THE EMBEDDING OF BANACH SPACES INTO SPACES WITH STRUCTURE

BY
M. Zippin

1. Introduction

Let X be a separable Banach space. A sequence $\left\{Y_{n}\right\}_{n=1}^{\infty}$ of finite dimensional subspaces of X is called a finite dimensional decomposition (f.d.d., in short) of X if each $x \in X$ has a unique representation $x=\sum_{n=1}^{\infty} T_{n} x$ with $T_{n} x \in Y_{n}$. A basis of X is a f.d.d. where each Y_{n} is of dimension 1. It is well known and easy to prove that X has a f.d.d. if and only if there is a sequence $\left\{P_{n}\right\}_{n=1}^{\infty}$ of commuting projections on X such that each P_{n} is of finite rank, $\sup _{n}\left\|P_{n}\right\|<\infty, P_{1} X \subset P_{2} X \subset \cdots$ and $\cup_{n} P_{n} X$ is dense in X. The existence of Banach spaces without the approximation property makes it reasonable to investigate how "close" a given separable space is to spaces with a f.d.d. In this direction are the following three problems (the first two of which were previously solved (see [2] and [5])).

Problem 1. Given a separable Banach space X does there exist a subspace E of X such that both E and X / E have f.d.d.'s?

Problem 2. Given a separable Banach space E does there exist a separable space X and a subspace Y of X, both with an f.d.d., such that $E=X / Y$?

Problem 3. Given a separable space E does there exist a space X containing E such that both X and X / E have f.d.d.'s?

The first problem is positively solved by W. B. Johnson and H. P. Rosenthal in [2]. The second one is answered by J. Lindenstrauss in [5] in the following strong sense: every separable space E is isomorphic to a quotient $X^{* *} / X$ where both X and $X^{* *}$ have bases. The purpose of this paper is to give a positive solution of Problem 3. Since every complemented subspace of a space with an f.d.d. has the bounded approximation property one does not expect a given separable space to be complemented in a space with an f.d.d.

Received May 1, 1988.

For a subspace E of X, being complemented in X is a very strong condition. It means that there is a number $\lambda \geq 1$ such that for every Banach space Z and every operator $T: E \rightarrow Z$ there is an extension $\tilde{T}: X \rightarrow Z$ with $\|\tilde{T}\| \leq \lambda\|T\|$. We find the following weaker property of a subspace E of X easier to handle yet interesting enough.

Definition 1. A subspace E of X is said to be almost complemented in X if there is a number $\lambda>0$ such that for every compact Hausdorff space K and every operator $T: E \rightarrow C(K)$ there is an extension $\tilde{T}: X \rightarrow C(K)$ with $\|\tilde{T}\| \leq \lambda\|T\|$.

We will prove the following result:
Theorem. Let E be a separable Banach space. Then there exists a Banach space X with an f.d.d. which contains E such that
(1.1) E is almost complemented in X
and
(1.2) $\quad X / E$ has an f.d.d.

The proof of the theorem consists of three parts. The first part (Section 3) is mainly an algebraic construction of a normed space with an f.d.d. containing E. This construction is the foundation for some topological consequences given in Section 4. The last part is a variant of E. Michael's selection theorem [6] which leads to the operator extension property. Before starting the proof of the theorem we need some information about almost complemented subspaces.

Notation. Let X be a normed space and $A \subset X$. [A] denotes the closed linear span of A; span A is the algebraic span. Conv A is the closed convex hull of A and A^{+}is the annihilator of A in X^{*}.

2. Extension of operators into $C(K)$ spaces

J. Lindenstrauss investigated in [4] the extension of compact operators into $C(K)$ spaces. A special case of Theorem 6.1 in [4] is the following: for every Banach space X, every subspace $E \subset X$, any $\varepsilon>0$ and every compact operator $T: E \rightarrow C(K)$ there is a compact extension

$$
\tilde{T}: X \rightarrow C(K) \quad \text { with }\|\tilde{T}\|<(1+\varepsilon)\|T\|
$$

