold, and it is necessary to use a different argument based on the ideas of [N].

With the same notations used since now, we introduce the functions

$$
\begin{gather*}
F(z, \gamma(x))=1-\overline{\gamma(x)} z, \quad z \in \bar{B}, x \in I \tag{1}\\
G\left(z, x_{z}, x\right)=F\left(z, \gamma\left(x_{z}\right)\right)+i A(z)\left(x-x_{z}\right)+B(z) \frac{\left(x-x_{z}\right)^{2}}{2} \tag{2}\\
z \in U, x \in \mathbf{R}
\end{gather*}
$$

where $A(z)=\overline{i \gamma^{\prime}\left(x_{z}\right) z}, B(z)=-\overline{\gamma^{\prime \prime}\left(x_{z}\right)} z$. The following lemma holds.
Lemma 1.
(i) $\left|F(z, \gamma(x))-G\left(z, x_{z}, x\right)\right|=O\left(\left|x-x_{z}\right|^{3}\right)$,
(ii) $\operatorname{Re} G\left(z, x_{z}, x\right) \succeq\left|x-x_{z}\right|^{2}$,
(iii) $\exists \delta>0$ such that if $\left|x-x_{z}\right| \leq \delta,|F(z, \gamma(x))| \geq \frac{1}{2}\left|G\left(z, x_{z}, x\right)\right|$, provided $z \in U$.

Proof of Lemma 1. Part (i) is a consequence of the definition of the functions F and G, since G is the second order Taylor's development of F.

Part (ii) is also a consequence of the definition of G, since $i A(z)=0$ (see Lemma 1.2) and $\operatorname{Re} B(z)$ is bounded from below, provided z is closed enough to Γ.

Part (iii) follows from (i) and (ii). \diamond

We need the following result that can be deduced from [N, Theorem 8], using an argument of analytic continuation and induction on k. We state it without proof.

Theorem 1 [N]. Let $Z, B \in \mathbf{C}$, with $\operatorname{Re} Z>0, \operatorname{Re} B>0, A \in \mathbf{R}$, and $k \in \mathbf{N}$. Then

$$
\begin{align*}
& \int_{\mathbf{R}} \frac{x^{k}}{\left(Z+2 i A x+B x^{2}\right)^{p}} d x \tag{3}\\
& =(-1)^{k} A^{k} i^{k} B^{-k-1 / 2}\left(Z+\frac{A^{2}}{B}\right)^{1 / 2-p} \\
& \quad \times\left\{\begin{array}{c}
{[k / 2]} \\
j=0
\end{array}\binom{k}{2 j} A^{-2 j} B^{j} i^{-2 j}\left(Z+\frac{A^{2}}{B}\right)^{j} \delta_{j}(p) C(p-j)\right\}
\end{align*}
$$

provided $p>(k+1) / 2$, where

$$
\begin{gathered}
\delta_{j}(p)=1 \quad \text { if } j=0 \\
\delta_{j}(p)=2^{-j} \frac{(2 j-1) \ldots 1}{(p-1) \ldots(p-j)} \quad \text { if } j \geq 1
\end{gathered}
$$

and where $C(p-j)$, are constants only depending on p and j.

Remark 1. Define the functions

$$
\begin{align*}
H_{p}(z) & =\int_{\mathbf{R}} \frac{d x}{G\left(z, x_{z}, x\right)^{p}}, \quad p>\frac{1}{2} \tag{4}\\
G_{p}(z) & =\int_{\mathbf{R}} \frac{\left(x-x_{z}\right)}{G\left(z, x_{z}, x\right)^{p}} d x, \quad p>1 \\
J_{p}(z) & =\int_{\mathbf{R}} \frac{\left(x-x_{z}\right)^{2}}{G\left(z, x_{z}, x\right)^{p}} d x, \quad p>\frac{3}{2}
\end{align*}
$$

then, in particular, the last theorem gives the following formulas:

$$
\begin{equation*}
H_{p}(z)=2^{p} C(p) B(z)^{-1 / 2}\left(2 F\left(z, \gamma\left(x_{z}\right)\right)+\frac{A(z)^{2}}{B(z)}\right)^{1 / 2-p} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
G_{p}(z)=-i 2^{p} C(p) B(z)^{-3 / 2} A(z)\left(2 F\left(z, \gamma\left(x_{z}\right)\right)+\frac{A(z)^{2}}{B(z)}\right)^{1 / 2-p} \tag{8}
\end{equation*}
$$

