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INTERPOLATION SETS FOR LIPSCHITZ FUNCTIONS ON
CURVES OF THE UNIT SPHERE

BY

CARME CASCANTE

Introduction and statement of results

Let B denote the unit ball in Cn, and S its boundary. For a (0, 1],
Lip,(B) will denote the space of holomorphic functions in B satisfying a
Lipschitz condition of order a with respect to the Euclidean distance. For a
closed set I c R, and 0 < a < 1, A(I)will denote the space of Lipschitz
functions on I, and AI(I) the Zygmund class.
We also consider the Koranyi pseudodistance d(z,w)= l1- 2wl, for

z, w S, where
n

4 E iWi"
i=1

This defines a pseudodistance o_nly on S, but we will as well consider it when
one of the two variables is on B.
We will work with a simple (without intersections) periodic curve of class

C3
3" R S. With a suitable parametrization (arc-length plus a dilatation)

we will suppose from now on that 3’ is 2zr-periodic and that there exists
A > 0 such that for each t, 13"(t)[2 A. We will write I [- 7r, zr] and
F 3"(1). We will not distinguish between 3’(t) and its corresponding param-
eter on I.

Related to 3’ we introduce the index of transversality, T: I R, given by

(1) -iT(x) =3"(x) 3"(x), x I.

Complex-tangential curves (i.e. 3"(t) Pv(t) where Pv(t) is the complex-
tangential space at 3’(t)) correspond to T 0 and transverse curves to
T(x)l >_ M. We introduce the set E of complex-tangential points of F, given
by

(2) E 3"({x liT(x) 0}) {" IITF P}
where TCF is the tangent space of F at ’.
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As it is well known, complex-tangential directions are, in certain sense,
twice as regular as the others. In fact (see [R] and [S1]), it can be proved that
the restriction to E of each function in Lip,(B), a < 1 is in A2,(E). Thus it
is natural to consider the following definition.

DEFINITION. A closed set E c S is an interpolation set for Lip(B)
(0 < a < 1), if for any f AE,(E), there exists F Lip,(B) such that

Fie f.

Now we can state our main result.

THEOREM A. IrE is the set ofcomplex-tangential points of F and a (0, 1),
4:7 then there exists S" AE(E) - Lip(B) a linear operator, satisfying

SflE f for each f AE(E). In particular, E is an interpolation set for
Lip,(B).

In case y is of class Coo, we deduce from the proof of theorem A, that E is
also a peak set for A(B), the algebra of holomorphic functions in B, of class
C(B). This result is also a consequence of [F-HI, where it has been proved
that the peak sets and the local peak sets for Aoo(B) coincide, and from the
fact (see [R]) that E is locally included in complex-tangential manifolds.
As an immediate corollary to theorem A, we obtain:

Lip,(B)IE A2c(E).COROLLARY A. For each a < 1, a 4= -,

These results have already been proved by [B-O] for complex-tangential
curves. Our approach in proving them is completely different from the one
used in [B-O], and permits for complex-tangential curves to obtain the
extreme case a 1/2, which was not covered by the methods of [B-O]. More
precisely, the following holds:

COROLLARY B. If F is complex-tangential, there exists S: AI(F)-
Lipl/2(B) a linear operator satisfying Sflr ffor each f AI(F). In particular,
E is an interpolation set for Lipl/2(B) and LiPl/E(B)lr AI(F).

The proof of theorem A is essentially different for a < 5 and a > 5 and
we will use some of the techniques introduced in [N].

In case a > 1/2, the function Sfo y, where f A2,(E) is differentiable at
each point of E (see [R]), and we obtain an explicit formula for the
derivative, in terms of the index of transversality T already introduced.

Finally, Corollary B will be deduced from the proof of Theorem A, using
real interpolation methods.
As final remarks on notation, we denote C all the constants, that may

change from one occurrence to another, we write x _. y or x O(y) if there
exists M > 0 such that x < My and x y if x-<y and y-<x.
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1. Preliminary results. The case

In this section we will give the principal tools we need, as well as the proof
of Theorem A, when a < 3. We omit the proof of the following elementary
lemma.

LEMMA 1. y(x) 3’(Y)I Ix Y I, provided x I, and Ix Y <

The next result gives an estimate of the Koranyi pseudodistance in a
neighborhood of the curve F, in terms of a suitable projection.

