
ILLINOIS JOURNAL OF MATHEMATICS
Volume 34, Number 3, Fall 1990

THE L’-CONJECTURE AND YOUNG’S INEQUALITY

BY

SADAHIRO SAEKI

Dedicated to Professor Edwin Hewitt for his great contributions to
Harmonic Analysis

Let G be an arbitrary locally compact (Hausdorff) group. The conjecture
in the title asserts that if LP(G) is closed under convolution for some
p (1, o), then G is compact. In the present paper, we shall confirm this
conjecture.

In his 1961 paper [17], W. Zelazko solved the problem for all abelian
groups. The truth of the conjecture has been established for p > 2 and
arbitrary G by him [18] and M. Rajagopalan [11] independently; in the case
where either (a) p>2 and G is discrete, (b) p=2 and G is totally
disconnected, or (c)/9 > 1 and G is either a nilpotent group or a semi-direct
product of two LCA groups by Rajagopalan [10]-[12]; for p > 1 and solvable
groups by the above-mentioned two authors [13]; for p 2 and arbitrary
groups by N. Rickert [15]; and for p > 1 and amenable groups by F.P.
Greenleaf [4]. Volume II of E. Hewitt-K.A. Ross [5] gives accounts of some
of the above-mentioned cases. For related results and simplifications of
known proofs, we refer to G. Crombez [1], [2], R.J. Gaudet--J.L.B. Gamlen
[3], D.L. Johnson [6], P. Milnes [8], K. Urbanik [16], and W. Zelazko [19].

Let Aa denote a left Haar measure on the locally compact group G. All
the Lebesgue spaces Lp LP(G) are taken with respect to Ao. Now let f
and g be two Haar measurable functions on G. Then the convolution
product

(f* g)(x) ff(y)g(y-lx) dy

is defined at each point x of G for which the function y - f(y)g(y-lx) is
Ao-integrable. For p [1, o], we write f, g L’(G) to mean that Ill * Igl
< Ao-almost everywhere, f g is Haar measurable on the set Ill * Igl < o},
and Ill* gllp < . It is easy to show that if either {f : O} or {g O} has
r-compact closure, then {Ifl * Igl < o} is a Borel set and f, g is Borel
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measurable on it. (Unfortunately, the treatment of measurability in [5; vol. I,
pp. 288-290] has deficiencies; some of which are addressed in the addendum
to vol. II of that treatise.) Finally f is said to be symmetric if f# f, where
f#(x) f(x-1) for all x G.

TI-IEOrEM 1. Suppose that there exists p (1, ) such that f. g LP(G)
for all symmetric functions f, g LP(G). Then G is compact.

To prove this, we need three lemmas. Our proof is ab ovo and completely
self-contained. Given p [1, ], let p’= p/(p 1) if p > 1 and p’= 1 if
p . Let L {f LV: fe f}. We write IAI for ha(A)whenever A is a
Haar measurable subset of G. For any set A, SeA denotes the characteristic
function of A.

LEMMA 1.1. Let A be a compact symmetric subset of the general locally
compact group G. Then we have

.IAI21Am+nl <_ IA4I IAml IAnl for m, n > 1.

Proof Let m Nbegiven. Ifk, lZ/ and k<m, then

Z * hm+l . IAm-kl on At+2’. (1)

In fact, pick any such k, and any x Al+2k. Then x abc for some
a, b Ak and c At. Since A -1 A by hypothesis, it follows that

(am* hm+l)( X) Am C (xAt+m)l
> IA (abAm)

=](a-zlm) () (bAm)[ > Izm-l,

which confirms (1).
Integrating both sides of (1) over Al+2: we obtain

IAm- IA/+2I < IAm[ IAm+t
whenever k < m. For k m 1, this reduces to

IAI" IAl+2m-21 < IAml IAm+tl. (2)

Taking m 4 in (2), we get [AI IA/+61 < IA41 IAt+41; hence

IZt" IAI < IZ41 IA-zl (3)
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holds for all j > 6. But (3) is obvious for j 3 and 4. Moreover, one checks
that (2)with m 3 and 1 is nothing but (3)with j 5. In other words,
(3) holds for all j > 3.
To complete the proof, we may and do suppose that m < n and m + n > 3.

Letting n m, we then have

IZl2lzm+nl <-IAI" IZ4l Izm+n-2l by (3)

IAI" IZ4l IA2"+-2I
< [A4I’IAmI’IAn by(2),

as desired.
The following two lemmas are easy generalizations of the corresponding

results in Zelazko [19].