(9)

$$
\begin{aligned}
J_{p}(z)= & 2^{p} B(z)^{-5 / 2}\left(2 F\left(z, \gamma\left(x_{z}\right)\right)+\frac{A(z)^{2}}{B(z)}\right)^{1 / 2-p} \\
& \times\left\{\frac{C(p-1)}{2(p-1)} B(z)\left(2 F\left(z, \gamma\left(x_{z}\right)\right)+\frac{A(z)^{2}}{B(z)}\right)-C(p) A(z)^{2}\right\}
\end{aligned}
$$

Remark 2. With a more careful calculation done in the proof of [N , Theorem 8], also based in analytic continuation, it can be proved that defining $H_{p}^{*}, G_{p}^{*}, J_{p}^{*}$ similarly to H_{p}, G_{p}, J_{p} respectively, interchanging x_{z} and x_{z}^{*}, and defining

$$
A^{*}(z)=\overline{i \gamma^{\prime}\left(x_{z}^{*}\right) z}, \quad B^{*}(z)=-\overline{\gamma^{\prime \prime}\left(x_{z}^{*}\right) z}
$$

the corresponding formulas (7), (8) and (9) for $H_{p}^{*}, G_{p}^{*}, J_{p}^{*}$ remain valid.
We can now prove a result concerning the behavior of the function h_{p} near E.

Proposition 1. Let $p \in(1,3)$.
(i) Then there exists a neighborhood W of E in \mathbf{C}^{n} such that

$$
\begin{align*}
h_{p}(z)= & \left(2 F\left(z, \gamma\left(x_{z}\right)\right)+\frac{A(z)^{2}}{B(z)}\right)^{1 / 2-p} \tag{10}\\
& \times\left\{2^{p} C(p) B(z)^{-1 / 2}+o(1)\right\}
\end{align*}
$$

for $z \in(W \cap \bar{B}) \backslash E$ and $d(z, E) \rightarrow 0$, where $C(p)$ is the constant given in (7).
(ii) In particular, from (i) we obtain

$$
\left|h_{p}(z)\right| \simeq\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1 / 2-p} \quad \text { if } z \in(W \cap \bar{B}) \backslash E
$$

(iii) Furthermore, if $p \in(1,2)$, then

$$
\left|R h_{p}(z)\right|=O\left(\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{-1 / 2-p}\right) \quad \text { if } z \in(W \cap \bar{B}) \backslash E
$$

Proof of Proposition 1. We need the following Lemma
Lemma 2. Let

$$
Q(z)=\left(2 F\left(z, \gamma\left(x_{z}\right)\right)+\frac{A(z)^{2}}{B(z)}\right)
$$

Then

$$
\begin{equation*}
|Q(z)| \simeq\left(r_{z}+T\left(x_{z}\right)^{2}\right) \tag{11}
\end{equation*}
$$

for z close enough to E.
Proof of Lemma 2. The upper estimate follows from the fact that $A(z)$ and $T\left(x_{z}\right)$ differ in a term which is $O\left(r_{z}^{1 / 2}\right)$, since then $r_{z}+A(z)^{2} \simeq r_{z}+$ $T\left(x_{z}\right)^{2}$. The estimate from below of $|Q(z)|$ is deduced also using this fact and the fact that $\operatorname{Re} B(z)=-\operatorname{Re} \overline{\gamma^{\prime \prime}\left(x_{z}\right)} z$ is greater than zero, if z is close enough to Γ. \diamond

Following the proof of the proposition, formulas (7) and (11) of Lemma 2 show that it suffices to prove that

$$
\begin{equation*}
\left|h_{p}(z)-H_{p}(z)\right|=o\left(\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1 / 2-p}\right) \quad \text { if } d(z, E) \rightarrow 0 \tag{12}
\end{equation*}
$$