LEMMA 2. There exists e > 0 so that for each z in U {z B/d(z, F) < e}
there exists a unique 3"(xz) F, Ixzl <- r, with Re 3"(Xz) z O, and such that

(3) [1 3’(x)z Re(1 3’(Xz)z)
+ IIm(1 3’(Xz)z) + T(Xz)(X Xz) + [x Xz[ 2

provided Ix Xz <- 7r. In particular,

I1 (x)z I-<[1 (Xz) z /l T(xz) llx Xzl / Ix Xzl

Proof of Lemma 2. Given z B, let 3’(xz) be a point in F where the
Euclidean distance from z to F is attained. Then

Re3"(x) (z 3"(Xz) ) O,

and in particular, Re3"(Xz)Z 0. Taking z closed enough to F, we also
obtain the uniqueness of y(Xz).

Using Taylor’s development,

(4) 1 3"(x) z 1 3"(xz) z (3"(Xzi z)(x Xz)

2 + O(Ix Xzl3).
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Taking modules we get

(5)

I1 y(Xz)z[ Re(1 y(Xz)z)- Re(y;’(Xz)Z (x -Xz)2

2 +o(ix Xzl’ll
+ Im(1 3’(x) z) + T(x)(x Xz)

-Im(y’(Xz) (z y(Xz))(x -Xz)

im(y,,(x))( x -x)2 + O(Ix Xzt)

This estimate and the fact that

IIm(y(Xz) (z y(Xz))(x -Xz) O(Iz y(Xz)la + Ix-xl e)
o( o(1- /

give the upper estimate of (3).
By differentiating (1), there exists e > 0 with SUPd(,r) Re 3’"(x) z > 0.

Hence

(6)

11 y(x)zl__. Re(1 y(Xz)z) + [x x[ 2

O(Ix xl 3) + sllm(X y(xz)Z) + T(xz)(X Xz)

--s Im(y’(Xz) (z y(x))(x -Xz)

Im(V"(Z)) ( z)
2 + O(Ix Xzl )

>- Re(1 3’(Xz) z) + Ix Xz] 2

O([x Xz[ 3) + s[Im(X y(Xz)z)

2 Iz-Y(xz)l + 2 + 2

where 0 < s < 1. Choosing s conveniently, we may thus obtain the estimate
from below, whenever Ix -xz] < 8 (8 > 0 small enough). And this finishes
the lemma, since in Ix- Xzl > 8 both quantities that appear in (3) do not
vanish (see Lemma 1).
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For p > 0, let hp be as in [N] the holomorphic function in B given by

(7) zeB\F.

Then the following estimate of hp holds"

LEMMA 3. Let p (0, 1). Then

(8)
ax

Rehp(z) =lh(z)l
I1 (x)

Proof ofLemma 3. If x I and z B, then Re(1 y(x)z) > 0. Hence

for each p (0, 1).

We can now state a result concerning the boundary behavior of hp.

PROPOSITION 1. /fp (1/2, 1), then

(9) Ih,()l (r + T(xz)2) 1/2-p, z B\E-

where rz 1 3/(Xz) z l.

Proof of Proposition 1. The estimate from below of (9) follows from
Lemma (3) of Lemma 2, whereas the upper estimate is a consequence of
Lemma 2 and the following technical result concerning real integrals (putting
a Re(1 y(Xz)z), bz Im(1 y(Xz)z), T T(xz)).

LEMMA 4.
Then

Letp (1/2, 1)and a > O, b, T R, satisfying a + bl + T2 > 0.

f+oo a (((10)
(a + Ib + rxl + x2);

O a + Ibl + T2)l/2-P)

Proof of Lemma 4. Denoting by Ip(a, b, T) the integral of (10), it is
immediate to verify that for each h > 0, Ip(ha, Xb, 1/2T) hl/2-Plp(a, b, T).
Hence, it suffices to prove that the function Ip is continuous on the compact
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set

K {(a,b,T)/O <_ a < 1, b,T [-1,1], a + Ibl + ITI 1}.

And this continuity is a consequence of the finiteness of the integral near
zero(p< 1),andnear(p> 1/2).

Remark 1. Defining

(11) spy(z) flKp(x,z)f(x) dx, f c(r),

where

1 1
Kp(x, z) hp(z) (1 y(x) z)

p’

Lemma 3 and Proposition 1, give that spy A(B) and interpolates f on E,
so that E is an interpolation set for A(B). This could be also deduced from
[N], since the set of complex tangential points of F is locally included in
complex-tangential manifolds of the unit sphere (see [R]).
We need to obtain estimates of the radial derivative Rhp of the function

hp. However, the methods used until now, based on the projection already
obtained in Lemma 2, do not permit to get the desired bounds (essentially
because the exponent of (1- y(x)z) in Rh is greater than one). The
following lemma gives a more accurate projection onto the curve.