LEMMA 1.2. Let p, q, r [1, ] be such that 13-1 + q-1 r-1 4= 1. Sup-
pose that L L c Lr, i.e., f g L wheneverf Lf and g Lq. Then G is
unimodular, Lp L Lr, and there exists a positive finite constant CO such
that

IIf* gllr <-- C011fllp Ilglll forf Lp and g La.

Proof Notice that (f, g) f. g is bilinear and that f. g > 0 whenever
f, g > 0. So it is easy to see that there exists a finite positive constant C such
that

Ill* gllr Cllfllp" Ilgllq for f L and g Lq. (4)

Now let A be the modular function of G. Pick any nonzero symmetric
f, g Cc+(G) and any a G. Letting b a -, we then have

A(a) 1/r’llf gllr ill * g * t3b I1
--’-II(a * f * tb)*(ta * g *

< Cilia * f * tbllpllta * g * bllq

CA(a)x/"A(a)1/q’llfllpllgll.
by (4)

Plainly f. g is a nonzero continuous function on G, and

by the hypotheses. Thus the last inequality implies inf A(G)> 0, which is
equivalent to the unimodularity of G.



THE LP-cONJECTURE AND YOUNG’S INEQUALITY 617

So G is unimodular. Therefore, f Lp and g Lq implies Ill#lip Ilfllp
and IIg#llq Ilgllq. Hence

Ifl, Igl lit II(Ifl + Ifl ), (Igl + Igl )llr
-< cIIIfl / Iflllp,lllgl / Iglllq
<- 4CIIfllpllgllq.

by (4)

Thus the desired inequality obtains with Co 4C.

LEMMA 1.3. Let p, q, r [1, o] and CO be as in Lemma 1.2. Then we have

(IAI" IBI)I/p’+I/q’ < C[ABI 2/r’

for all compact subsets A, B of G.

Proof (Cf. [19]). Since SeA * sen 0 off AB, we have

IAI IBI f#A * #B dx

<- IABI1/r’II#A * :BIl by H61der’s Inequality

< CoIABI /r’llAIl" IIllq by Lemma 1.2

CoIABIa/r’IAIa/PlBIa/q.

Hence

[A[ 1/p’ IBll/q’ < CoIAB[ 1/r’. (5)

Moreover G is unimodular by Lemma 1.2. So f Lq/ and g LP+ implies

Ilf* g I[r I[( f* g) # I[r IIg* f# I[r

< Collgllpllfllq byLemma 1.2

Collfllqllgll.

Therefore we may exchange p, q in (5):

IAI1/’’IBI/p’ <_ CoIABI1/r’. (6)

Multiplying (5) and (6), we arrive at the desired inequality.
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Proof of the LP-conjecture. Suppose that 1 < p < oo and Lp Lp c LP.
Then, by Lemma 1.2 with p =q r, G is unimodular, Lp * Lp C Lp, and
there exists a finite positive constant Co such that

Ill* gllp Collfllp Ilgllp for f, g Lp. (7)

Letting C cg’, we also have

IZl Inl CIIABI (8)

for all compact subsets A, B of G (Lemma 1.3). In particular,

[Anl/lAn+l[ < C/IAI for n > 1 (9)

whenever A is a compact set having positive Haar measure.
Now let q p’. Suppose, with a view toward reaching a contradiction, that

G is not compact. Then G contains a compact symmetric set A, with e A,
such that

IA] > 1 and C1/IAI < 2-(P+q). (10)

For each integer n > 2, let

a. (n(log n)2lAn[}
b {n(1og n)2[An[} 1/q

(11)

(12)

Writing n h for n > 0, we define

f E anon and g E bnn (13)
n =2 n --2

both pointwise.
We claim that f Lp and g Lq. To confirm this, pick any n > 2. Then

(an+l/an) p n(log n)zlAnl/{(n + 1)(log(n + 1))2[An+l[} by (11)

<_ [zn[/lAn+a[
<_ C1/IA <_ 2-p by (9) and (10).