Now we can write

$$
\begin{aligned}
\left|h_{p}(z)-H_{p}(z)\right| \leq & \int_{\left\{x \in I /\left|x-x_{z}\right| \leq \delta\right\}}\left\{\frac{1}{(1-\overline{\gamma(x)} z)^{p}}-\frac{1}{G\left(z, x_{z}, x\right)^{p}}\right\} d x \\
& +\int_{I \backslash\left\{\left|x-x_{z}\right| \leq \delta\right\}} \frac{d x}{|1-\overline{\gamma(x)} z|^{p}}+\int_{\left\{\left|x-x_{z}\right| \geq \delta\right\}} \frac{d x}{\left|G\left(z, x_{z}, x\right)\right|^{p}} \\
= & I+I I+I I I,
\end{aligned}
$$

where $\delta>0$ is as in Lemma 1. As usual we will see that each of the three integrals satisfies an estimate like (12). The two last integrals $I I$ and $I I I$, are bounded, since on one hand $|1-\overline{\gamma(x) z}|$ is bounded from below in $I \backslash\left\{\left|x-x_{z}\right| \leq \delta\right\}$, and on the other hand $p>\frac{1}{2}$ (in fact $p>1$). For the first summand, an argument like the one done in [U] gives

$$
I \leq \int_{\left\{x \in I /\left|x-x_{z}\right| \leq \delta\right\}} \frac{\left|F(z, \gamma(x))-G\left(z, x_{z}, x\right)\right|}{\left|s(x) F(z, \gamma(x))+(1-s(x)) G\left(z, x_{z}, x\right)\right|^{p+1}} d x
$$

where $|s(x)| \leq 1$. Now, by (i) and (iii) of Lemma 1 , this integral is bounded by

$$
\int_{\mathbf{R}} \frac{\left|x-x_{z}\right|^{3}}{|F(z, \gamma(x))|^{p+1}} d x
$$

which (see Lemma 1.2) is bounded by

$$
\int_{\mathbf{R}} \frac{\left|x-x_{z}\right|^{3}}{\left(a_{z}+\left|b_{z}+T\left(x_{z}\right)\left(x-x_{z}\right)\right|+\left(x-x_{z}\right)^{2}\right)^{p+1}} d x
$$

(here $a_{z}=\operatorname{Re}\left(1-\overline{\gamma\left(x_{z}\right)} z\right) b_{z}=\operatorname{Im}\left(1-\overline{\gamma\left(x_{z}\right)} z\right)$). Finally, by Lemma 1.4, this integral is

$$
O\left(\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1-p}\right)
$$

The estimate of (ii) is a consequence of (i) and (11) of Lemma 2. Finally, part (iii) is a consequence of (ii), since

$$
\begin{equation*}
R h_{p}(z)=-p\left(h_{p}(z)-h_{p+1}(z)\right) . \diamond \tag{13}
\end{equation*}
$$

Remark 3. Notice that in (i) we have proved that

$$
\begin{equation*}
\left|h_{p}(z)-H_{p}(z)\right|=O\left(\left(r_{z}+T\left(x_{z}\right)^{2}\right)^{1-p}\right) \tag{14}
\end{equation*}
$$

and that the same holds if we replace H_{p} by H_{p}^{*}.
Notice also that if $S_{p} f(z)$ is defined as in Remark 1.1, but only when $z \in W \cap B$, then $\left.S_{p} f\right|_{E}=f$ for $f \in \Lambda_{2 \alpha}(\Gamma)$, and $p>1, \alpha>1 / 2$.

We can now state a result concerning the local behavior of the operator S_{p}.
Theorem 2. Let $\alpha \in\left(\frac{1}{2}, 1\right)$ and $p \in\left(\frac{3}{2}, \alpha+1\right)$. Then

$$
\begin{equation*}
\left|R S_{p} f(z)\right|=O\left((1-|z|)^{\alpha-1}\right) \quad \text { if } f \in \Lambda_{2 \alpha}(\Gamma), z \in W \cap B \tag{15}
\end{equation*}
$$

Proof of Theorem 2. By (13),

$$
\begin{equation*}
R K_{p}(x, z)=\frac{p h_{p+1}(z)}{h_{p}(z)}\left\{K_{p}(x, z)-K_{p+1}(x, z)\right\} \tag{16}
\end{equation*}
$$