LEMMA 5. There exists e > 0 so thatfor each z in U {z B/d(z, F) < e},
there exists 7(Xz*) F, IXz*l -< zr, and mz m(z) R, such that

(12) I1 -y(x)z[ =mz +lr(xz*)l Ix-X*zl + Ix-X*zl ,
provided Ix Xz < 7r where

mz infx,[1 (x)z and (mz + T(x*z)) (rz + T(xz)2).

Proof ofLemma 5.
that

In Lemma 2 we have obtained a point y(Xz) F, such

(13) I1 y(x)z Re(1 ,(Xz)z)
+ Jim(1 7(Xz) z) + r( Xz)( X Xz) + Ix Xzl
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Without loss of generality, we can suppose that xz 0. We let

az=Re(1-y(O) z), bz=Im(1-y(O) z),
and distinguish two possibilities:

(i) T(0) 2 < Crz,

(ii) T(0) 2 > Crz

where C > 0 is a constant that will be fixed later. In case (i), it suffices to
choose Xz* 0, mz rz. Writing

[1 W(x) z __.mz + IT(0)I Ixl + x =,
we get the upper estimate of (12). For the estimate from below, it suffices to
choose e > 0 and k > 1 such that

(14) e(G + IT(O)I ]x[) < k(x 2 + az + Ibz + T(O)xl),
since az + [bz + T(0) + x
and k> lwith

2 X 2. And (14) will follow if there exists e > 0

(15) kx2 + (1 e)rz > (1 + e)lT(0)l Ixl

If e and r/are chosen satisfying (1 + e)C r/(1 e), then from (i) we obtain

(1 + e)lT(O)[ Ixl < (1 + e)qx2 + (1 e)r,

estimate that gives (15) with k (1 + e)r/. That finishes the case (i). For (ii),
* be a real number satisfyinglet Xz

(16) bz + T(O)x* 0

Choosing C sufficiently big, formula (16) gives that Xz* is in I. From (16)we
also get that

(17) az + Ibz + T(0)xl + x2 az + [Z(0) Ix Xz*l + x2

If g(x) is the function on the right hand side of (17), and C > 2, then
minxig(x) g(X*z). We then define

(18) mz g(x*) az + x* 2.

Since T(0) and T(x*z) differs in a term which is O(Ixz* I), the estimate (12)will
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follow once we have proved

l1 y(x) z[ mz +IT(0)[ Ix Xz*] + Ix Xz*l 2,

which is a consequence (using (13) and (16)) of

(19) az +IT(0)[ Ix -Xz*l +xz mz +lZ(0)l Ix -x*l + Ix x*l 2.

The definition of mz already gives the upper estimate of (19), whereas the
estimate from below is also a consequence of the definition of mz, since

, 2 X 2 ,2 2 , 2mz+ IX-Xzl _.mz+ +Xz "<mz+X az+lT(O)llx-xzl +x,

and that finishes the proof of (12).
From (12) we also deduce that mz infxiI1 y(x)zl. For the second

relation we write (notice that we are in the case T(0)2 > Cry),

2

[2* ._az + xz + az +IT(0) _.rz + T(0)2m + T(xz)2 ,z T(0)2 .< + rz
Ir(O)

The converse estimate is proved in an analogous way.

Remark 2. From the last proof we obtain in particular, that if F is
complex-tangential then Lemma 5 is valid with xz Xz, mz rz.
Now we can state the result concerning the behavior of the radial deriva-

tives of the function hp.

PROPOSITION 2. Suppose p (1/2, 1). Then for z U \ E,

(20) Rhp( z) O((rz + T( xz)2)

Proof of Proposition
integrals.

2. We need a technical lemma concerning real

LEMMA 6. Let a > 0, q > 0, m _> 0, T R, with m + T2 O. Then

Xa
(21)

(m + ITIx + x2)

O(( T2 + m)
(’+ n/2-q)

if a<q-1 (i)

ifq- 1 < a < 2q- 1 (ii)
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Proof of Lemma. We will prove (i) first. If

2m

TI + V/T2+ 4m

we break the integral on the left hand side of (21) in two parts, corresponding
tox<e and x>e. Hence

Since

X

(m + IZlx + x2)
q dx

X ferr X

m + IZlx + x2)
q dx q-

(m + IZlx + x2)
dx

=I+H.

m

(m + T2) 1/2

and in x < e, rn + TIx / x 2 m, I is bounded as follows:

(22)
Xa

I dx m-qea+ ma-q+ I(T2 + m)’+ 1/2

which is an estimate like (i). In x > e, rn + TIx + X2 TIx + X 2. Hence, H
is bounded as follows:

(23)

In order to estimate (23), we distinguish two possibilities

(a) T2 < 4m,

(b) T2 > 4m.
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In case (a), e V-, and in consequence (23) is bounded by

ITI"-q+l f/Irtx"-:q dx O(/a-2q+l),
"e/ITI

which also implies (i) (notice that in case (a), T2 + rn m). In case (b),
e m/I TI. Hence, (23) is bounded by

an estimate that also gives (i).
For (ii), it suffices to use a similar argument of the one done in Lemma 4

since the condition q 1 < a < 1 gives the finiteness of the integral of (21),
near 0 and near .