So a an+ an(1 an+l/an) >-- an hence

Ean<2E(an
n =k n =k

an+l) 2ak for k > 2. (14)
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Thus

Ilfllpp an J2 -Jr. E an (Jk Jk-1) by (13)
k=3

a IA2I + a (IA*I IA-I)
k=3

< 2 p aliA21 + alA’l by (14)
k=3

2P E {k(log k)2} < by (11).
k=2

Therefore f Lp, and similarly g Lq.
Next we claim that f g Lq. In fact, h L P+ implies

fh(x)(f , g)(x-) dx (h , f , g)(e)

IIh* fllpllg#llq by H/51der’s Inequality

<- Collhll,llfll,llgll, by (7),

which is finite by the last claim. Since G is unimodular, this confirms that
f,gLq.
Now we are going to show that IIf * gila , which will of course complete

the proof. If m, k > 1 and x Ak, then

(m*m+k)(X) =lZm (xZm+’)l >_ IZml

So

f* g E E ambn( Jm * n) by (13)
m=2n=2

>--- E E ambm+k(Jm*Jm+k)
k=2m=2

>- ambm+klAmlgjk
k=2m=2

Notice that (E=lc)q > ET=lCc for any sequence (ce) of nonnegative num-
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bers. Hence

(15)

To prove the divergence of the series in (15), note that IAI > 1 by (10);
hence

JAm+g[ _< IA4I.IAm[ IAk[ form, k> 1 (16)

by Lemma 1.1. Let us only consider those pairs (m, k) of integers which
satisfy 3 < k < rn < 2k. Then

(m + k){log(m + k)} 2 < 3k(log3k) 2 < 12k(log k) 2.

This, combined with (16) and (12), shows that

1
bm+k >"

{12lZ4l" IAml IAklk(log k)2}l/q
(17)

Similarly

1
am >_.

{8lAmlk(lg k)2}l/p
(18)

by (11). Combine (17) and (18) to get

ambm+k > 121A41 IAmlk(log k)2lAkll/q (19)

Letting C CA 1/(121A41), we infer from (15) and (19) that

Ill* gll >- ClZml IZkl
--3 -- IAmlk(lg k)lAl/q

> Cq (log k) -2q-- oo.
k=3

Hence Ill * gila , which completes the proof.
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Now we are going to investigate the triples of indices for which Young’s
Inequality holds. Let p, q, r [1, ]. If 1/r 1/p + 1/q 1, then we have

IIf*gllr <-- Ilfll, max(llglla, llg#llq) forf LP+ and g L% (20)

by Young’s Inequality (see Theorem (20.18) of [5, Vol. I]). On the other
hand, s > r > 1 implies that L c L for all discrete groups, and L L for
all compact groups. Combining these facts, we have that if

1 1 1
-__<--+ 1,r p q

then

Lp * Lq C L

for all discrete groups and if

1 1 1
->_--+ 1,r p q

then

Lp Lq C L

for all compact groups. Thus we are naturally led to the following two
problems:

Problem I. If

1 1 1< + 1 and Lp * Lq c Lr,
r p q

does it follow that G is discrete?

Problem II. If

1 1 1> + 1 and Lp Lq c Lr,
r p q

does it follow that G is compact?

T.S. Quek and L.Y.H. Yap [9] give affirmative answers to these problems
for abelian groups. On the other hand, Theorem 9 of R.A. Kunze and E.M.
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Stein [7] states that if G SL(2, R) and 1 _< p < 2, then Lp L2 c L2 holds.
In particular, Problem II is negative in general. However, we have:

THEOREM 2. Suppose that the noncompact group G has the property that
given e > O, there exists a compact subset A A of G, with sufficiently large
[A I, such that

lim infn- log log ]A2n] < e. ( * )

Let 1 < p < . Then there exists f LP C(G) such that

f * Lq
_
L

for all r, q [1, o] satisfying

1 1 1->--+ 1.
r p q

To prove this, let Ilfll
Define

denote the uniform norm of any function f on G.

Ilfllp, u max{llfllp, Ilfllu}

for f Lp 3 Co(G) where p [1, o]. It is easy to check that Ilfll,,u is a
complete norm on L Co(G), that Cc(G) is dense in Lp Co(G), and that
LPs Co(G) is a closed subspace of Lv Co(G).

LEMMA 2.1. Suppose that p,q,r [1, o], p > 1, and G satisfies (L p

Co) * (Lq f Co) c Lr. Then G is unimodular, and there exists a finite positive
constant C such that

Ill* gllr Clllfilv, uligllq, forf e Lp Co and g e Lq f CO.

If, in addition, G is noncompact, then r > max(p, q).