Hence, if $\alpha \in\left(\frac{1}{2}, 1\right), p \in\left(\frac{3}{2}, \alpha+1\right), f \in \Lambda_{2 \alpha}(\Gamma), \alpha>\frac{1}{2}$, and z in $W \cap B$, equalities (13) and (16) give

$$
\begin{align*}
R S_{p} f(z)= & \int_{I}\left(f(x)-f\left(x_{z}^{*}\right)\right) R K_{p}(x, z) d x \tag{17}\\
= & -p f^{\prime}\left(x_{z}^{*}\right) \frac{h_{p+1}(z)}{h_{p}(z)} \int_{I}\left(x-x_{z}^{*}\right)\left\{K_{p}(x, z)-K_{p+1}(x, z)\right\} d x \\
& +\frac{h_{p+1}(z)}{h_{p}(z)} \int_{I} O\left(\left|x-x_{z}^{*}\right|^{2 \alpha}\right) K_{p}(x, z) d x \\
& +\frac{h_{p+1}(z)}{h_{p}(z)} \int_{I} O\left(\left|x-x_{z}^{*}\right|^{2 \alpha}\right) K_{p+1}(x, z) d x \\
= & I+I I+I I
\end{align*}
$$

and we will prove that each one of the summands satisfies an estimate like (15). The estimate of I will follow once we prove

$$
\begin{equation*}
\left|h_{p+1}(z) \int_{I} \frac{\left(x-x_{z}^{*}\right)}{(1-\overline{\gamma(x)} z)^{p}} d x-h_{p}(z) \int_{I} \frac{\left(x-x_{z}^{*}\right)}{(1-\overline{\gamma(x)} z)^{p+1}} d x\right|=O\left(\left|h_{p}(z)\right|^{2}\right) \tag{18}
\end{equation*}
$$

Defining the function

$$
\begin{equation*}
g_{p}^{*}(z)=\int_{I} \frac{\left(x-x_{z}^{*}\right)}{(1-\overline{\gamma(x)} z)^{p}} d x \tag{19}
\end{equation*}
$$

Proposition 1.1 gives that (18) is equivalent to

$$
\begin{equation*}
\left|h_{p+1}(z) g_{p}^{*}(z)-h_{p}(z) g_{p+1}^{*}(z)\right|=O\left(\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{1-2 p}\right) \tag{20}
\end{equation*}
$$

Now a similar argument to the one done in part (i) of Proposition 1, gives that

$$
\begin{equation*}
g_{p}^{*}(z)=G_{p}^{*}(z)+O\left(\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{3 / 2-p}\right) \tag{21}
\end{equation*}
$$

Putting together this formula and the corresponding one for h_{p} (see Proposition 1 and Remark 3) we get

$$
\begin{aligned}
& \left|h_{p+1}(z) g_{p}^{*}(z)-h_{p}(z) g_{p+1}^{*}(z)\right| \\
& \quad=\left|H_{p+1}^{*}(z) G_{p}^{*}(z)-H_{p}^{*}(z) G_{p+1}^{*}(z)\right|+O\left(\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{1-2 p}\right)
\end{aligned}
$$

which is $O\left(\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{1-2 p}\right)$, since by formulas (7) and (8), and Remark 2,

$$
H_{p+1}^{*}(z) G_{p}^{*}(z)-H_{p}^{*}(z) G_{p+1}^{*}(z)=0
$$

For II, using the estimate of h_{p} given in Proposition 1, and Lemma 1.6, we obtain

$$
\begin{gathered}
I I=O\left(\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{p-1 / 2}\right) \int_{I} \frac{\left|x-x_{z}^{*}\right|^{2 \alpha}}{|1-\overline{\gamma(x)} z|^{p+1}} d x \\
\int_{I} \frac{\left|x-x_{z}^{*}\right|^{2 \alpha}}{|1-\overline{\gamma(x)} z|^{p+1}} d x \\
\preceq \begin{cases}m_{z}^{2 \alpha-p}\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{-\alpha-1 / 2} & \text { if } 2 \alpha<p \\
\left(m_{z}+T\left(x_{z}^{*}\right)^{2}\right)^{\alpha-1 / 2-p} & \text { if } p<2 \alpha<2 p+1,\end{cases}
\end{gathered}
$$

estimates which in both cases $(p<\alpha+1)$ give $I I=O\left((1-|z|)^{\alpha-1}\right)$.
The estimate of $I I I$ follows from Proposition 1 and (ii) of Lemma 1.6.

In particular we have the following:
Corollary 2. If $\alpha \in\left(\frac{1}{2}, 1\right)$ and $p \in\left(\frac{3}{2}, 1\right)$ there exists a neighborhood of E in \mathbf{C}^{n} and a linear operator
$\tilde{S}^{p}: \Lambda_{2 \alpha}(E) \rightarrow H(W \cap B) \cap C(W \cap \bar{B}) \cap\left\{h /|R h(z)|=O\left((1-|z|)^{\alpha-1}\right)\right\}$
with $\tilde{S}^{p} f\left(\gamma\left(x_{0}\right)\right)=f\left(x_{0}\right)$ for each $x_{0} \in \gamma^{-1}(E)$.
Proof of Corollary 2. If $\alpha \in\left(\frac{1}{2}, 1\right)$, it suffices to consider the composition of the operators $S_{p}, p \in\left(\frac{3}{2}, \alpha+1\right)$ with the linear extension operator E given by Whitney's theorem.