Following with the proof of Proposition 2, from the definition of hp
obtain

we

(24) f ( x)z dxRhp(z)-p
(1 /’’)p+

Applying (i) of Lemma 6 to m mz, T T(xz*), we obtain

(25) IRhp(z)l O(m-P(mz + T(x*z)2)-l/2),
and the problem is that in general mz and (mz + T(x*z)2) are not of the
same type. That is why we distinguish between two possibilities

(i) T( xz) <_ CG,

(ii) T( xz) 2 > Cr

where C > 0 will be chosen later. In case (i), rz rz + T(xz)2, and since then
X*z Xz and mz rz (see proof of Lemma 5), the estimate (25) gives (20).
Hence it suffices to prove (20) in case (ii). Breaking the integral defining hp
in two parts,

h(z) fz (1 y(x)z)" (1- y(x)z)
=I+H,
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where e > 0 will be fixed later, and Iz {x/Ix -Xzl < elT(Xz)l}, we will
estimate both parts separately. If e is sufficiently small and C is chosen
conveniently, then in Iz,

(26) 13’’(x) 1 Ir(xz)

since

,’(x) ,’(Xz) ,(Xz) + (,’(x) ,’(Xz) ),(Xz) + ,’(x) ( ,(Xz))

-iT(xz) + O(Ix- Xzl) + O(rlz/2)

( 1t-iT(xz) + e + C/2 o(Ir(Xz)l).

In particular, y’(x)z 4:0 in Iz. Integrating I by parts,

f/z(1 7( x) z)
p

1 ]Xz/elT(xz)l1

(3,’(x) z)(1--,(X)Z)
p-1

Xz_elT(xz,

1 1
p -1 (,,(xz +_. elT(xz)l)z)( 1 -/(Xz +EIT(xz)I)z)

p-1

1 frz 7"(x) z
p- 1 (7’(x) z)

2

h(z)

It can be easily checked that there exists r0 > 0 such that for every point rz,
r > r0, in the radius joining 0 and z, the pseudodistance from z to F is
attained at 7(Xz). Hence, it does make sense to take the radial derivative of
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hip, and we obtain

1
p-1 p--

(Y’(Xz + elT(xz) l) z)(1 y(xz + elT(xz) l) z

(p 1)3’(x +

(Y’(Xz +- elT(xz) l) z)(1 7(xz +_ elT(Xz) I) z)
p

(y’(x) z)
2

(1 y(x) z

"(x) z ax
+ (p 1)

(,,(x ) (1 ,(x z)
(1) + (e) + (3) + (4).

By Lemma 2 and (26),

(1) (rz + T(Xz))I-P
IT(xz) (rz + T(xz)2) 1/2-p

1
(2)
_

Ir(xz) +1
(rz + T(Xz)2)-l/2-P

1
(3),(4)-< IT(xz)l (rz + T(xz))- (rz + r(xz)2)1/-p

(5) +/-
1

)2 (rz + T(xz)) -’/-pr(xz

where in (4)we have also used Lemma 6. Differentiating H and applying
Lemmas 2 and 4, we obtain

z I1 (x) zl"+

T(xz) 11 ,(x)zl
p (rz + T(Xz)2) 1/2-p

an estimate which finishes the proof of the lemma.
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Remark 3. If y is of class C, the same kind of argument gives that

[Rkhp(Z)[ O((rz q- r(Xz)2)l/2-p-k), k>O

and Rk is the kth-iterated radial derivative. Then_the function Fp e -hp is in
Aoo(B) and (see Lemma 3) satisfies IFl 1 on B \ E, Fp 1 on E. That is,
E is a (P)-set for Aoo(B). This is also (as we have already said at the
introduction) a consequence of [F-H], where it has been proved that the peak
sets and the local peak sets for Aoo(B) coincide.
Now we can prove the following result.

1). Then Spf e Lip,(B) forTHEOREM 1. Let a (O,), and p (a + 3,

each f A2(F) and if y(x0) E, Spf(y(Xo)) f(xo). In particular, if Sp
Sp W(o): A2(E) --, Lip(B), where (o) is the linear extension operator given
by Whitney’s extension theorem (see [S 1]), then Sp is a linear operator that gives
the interpolation.