Proof The existence of C having the desired property is obvious.
To complete the proof, we may suppose that G is noncompact, Pick any

nonzero f, g Cc+(G) and any a G. Letting b a -1, we then have

Ill * b * a * gllr

Clllf* bllp,ulla * gllq,

C max{A(a)a/p’llfllp, A(a)llfllu)llg]lq, u.
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Since p’< 0% this ensures that G is unimodular. Also note that f. g
Cc+(G). So, given n > 1, we can find al, a2,... a G so that the functions

ak* f + ak * f * g, 1 < k < n, have pairwise disjoint supports. It follows that

nl/rllf * gll ],.f.g
k=l

C1 E ak* f Ilgllq,u
k=l p,u

C1 max(nl/Pllfllp, Ilfll}llgllq,..

Since n can be chosen as large as one wishes, we must necessarily have r > p.
Also G is unimodular, so the set-inclusion in the hypotheses holds with p, q
interchanged (see the proof of Lemma 1.3). Hence r > q, as desired.

LEMMA 2.2. Let G, p, q, r and C be as in Lemma 2.1. Then we hat;e

(IAI" IBI)I/P’+’/a’ CIABI 2/r’

for all compact subsets A, B of G with IAI, BI 1.

Proof The necessary arguments to prove this are quite similar to those in
the proof of Lemma 1.3. So we omit the details.

Remark 2.3. In case 1/r > 1/p + 1/q 1, or equivalently 1/r’ < 1/p’
+ 1/q’, the proof of Lemma 1.2 shows that the apparently weaker inclusion
(L n Co),(Lq Co) c L already implies the hypothesis (L p n Co),
(Lq Co) c L of Lemmas 2.1 and 2.2.

Proof of Theorem 2. Suppose that G satisfies the hypothesis of Theorem 2
and that 1 < p < o.

Pick any r, q [1, o] such that 1/r > 1/p + 1/q 1. To force a contra-
diction, suppose that

( Lsp I’ Co),(Lqs Co) c Zr.

Then (Lt’ (3 Co), (Lq CI CO) L by Remark 2.3. So Lemmas 2.1 and 2.2
provide a finite positive constant C such that

(IAI" IBI) ’/p’+’/q’ <- C2 IABI 2/r’ (21)

for all compact subsets A,B of G with [A I, [B[ > 1. Notice that r’< o

(since p’< o and G is noncompact) and that our assumption on q, r is
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equivalent to the condition that/3 > 1, where

/3=r’(l-r+-rl). (22)

Letting C2 C1r’ and A B in (21), we obtain IAI t < C21A21 for all
compact set A with IZl > 1. An inductive application of this inequality
yields

(C3IAI) tn _< C3lA2nl for n > 1 (23)

for all such A, where C3 C21/(1-/3) (recall /3 > 1).
Assuming that IAI is large enough, we obtain

log log(Ca IA2i) >- n log/3 + log log(Ca IAI)

for all n > 1, which clearly violates our hypothesis on G. Thus we have
confirmed that

z," (24)

for all q,r> lwithl/r> l/p+ 1/q- 1.
Now choose and fix any countable dense subset {(qk, rk)}= of

E= {(q,r) [1,oo)2. ir > l_p + lq I}. (25)

Given k > 1, (24)yields fk LP n C such that

1
Ilfkll, < and fk * ( Lq C ) - Lrk.

Define f E= f, pointwise on G. Plainly f Lp c3 C- and

f ,( Zqs (] C ) Zrk for k _. 1. (26)

To show that f has the desired property, pick any q, r [1, oo] such that
1/r > 1/p + 1/q 1. Suppose to the contrary that f. Lq c Lr. Notice that
f LP, so f Llsc Lp by Young’s Inequality, and f Lp’ c L by H61der’s
Inequality. Since f > 0, it follows that the mapping g f. g is simultane-
ously of strong type (q, r), (1, p) and (p’, oo) on Lls C L. It follows from the
Riesz-Thorin Convexity Theorem and its proof [20] that f. La c Lb for all
a,b [1, ) such that the point (l/a, 1/b) belongs to the triangle with
vertices at (l/q, 1/r), (1, i/p) and (1/p’, 0). Notice that the last two points
lie on the line v u + 1/p 1 and that (l/q, 1/r) is above this line. Thus
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the above triangle contains an interior point (u, v) with v > u + 1/p 1.
Consequently our choice of the (qk, rk) shows that (1/qk, 1/rk) belongs to
this triangle for at least one (in fact, for infinitely many) k > 1. This is of
course absurd and therefore the proof is complete.

Remark 2.4. It is well known and easy to show that for each compact
subset A of a LCA group G, there exists k N such that

IZnl 0(nk) as n .
The following result is due to Quek and Yap [9]. Our proof is considerably

simpler than theirs.