Remark 4. Notice that the regularity of the extension operators E, give that $\tilde{S}^{p} f$ is of class C^{∞} in $W \cap(\bar{B} \backslash E)$.

Now we will see that we can extend these linear operators to the whole $\operatorname{Lip}_{\alpha}(B)$, by solving a suitable $\bar{\partial}$-equation.

Theorem 3. (i) If $\alpha \in\left(\frac{1}{2}, 1\right)$, and $p \in\left(\frac{3}{2}, 1\right)$ then there exists a linear operator

$$
S^{p}: \Lambda_{2 \alpha}(E) \rightarrow \operatorname{Lip}_{\alpha}(B)
$$

such that $S^{p} f\left(\gamma\left(x_{0}\right)\right)=f\left(x_{0}\right)$, for each $x_{0} \in \gamma^{-1}(E)$.
(ii) Furthermore, $S^{p} f \circ \gamma$ is differentiable on $\gamma^{-1}(E)$ and for each $x_{0} \in$ $\gamma^{-1}(E)$,

$$
\frac{d}{d x} S^{p} f\left(\gamma\left(x_{0}\right)\right)=\frac{\lambda}{\lambda+i T^{\prime}\left(x_{0}\right)} f^{\prime}\left(x_{0}\right)
$$

(recall that λ is given by the parametrization of γ).
Proof of Theorem 3. If $\alpha \in\left(\frac{1}{2}, 1\right)$, let $p \in\left(\frac{3}{2}, 1\right)$ and W be the corresponding neighborhood given in Proposition 1. We will also consider the operator \tilde{S}^{p} given in Corollary 2. Let V be another neighborhood of E in \mathbf{C}^{n} with $\bar{V} \subset W$ (without loss of generality we will suppose that both neighborhoods are simply connected). Let χ be a C^{∞} function in \mathbf{C}^{n}, such that $\chi=1$ on V, and supp $\chi \cap B \subset W \cap B$. Then the function $\chi S f$ is well defined in B and satisfies

$$
\chi \tilde{S}^{p} f_{\mid V \cap \bar{B}}=\tilde{S}^{p} f_{V \cap \bar{B}}
$$

At this point, we need the following result.

Lemma 3. There exists

$$
\psi \in C^{\infty}(\bar{B} \backslash E) \cap A^{1}(B)
$$

with $\psi^{-1}(0)=E$, and $\nabla \psi_{\mid E}=0$, where

$$
\nabla \psi=\left(\frac{\partial \psi}{\partial z_{1}}, \ldots, \frac{\partial \psi}{\partial z_{n}}\right)
$$

Proof of Lemma 3. It suffices to consider the function $\psi=1 / h_{q}^{k}$, where $q<1$ and $k \geq 1$ satisfy $(k+2) / 2 k<q . \diamond$

Following the proof of the theorem, since (see Remark 3) $\tilde{S}^{p} f$ is of class C^{∞} in $W \cap(\bar{B} \backslash E)$, and $\bar{\partial} \chi=0$ on $V \cap \bar{B}$, we have that the $(0,1)$-form $\tilde{S}^{p} f(\bar{\partial} \chi / \psi)$ is of class C^{∞} on \bar{B}. Hence (see [R, page 357] and [B]), there exists a linear operator U that solves the $\bar{\partial}$-equation $\bar{\partial} u=\tilde{S}^{p} f(\bar{\partial} \chi / \psi)$, and such that the function $u=U\left(\tilde{S}^{p} f(\bar{\partial} \chi / \psi)\right)$ is of class C^{∞} on \bar{B}. Now, defining the holomorphic function in B by $v^{p}=\chi \tilde{S}^{p} f-\psi u$, it can immediate be verified that v^{p} is in $\operatorname{Lip}_{\alpha}(B)$ (see [R, page 107]). Hence, it suffices to consider the linear operator given by $S^{p} f=v$.