1), we will seeProof of Theorem 1. If p A2,(F) and p (a + ,
(27) IRSpf(Z)] O((1

a condition which implies that Spf lies in Lip,(B) (see [R, page 107]). Since
flKp(x, z)dr 1 (see Remark 1), (27) is equivalent to

fl(f(x ) f(X*z))RzKp(x,z ) dx 0((1

* is as in Lemma 5. Butprovided z U, and xz

fl(f(x ) f(X*z))RzKp(x,z ) dr

R hp(z) (f(x) -f(X*z))
(1 y(x)z)

+ h + H,

and it suffices to obtain estimates like (27) for I and H. Propositions 1, 2, and



678 CARME CASCANTE

Lemma 5 give

(1)
Hence

mz + T(xz) 2

where the last estimate is a consequence of Lemma 5, and of (ii) of Lemma 6
(notice that p 1 < c < 2p 1).

Applying Proposition 2 and (i) of Lemma 6, we get that H is bounded as
follows

, 2a

l,tmz + Trxz,2p.)) 1/2 X X
H

JI p+l

( I+/- m + r(x) m
(1 zl)-.

Since mz 1 Izl (see Lemma 5), this finishes the theorem.

2. The case tx >_

In this section we will deal with functions in A2(E) a >_ 3- The tech-
niques that we will use here are more involved than the ones used before. We
will consider the functions hp already introduced in last section, but now the
parameter p needs to be greater than one. When p < 1, the estimate
Re hp(z)- Ihp(z)l (rz + T(xz)2)1/2-p (which implies in particular that
Re hp > 0 on B \ E) was essential for the proof of the interpolation results.
However, if p > 1 this global result does not hold, and it is necessary to use a
different argument based on the ideas of [N].
With the same notations used since now, we introduce the functions

(1)

(2)

F(z,y(x)) 1-y(x) z, zB,xI,

G(z, Xz,X ) F(z,/(Xz) ) + iA(z)(x -xz) + B(z)
X Xz) 2

z U, x R,
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where A(z) iy’(Xz)Z, B(z) y"(Xz)Z. The following lemma holds.

LEMMA 1.
(i) IF(z, y(x)) G(z, xz, x)[ O(Ix Xzl3),
(ii) Re G(z, xz, x) >- Ix Xz[ 2,
(iii) =i8 > 0 such that if Ix Xzl < , IF(z, y(x))l > lG(z, Xz, x)l,

provided z U.

Proof of Lemma 1. Part (i) is a consequence of the definition of the
functions F and G, since G is the second order Taylor’s development of F.

Part (ii) is also a consequence of the definition of G, since/A(z) 0 (see
Lemma 1.2) and Re B(z) is bounded from below, provided z is closed
enough to F.

Part (iii) follows from (i) and (ii).

We need the following result that can be deduced from [N, Theorem 8],
using an argument of analytic continuation and induction on k. We state it
without proof.

THEOREM 1 [N].
k N. Then

Let Z,B C, with ReZ>0, ReB>0, A R, and

xk

(3) dx.]i ( Z + 2iAx + Bx2) z’

(--1)kAkikB -k-1/2 Z "b

1/2-p

X 2j A-ZJB Z+ --ff 6j(p)C(p-j)
j=O

provided p > (k + 1)/2, where

6.(p) 1 ifj=O,

6(p) 2- (2j 1)... 1
(p- 1)...(p-j) ifj > 1,

and where C(p -j), are constants only depending on p and j.



680 CARME CASCANTE

Remark 1. Define the functions

dx 1
(4) Hp( z)

G( z, Xz, X)p
p> -,

f, (X-Xz)(5) G(z) G(;, :)P dx, p > 1,

(x -Xz)2
3

(6) Jp(Z) fI G(z;-X-z:-X-)" dx, p >

then, in particular, the last theorem gives the following formulas:

(7)

Hp(z) 2PC(p)B(z) -/ 2F(z,y(xz) ) + B(z’----

(8)

-i2PC(p)B(z)-3/ZA(z)(2F(z,y(Xz)) +(z)

(9)

#( (-/ (,,() + (

A( z)2 )z)

C(p 1) B(z)(2F(z y(Xz) ) +2(p 1) B(z) -C(p)A(z

Remark 2. With a more careful calculation done in the proof of [N,
Theorem 8], also based in analytic continuation, it can be proved that
defining Hp*, G;, Jp* similarly to Hp, Gp, Jp respectively, interchanging xz

and Xz*, and defining

A*(z) iy’(X*z)Z, B*(z) -y"(X*z)Z,

the corresponding formulas (7), (8) and (9) for H;, G, J; remain valid.
We can now prove a result concerning the behavior of the function hp

near E.
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PROPOSITION 1. Let p (1, 3).
(i) Then there exists a neighborhood W ofE in C such that

(10) hp(z) (2F(z, y(Xz)) + A( z)2 )z)

{2PC(p)B(z) -1/2 + o(1)}

for z (W N B) \ E and d(z, E) --, O, where C(p) is the constant
given in (7).