COROLLARY 2.5. Let p,q,r [1, o] and p > 1. Suppose that G is an

infinite LCA group and that LP(G). Lq(G) c Lr(G).
(a) If G is discrete, then 1/r < 1/p + 1/q 1.
(b) If G is compact, then 1/r > 1/p + 1/q 1.
(c) If G is neither discrete nor compact, then 1/r 1/p + 1/q 1.

Proof (a) Suppose that G is discrete (and infinite). If G is a torsion
group, then plainly G satisfies the condition in Theorem 2. So suppose that
G is not torsion. Then G contains (a copy of) Z. Given m N, define
A Am [0, m] q Z. Then An [0, mn] N Z for all n > 1, so again G
satisfies the condition in Theorem 2. Hence 1/r < 1/p + 1/q 1 in either
case by Theorem 2, provided that p < . But p clearly implies q 1
and r . Therefore 1/r < 1/p + 1/q 1 for all cases.

(b) Suppose that G is compact (and infinite). Then G is either totally
disconnected (if the dual ( is a torsion group) or contains a compact
subgroup GO such that G/Go T (otherwise). To obtain the desired in-
equality, we may suppose that r > 1 and 1/r 4: 1/p + 1/q 1.
Now let Co be the finite positive constant furnished by Lemma 1.2. Then

we have

IA[ 1/p’+l/q’ <_ ColA2[ 1/r’ for all compact A c G (27)

by Lemma 1.3 with A B. Since G is nondiscrete and r’ < , (27) implies
1/p’ + 1/q’ > 0. Letting /3 r’(1/p’ + 1/q’) and C2 C’, we have

IA -< C2IA2I for all compact A c G. (28)

If G is totally disconnected, then every neighborhood of e G contains a
compact-open subgroup A. Therefore (28) is possible only when /3 > 1, or
equivalently only when 1/r > 1/p + 1/q 1. (Notice that this part does not
require the commutativity of G.)

In case G is not totally disconnected, G contains a compact subgroup GO
such that G/Go T, as was observed above. Let A0 denote the normalized
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Haar measure of G0. Then we have

(A0, Lp) ,(A0, Lq) c A0 L

by the hypotheses. Therefore, by Fourier transform or by any other methods,
we have that Lp Lq c L holds for T. Taking A [0, t] in (28), we obtain
t < 2C2t for all [0, 2rr]. This is of course possible only when 1/r > 1/p
+ 1/q 1. Plainly this establishes (b).

(c) Finally suppose that G is neither discrete nor compact. If p , then
it is clear that q 1 and r . So we may suppose p < .
Now consider the special case where G contains an open subgroup of the

form R x H for some locally compact group H. Since L Lq L holds for
G by hypothesis, it is clear that the same inclusion holds for R H and
hence for R. Let CO < be as in (27)with G R (in case 1/r 1/p + 1/q

1, take CO 1). Then we have r’ < since R is noncompact and lip’ +
1/q’ > 0 (recall p > 1). Taking A [0, t] in (28), we obtain t3 < 2C2t for
all real > 0. Plainly this is possible if and only if/3 1, i.e., 1/r 1/p +
1/q 1.

In case G does not contain any open subgroup of the above form, G
contains a compact-open subgroup H (see (9.8) of [5, Vol. I]). Since (7 is
nondiscrete, part (b) applied to H ensures that 1/r > 1/p + 1/q- 1. On
the other hand, G is noncompact, so G/H is an infinite discrete abelian
group. Hence, arguing as in the proof of part (a), we get 1/r < 1/p + 1/q
1. Consequently we obtain 1/r 1/p + 1/q 1, as desired.

I would like to thank Professor R.B. Burckel for providing me with useful
references, and Professor L.Y.H. Yap for calling to my attention his joint
work [9].

Remarks 2.6 (Added on March 23, 1990).
(i) The conclusion of Theorem 2 may be strengthened as follows: there

exists f Lls n C such that fl/p. Lq
_
L for all p, q, r > 1 satisfy-

ing 1/r > 1/p + 1/q 1. A similar result holds in each of the three
cases considered in Corollary 2.5.

(ii) Professor N. Lohou6 kindly pointed out to me that his paper Estima-
tions Lp des coefficients de reprdsentation et opdrateurs de convolution
(Advances in Math., vol. 38 (1980), pp. 178-221) resolved the LP-con
jecture for almost connected groups.
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