For (ii), it is enough to prove (see [R, page 106] and (i)) that if $\gamma\left(x_{0}\right)$ is in $E, f \in \Lambda_{2 \alpha}(\Gamma)$ and $p \in\left(\frac{3}{2}, \alpha+1\right)$, then

$$
\begin{equation*}
\lim _{r \rightarrow 1, r \gamma\left(x_{0}\right) \in W \cap B} R_{\nu(z)} S_{p} f(z)=\frac{\lambda}{\lambda+i T^{\prime}\left(x_{0}\right)} f^{\prime}\left(x_{0}\right) \tag{22}
\end{equation*}
$$

where W is the neighborhood of E given in Proposition $1, \nu(z)=r \gamma^{\prime}\left(x_{0}\right)$, and for each $F \in H(B)$,

$$
R_{\nu(z)} F(z)=\sum_{i=1}^{n} \frac{\partial F}{\partial z_{i}}(z) \nu_{i}
$$

Using Taylor's development on f, we obtain

$$
\begin{aligned}
R_{\nu(z)} S_{p} f(z)= & \int_{I}\left(f(x)-f\left(x_{0}\right)\right) R_{\nu(z)}\left(K_{p}(x, z)\right) d x \\
& +\int_{I} O\left(\left|x-x_{0}\right|^{2 \alpha}\right) R_{\nu(z)}\left(K_{p}(x, z)\right) d x \\
= & I+I I
\end{aligned}
$$

and we will see that

$$
\lim _{r \rightarrow 1, r \gamma\left(x_{0}\right) \in W \cap B} I=\frac{\lambda}{\lambda+i T^{\prime}\left(x_{0}\right)} f^{\prime}\left(x_{0}\right)
$$

whereas the limit of $I I$ is zero. Using the definition of $R_{\nu(z)}$, we obtain

$$
I=\frac{p f^{\prime}\left(x_{0}\right)}{h_{p}(z)^{2}}(X Y-Z V)
$$

where

$$
\begin{aligned}
X & =h_{p}(z) \\
Y & =\int_{I} \frac{(\nu(z) \overline{\gamma(x)})\left(x-x_{0}\right)}{(1-\overline{\gamma(x)} z)^{p+1}} d x \\
Z & =\int_{I} \frac{(\nu(z) \overline{\gamma(x)})}{(1-\overline{\gamma(x)} z)^{p+1}} d x
\end{aligned}
$$

and

$$
V=g_{p}(z)
$$

(notice that, shrinking W if necessary, Lemmas 1.2 and 1.5 give $x_{0}=x_{z}=x_{z}^{*}$).
Defining

$$
j_{p}(z)=\int_{I} \frac{\left(x-x_{0}\right)^{2}}{(1-\overline{\gamma(x)} z)^{p}} d x, \quad p>\frac{3}{2}
$$

and using Taylor's development, we obtain

$$
\begin{aligned}
& Y=\left(\nu(z) \overline{\gamma\left(x_{0}\right)}\right) g_{p+1}\left(x_{0}\right)+\left(\nu(z) \overline{\gamma^{\prime}\left(x_{0}\right)}\right) j_{p+1}(z)+O\left((1-r)^{1 / 2-p}\right) \\
& Z=\left(\nu(z) \overline{\gamma\left(x_{0}\right)}\right) h_{p+1}(z)+\left(\nu(z) \overline{\gamma^{\prime}\left(x_{0}\right)}\right) g_{p+1}(z)+O\left((1-r)^{1 / 2-p}\right)
\end{aligned}
$$

Hence

$$
\begin{align*}
X Y-Z V= & \left(\nu(z) \overline{\gamma\left(x_{0}\right)}\right)\left\{h_{p}(z) g_{p+1}(z)-g_{p}(z) h_{p+1}(z)\right\} \tag{23}\\
& +\left(\nu(z) \overline{\gamma^{\prime}\left(x_{0}\right)}\right)\left\{h_{p}(z) j_{p+1}(z)-g_{p}(z) g_{p+1}(z)\right\} \\
& +O\left((1-r)^{3 / 2-2 p}\right)
\end{align*}
$$

By (20) and the fact that

$$
\nu(z) \overline{\gamma\left(x_{0}\right)}=O\left((1-r)^{1 / 2}\right) \quad\left(\nu(z) \overline{\gamma\left(x_{0}\right)}=0\right)
$$

we see that the first summand of (23) is

$$
O\left((1-r)^{1 / 2}\right) O\left(\left|h_{p}(z)\right|^{2}\right)=o\left(\left|h_{p}(z)\right|^{2}\right)
$$