(ii) In particular, from (i) we obtain

Ih(z) [-.. (r + T(xz)2)1/2-p ifz (W ( ) \E.

(iii) Furthermore, ifp (1, 2), then

I.h.(z) I-- +  (Xz)
1/2 -p ) ifz (W B) \E.

Proof of Proposition 1. We need the following Lemma

LEMMA 2. Let

Then

Q(z) (2F(z,y(Xz)) + A(z) )B(z)

(11) IQ(z)l (r + T(xz)2),
for z close enough to E.

Proof of Lemma 2. The upper estimate follows from the fact that A(z)
and T(xz) differ in a term which is O(rlz/2), since then rz + A(z)2 =rz +
T(xz)2. The estimate from below of ]Q(z)] is deduced also using this fact
and the fact that Re B(z) -Re y"(Xz) z is greater than zero, if z is close
enough to F.

Following the proof of the proposition, formulas (7) and (11) of Lemma 2
show that it suffices to prove that

(12) Ih,,(z) H,(z)l o((rz + T(xz))1/-’) if d(z, E) --) O.
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Now we can write

(1xI/Ix-xz[<8} (1 ")I(X)Z)
p 1)G(z, Xz, X)p

dx

+ p +
l1 ix-xl>_ IG(z,x,x)l’

I + H + III,

where > 0 is as in Lemma 1. As usual we will see that each of the three
integrals satisfies an estimate like (12). The two last integrals H and III,
are bounded, since on one hand I1- y(x)zl is bounded from below in

(in fact > 1). For the firstI \ {Ix Xzl < 8}, and on the other hand p > p
summand, an argument like the one done in [U] gives

IF(z,v(x)) G(z, Xz,X)l
,/ix-xl<-als(x)F(z,v(x)) + (1- s(x))G(z,x,x)l"+

d.x,

where Is(x)l 1. Now, by (i) and (iii) of Lemma 1, this integral is bounded
by

IX --Xz[3
iF(z,v(x))l,,/

dx,

which (see Lemma 1.2) is bounded by

IX --Xzl 3

(a + Ibz + T(x)(x Xz) + (x Xz)2)
p+I

(here az Re(1- y(x)z) b Im(1- y(Xz)Z)). Finally, by Lemma 1.4,
this integral is

The estimate of (ii) is a consequence of (i) and (11) of Lemma 2. Finally,
part (iii) is a consequence of (ii), since

(13) Rhp(z) -p(hp(z) h,o + 1( z ) ).
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Remark 3. Notice that in (i)we have proved that

(14) IG(z) G(z)l-- O((rz + Z(x)a)-).
and that the same holds if we replace Hp by H.

Notice also that if Spf(Z) is defined as in Remark 1.1, but only when
z W c3 B, then Spfl f for f A2,(F), and p > 1, a > 1/2.

We can now state a result concerning the local behavior of the operator Sp.

THEOREM 2. Let ol (13, 1) and p (,a + 1). Then

(15) IRSpf(z)l 0((1 Izl) -1) iff Aa.(r), z e W c B.

Proof of Theorem 2. By (13),

(16) RKp(x,z)
php+l(Z)
hp(z) {G(X, Z) Kp+I(X,Z)}.

Hence, if a (1/2, 1), p (-, a + 1), f A2,(F), a > , and z in W (3 B,
equalities (13) and (16) give

(17) RSpf(Z) fi(f(x ) f(X*z))RKp(x,z ) dx

hp+l(Z)
-Pf’(X*z) hp(z) fl(x X*z){Kp(x’z) Kp+l(X’Z)} dx

hp+l(Z)
+ h) f,o(l -*zI)IG,) cU

hp+l(Z)
+ hp(z) fIO(Ix x*z 12’)KP+ I(X, Z) dX

=I+H+H,

and we will prove that each one of the summands satisfies an estimate like
(15). The estimate of I will follow once we prove

(18)

fi (x-X’z)
dx hp( z) f (x-X’z)

hp+l(Z)
(1 y(x)z)

p

(1 y(x)z)
p+I dx
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Defining the function