In consequence (notice that $\nu(z) \overline{\gamma^{\prime}\left(x_{0}\right)}=r \lambda$),

$$
\left.X Y-Z V=r \lambda\left\{h_{p}(z) j_{p+1}(z)-g_{p}(z) g_{p+1}(z)\right\}+o\left(\left|h_{p}(z)\right|^{2}\right) \cdot\right)
$$

The same kind of argument as in Proposition 1 gives

$$
j_{p+1}(z)=J_{p+1}(z)+O\left((1-r)^{1-p}\right)
$$

Using (7), (8) and (9), we obtain

$$
\begin{aligned}
& \left\{h_{p}(z) j_{p+1}(z)+g_{p}(z) g_{p+1}(z)\right\} \\
& \qquad=\frac{2^{2 p}}{p} C(p)^{2} B(z)^{-2}\left(2 F\left(z, \gamma\left(x_{0}\right)\right)+\frac{A(z)^{2}}{B(z)}\right)^{1-2 p} \\
& \\
& \quad+O\left((1-r)^{3 / 2-2 p}\right)
\end{aligned}
$$

Consequently, I is equal to

$$
\begin{aligned}
& \frac{r \lambda f^{\prime}\left(x_{0}\right) 2^{2 p} C(p)^{2} B(z)^{-2}\left(2 F\left(z, \gamma\left(x_{0}\right)\right)+\frac{A(z)^{2}}{B(z)}\right)^{1-2 p}}{2^{2 p} C(p)^{2} B(z)^{-1}\left(2 F\left(z, \gamma\left(x_{0}\right)\right)+\frac{A(z)^{2}}{B(z)}\right)^{1-2 p}+O\left((1-r)^{3 / 2-2 p}\right.} \\
& \quad+o(1)
\end{aligned}
$$

Letting $r \rightarrow 1$, the definition of B, gives

$$
\lim _{r \rightarrow 1} I=\frac{\lambda}{-\overline{\gamma^{\prime \prime}\left(x_{0}\right)} \gamma\left(x_{0}\right)}=\frac{\lambda}{\lambda+i T^{\prime}\left(x_{0}\right)}
$$

Now we will see that $\lim _{r \rightarrow 1} I I=0$. We write

$$
\begin{aligned}
|I I|= & \left|\int_{I} o\left(\left|x-x_{0}\right|^{2 \alpha}\right) R_{\nu(z)}\left(K_{p}(x, z)\right) d x\right| \\
\preceq & \frac{\left|R_{\nu(z)}\right|}{\left|h_{p}(z)\right|^{2}} \int_{I} \frac{\left|x-x_{0}\right|^{2 \alpha}}{|1-\overline{\gamma(x)} z|^{p}} d x \\
& +\frac{1}{\left|h_{p}(z)\right|} \int_{I}^{\left|x-x_{0}\right|^{2 \alpha}(\nu(z) \overline{\gamma(x)})} \\
|1-\overline{\gamma(x)} z|^{p+1} & \mid x \\
= & I I I+I V
\end{aligned}
$$

and we will estimate each one separately. For $I V$, we will use Proposition 1, and the fact that

$$
|\nu(z) \overline{\gamma(x)}| \preceq|z-\gamma(x)|+\left|x-x_{0}\right| \preceq|1-\overline{\gamma(x)} z|^{1 / 2} .
$$

since $T\left(x_{0}\right)=0$, to obtain

$$
I V \preceq(1-r)^{p-1 / 2} \int_{I} \frac{\left|x-x_{0}\right|^{2 \alpha}}{|1-\overline{\gamma(x)} z|^{p+1 / 2}} d x \preceq(1-r)^{\alpha-1 / 2},
$$

where in the last estimate we have used (ii) of Lemma 1.6 (note that $2 p-\frac{1}{2}<2 \alpha<2 p$). And this converges to zero, when $r \rightarrow 1$.