(19) (x-x’z) axg,(z)
(1 y(x)z)

p

Proposition 1.1 gives that (18) is equivalent to

(20) [hp+l(Z)g(Z) hp(Z)g;+l(Z)] O((mz + T(x)2)I-2p).
Now a similar argument to the one done in part (i) of Proposition 1, gives
that

(21) g(z) G(z) + O((m + T(x*z)2)3/2-P).
Putting together this formula and the corresponding one for hp (see Proposi-
tion 1 and Remark 3)we get

Ihp+l(z)g,S(z) hp(z)g+l(Z)[

-Ig,+l(Z)G,(z) H,(z)G,+,(z) / O((mz + r(x*z)2)l-2p),
which is O((mz + T("*2l-2p), since by formulas (7) and (8), and Remark 2,.a, zI )

H;+ 1( z)G;(Z) H;( z)G;+ 1(z) O.

For H, using the estimate of hp given in Proposition 1, and Lemma 1.6, we
obtain

H O((mz + T(X)2)p-1/2)f
I

IX--X*z[ 2t

li T(x) z[
p+I dX’

, 2aIx -Xzl dx

11--]/(X)Z]
p+a

m2z’-P(mz + T(x*z)2) -"-1/2

2) 1/2-p
(mz + T(x*z)

if2a <p

ifp <2a <2p+ 1,

estimates which in both cases (p < a + 1) give H O((1 Izl)"-l).
The estimate of III follows from Proposition 1 and (ii)of Lemma 1.6.
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In particular we have the following:

COROLLARY 2. ff a (1/2, 1) and p (, 1) there exists a W neighborhood
ofE in C and a linear operator

" A2.(E ) H(W B) C(W ) {h/lRh(z)l O((1

with t’f(y(x0)) f(xo) for each xo e y-a(E).

Proof of Corollary 2. If a (1/2, 1), it suffices to consider the composition
of the operators Sp, p (, a + 1)with the linear extension operator E
given by Whitney’s theorem.

Remark 4. Notice that the re_gularity of the extension operators E, give
that St’f is of class Coo in W 3 (B \ E).

Now we will see that we can extend these linear operators to the whole
Lip(B), by solving a suitable 0-equation.

THEOREM 3. (i)
operator

/f a (1/2, 1), and p (, 1) then there exists a linear

St’. A2,(E) Lip(B)

such that St’f(y(Xo)) f(x0), for each xo e y-l(E).
(ii) Furthermore, SPfoy is differentiable on y-a(E) and for each xo

y- I(E),

d---S.f(r(Xo)) iT’(Xo) f’(x)

(recall that h is given by the parametrization of y).

Proof of Theorem 3. If a (1/2,1), let p (-32,1)and W be the corre-
sponding .neighborhood given in Proposition 1. We will also consider the
operat_or St" given in Corollary 2. Let V be another neighborhood of E in Cn

with V c W (without loss of generality we will suppose that both neighbor-
hoods are simply connected). Let X be a C function in Cn, such that X 1
on V, and supp X N B c W N B. Then the function xSf is well defined in B
and satisfies

At this point, we need the following result.
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LEMMA 3. There exists

gt C=(\E) AX(B)

with d/-1(0) E, and Vqtle 0, where

Proof of Lemma 3. It suffices to consider the function q 1/hkq, where
q < 1 and k > 1 satisfy (k + 2)/2k < q.

Following the proof of the theorem, since (see Remark 3) SPf is of class
C in W (B\E), and OX 0 on V B, we have that the (0, 1)-form
Pf(x/q) is of class Coo on . Hence (see JR, page_357] and [B]), there
exists a linear operator U that solves the 0--equation Ou Pf(x/O), and
such that the function u U(Pf(x/d/)) is of class C on B. Now, defining
the holomorphic function in B by vp xPf qu, it can immediate be
verified that v ’ is in Lip(B) (see [R, page 107]). Hence, it suffices to
consider the linear operator given by SPf v.
For (ii), it is enough to prove (see [R, page 106] and (i)) that if y(Xo) is in

E, f A2(F) and p (, a + 1), then

(22) lim R.(z)Spf( z) f’( xo)
r-) 1, ry(xo)WtqB 1. + iT’(xo)

where W is the neighborhood of E given in Proposition 1, v(z)= ry’(x0),
and for each F H(B),

n OF
R,z>F( z) E -i (

i=1

Using Taylor’s development on f, we obtain

R,,(z)Spf(Z ) fi(f(x ) f(xo))R,,(z)(Kl:,(x,z)) dx

+ fO(lx Xol2’)R,,(z)(K,(x,z))dx
=I+H,
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and we will see that