For the estimate of III, we will first obtain a bound of $R_{\nu(z)}$. We write

$$
\begin{aligned}
R_{\nu(z)}= & p \int_{I} \frac{(\nu(z) \overline{\gamma(x)})}{(1-\overline{\gamma(x)} z)^{p+1}} d x \\
= & p\left(\nu(z) \overline{\gamma\left(x_{0}\right)}\right) \int_{I} \frac{d x}{(1-\overline{\gamma(x)} z)^{p+1}} \\
& +p\left(\nu(z) \overline{\gamma\left(x_{0}\right)}\right) \int_{I} \frac{\left(x-x_{0}\right)}{(1-\overline{\gamma(x)} z)^{p+1}} d x \\
& +\int_{I} \frac{O\left(\left|x-x_{0}\right|^{2}\right)}{|1-\overline{\gamma(x)} z|^{p+1}} d x \\
= & V+V I+V I I .
\end{aligned}
$$

Since $T\left(x_{0}\right)=0$, we have

$$
V \preceq\left|\nu(z)-\nu\left(\gamma\left(x_{0}\right)\right)\right|\left|h_{p+1}(z)\right| \preceq(1-r)^{-p} .
$$

For VI, formula (8) and an argument like the one used in Theorem 2, give

$$
V I \preceq\left|g_{p+1}(z)\right| \preceq(1-r)^{-p} .
$$

And (ii) of Lemma 1.6 (note that $p<2<2 p+1$), gives

$$
V I I \preceq(1-r)^{1 / 2-p} .
$$

Hence $\left|R_{\nu(z)}\right| \preceq(1-r)^{-p}$, and

$$
I I I \preceq(1-r)^{p-1} \int_{I} \frac{\left|x-x_{0}\right|^{2 \alpha}}{|1-\overline{\gamma(x)} z|^{p+1}} d x \preceq(1-r)^{\alpha-1 / 2}
$$

an expression that also converges to zero, when $r \rightarrow 1$. \diamond
Theorem 1.1 of the last section, and Theorem 3 finishes the proof of Theorem A stated in the introduction, and also give the corresponding Corollary A.

Now we will give the proof of Corollary B.
Proof of corollary B. Let $\alpha_{0}<\frac{1}{2}$ and $\alpha_{1}>\frac{1}{2}$. Since Γ is complex-tangential, it is easy to check that the operators S^{p}, with $\frac{3}{2}<p<2$ are also interpolation operators for $\operatorname{Lip}_{\alpha_{0}}(B)$ (see Remark 1.2). In particular, there exists a linear interpolation operator S^{p}, which maps

$$
\Lambda_{2 \alpha_{0}}(\Gamma) \rightarrow L i p_{\alpha_{0}}(B) \quad \text { and } \quad \Lambda_{2 \alpha_{1}}(\Gamma) \rightarrow L i p_{\alpha_{1}}(B)
$$

It follows from the real interpolation method and the fact that these Lipschitz spaces are Besov spaces (see [B-L, page 153]) that it maps $\Lambda_{2 \alpha}(\Gamma) \rightarrow \operatorname{Lip}_{\alpha}(B)$, for each $\alpha \in\left(\alpha_{0}, \alpha_{1}\right)$ and it suffices to take $\alpha=\frac{1}{2}$. \diamond

References

[B-L] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, New York, 1976.
[B] J. Bruna, Nucleos de Cauchy en dominios estrictamente pseudoconvexos y operadores integrales que invierten la ecuacion $\bar{\partial}$, Contribuciones matematicas en honor de Luis Vigil, Univ. de Zaragoza, 1984.
[B-O] J. Bruna and J.M. Ortega, Interpolation by holomorphic functions smooth to the boundary in the unit ball of \mathbf{C}^{n}, Math. Ann., vol. 274 (1986), 527-575.
[F-H] J.E. Fornaess and B.S. Henriksen, Characterization of global peak sets for $A^{\infty}(D)$, Math. Ann., vol. 259 (1982), pp. 125-130.
[N] A. Nagel, Smooth zero sets and interpolation sets for some algebras of holomorphic functions on strictly pseudoconvex domains, Duke Math. J., vol. 43 (1976), 323-347.
[R] W. Rudin, Function theory in the unit ball of \mathbf{C}^{n}, Springer-Verlag, New York, 1980.
[S1] E. Stein, Singular integrals and differentiability properties of functions, Princeton, 1970.
\qquad , Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc., vol. 79 (1973), pp. 440-445.
[U] J. UbøE, Smooth interpolation sets, A study on an article by A. Nagel, preprint, 1985.
Universitat de Barcelona
Barcelona, Spain

[^0]: Received June 20, 1988.
 ${ }^{1}$ This work has been supported in part by a grant from the C.I.C.Y.T.