A
lim I f’(

r--* 1, rT(Xo)WC3B i -t- iT’( Xo) XO’’

whereas the limit of H is zero. Using the definition of R(z), we obtain

h,(): (X
ZZ),

where

X=h(z),

Y=
(-,(1

Z
(1 y(x)z)

p+

and

V= gv(z)

(notice that, shrinking W if necessary, Lemmas 1.2 and 1.5 give x0 xz Xz*).
Defining

X XO) 2

iv(z) ft (1 y(x) z)
v dx,

and using Taylor’s development, we obtain

Y= (v(z)T(Xo))gp+l(xO) + (v(z)T’(Xo))jp+l(Z) + 0((1- r) 1/2-p)
Z (v(z)T(Xo))hp+l(Z ) + (v(z)T’(Xo))gp+l(Z) + 0((1- r)l/2-P).

Hence

(23) XY-ZV (p(z)T(Xo)){hp(z)gp+l(Z ) -gp(z)hp+l(Z)}

-+- (p( z)’(Xo) ){hp( Z)jp+ 1(Z) gp(z) gp+ 1( z)}
)3/2-2p,+ 0((1 -r ).
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By (20) and the fact that

(Z)T(Xo) 0((1 --r) 1/2) (g(z)T(Xo) O)
we see that the first summand of (23) is

0((1

In consequence (notice that u(z)y’(Xo) rA),

XY ZI/ r1{hp(Z)Jp+l(Z ) gp( Z) gp+l( Z) -+"

The same kind of argument as in Proposition 1 gives

Jp+ 1(Z) Jp+ 1(z) -- 0((1 r)-).

Using (7), (8) and (9), we obtain

(hp(z)jp+l(Z) + gp(z)gp+l(Z)}

p C(p)ZB(z)-Z 2F(z’Y(x))+ B(z)

+ 0((1 r)3/2-2).

Consequently, I is equal to

rAf’(Xo)22pC(p)ZB(z)-Z(2F(z, y(Xo)) + A( z)2 )z)

22pC(p)ZB(z)-1(2F(z,,(Xo)) +

+ o(1).

A("Z/)2B(z) )l-2p + O((1 r)3/2-2p

Letting r 1, the definition of B, gives

lim I
rl -r"( Xo) r( Xo) iT’(Xo)
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Now we will see that lim 1H 0. We write

]III f(Jx xoJZ’)R,,(z)(K,(x, z)) dx

- IR(z,I Ix x01 = ax-Ih(z)l=f, ll-(x)z
l fiIx-x12’(’(z)’(X)ldx,+ l(z)l 1 (x) l

/1

=III + IV,

and we will estimate each one separately. For IV, we will use Proposition 1,
and the fact that

l iz + ,x -xo, 11 (x)zlx/.

since T(xo) 0, to obtain

IV (1 r) p- 1/2 f/ x XoI2
p+ 1/2 dx

__
( 1 r)’-1/2

where in the last estimate we have used (ii) of Lemma 1.6 (note that
2p < 2a < 2p). And this converges to zero, when r 1.
For the estimate of III, we will first obtain a bound of R,,(z). We write

Rv(z)

=V+ VI+ VII.
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Since T(xo) 0, we have

v-< I(z) ((Xo))l Ih+l(Z)I-< (1 r) -.
For VI, formula (8) and an argument like the one used in Theorem 2, give

VIlgp+l(Z)l -< (1 r) -p.

And (ii) of Lemma 1.6 (note that p < 2 < 2p + 1), gives

VII -< (1 r) 1/2-p.

Hence IR.(z)
__

(1 r) -p, and

III "< (1 r) p-1 f/ IX xI2
p+ dx "< (1 r) 1/2,

11
an expression that also converges to zero, when r - 1.

Theorem 1.1 of the last section, and Theorem 3 finishes the proof of
Theorem A stated in the introduction, and also give the corresponding
Corollary A.
Now we will give the proof of Corollary B.

Proof of corollary B. Let a0 < and a > -ft. Since F is complex-tangen-
tial, it is easy to check that the operators Sp, with 5<p<2 are also
interpolation operators for LiPo(B)(see Remark 1.2). In particular, there
exists a linear interpolation operator Sp, which maps

A2o(r) --, LiP.o(B ) and A2,(r) -, Lip.(B).

It follows from the real interpolation method and the fact that these
Lipschitz spaces are Besov spaces (see [B-L, page 153]) that it maps
Azc(F) Lipa(B), for each a (a0, a1) and it suffices to take a 5.
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