One should therefore expect the class of almost complemented subspaces of a Banach space to be rather large. Restricting the range space of an operator to be a $C(K)$ space is a considerable convenience. Indeed (see [1, p. 490]) if
Z is a Banach space then every operator

$$
T: Z \rightarrow C(K)
$$

determines the function

$$
\varphi(T): K \rightarrow\|T\| \cdot B\left(Z^{*}\right)
$$

(where $B\left(Z^{*}\right)$ denotes the closed unit ball of Z^{*}) defined by $(\varphi(T)(k) z=$ $(T z)(k)$ which is ω^{*} continuous. Conversely, every ω^{*} continuous function $\varphi: K \rightarrow \lambda B\left(Z^{*}\right)$ determines an operator

$$
T(\varphi): Z \rightarrow C(K)
$$

defined by

$$
(T(\varphi)(z))(k)=\varphi(k)(z)
$$

Clearly $\| T(\varphi)) \|=\sup \{\|\varphi(k)\|: k \in K\} \leq \lambda$. In the sequel a Banach space Z is regarded as a subspace of $C\left(B\left(Z^{*}\right)\right)$ via the natural embedding $(J z)\left(z^{*}\right)=$ $z^{*}(z)$. The topology on $B\left(Z^{*}\right)$ is the ω^{*} topology which is metric when Z is separable. Let E be a subspace of X and $T: E \rightarrow X$ the corresponding isometric embedding and, for $\lambda \geq 1$ let

$$
K(\lambda)=\left\{x^{*} \in \lambda B\left(X^{*}\right):\left\|\left.x^{*}\right|_{E}\right\| \leq 1\right\}
$$

We regard $C\left(B\left(E^{*}\right)\right)$ as a subspace of $C(K(\lambda))$ via the natural embedding S defined by

$$
(S f)\left(x^{*}\right)=f\left(T^{*} x^{*}\right) \quad \text { for every } x^{*} \in B\left(X^{*}\right)
$$

We say that a function $\varphi: B\left(E^{*}\right) \rightarrow X^{*}$ extends functionals if for every $e^{*} \in B\left(E^{*}\right)$ and $e \in E, \varphi\left(e^{*}\right)(e)=e^{*}(e)$.

Example 1. Every Banach space Z is almost complemented in $C\left(B\left(Z^{*}\right)\right)$. Indeed, the function

$$
\varphi_{0}: B\left(Z^{*}\right) \rightarrow B\left(C\left(B\left(Z^{*}\right)\right)^{*}\right)
$$

defined by

$$
\varphi_{0}\left(z^{*}\right)(f)=f\left(z^{*}\right)
$$

for every $f \in C\left(B\left(Z^{*}\right)\right)$ and $z^{*} \in B\left(Z^{*}\right)$ is clearly ω^{*} continuous and extends functionals. If $T: Z \rightarrow C(K)$ is a given operator, then, using the
notation above,

$$
\varphi(T): K \rightarrow B\left(Z^{*}\right)
$$

is ω^{*} continuous hence, the composition

$$
\varphi_{0}{ }^{\circ} \varphi(T): K \rightarrow B\left(C\left(B\left(Z^{*}\right)\right)^{*}\right)
$$

is ω^{*} continuous. Consider the operator

$$
\tilde{T}=T\left(\varphi_{0} \circ \varphi(T)\right): C\left(B\left(Z^{*}\right)\right) \rightarrow C(K)
$$

It is easy to check that \tilde{T} is a norm preserving extension of T.
Example 2. If H is a compact Hausdorff space then $C(H)$ is complemented in a space X if it is almost complemented in X because the identity $I: C(H) \rightarrow C(H)$ can be extended to a projection of X onto $C(H)$.

The following is a list of simple, well known facts brought here for the sake of completeness.

Proposition 1. Let E be a subspace of a Banach space X. Then the following properties are equivalent:
(2.1) E is almost complemented in X.
(2.2) The natural embedding $J: E \rightarrow C\left(B\left(E^{*}\right)\right)$ has an extension $\tilde{J}: X \rightarrow$ $C\left(B\left(E^{*}\right)\right)$.
(2.3) There is an ω^{*} continuous function $\varphi: B\left(E^{*}\right) \rightarrow X^{*}$ which extends functionals.
(2.4) There is $a \lambda>0$ such that if

$$
K(\lambda)=\left\{x^{*} \in \lambda B\left(X^{*}\right):\left\|\left.x^{*}\right|_{E}\right\| \leq 1\right\}
$$

and
$S: C\left(B\left(E^{*}\right)\right) \rightarrow C(K(\lambda))$ is the embedding defined by $\operatorname{Sg}\left(x^{*}\right)=g\left(\left.x^{*}\right|_{E}\right)$ then there is a projection P of $C(K(\lambda))$ onto $S\left(C\left(B\left(E^{*}\right)\right)\right)$ with $\|P\| \leq \lambda$.

Proof. (2.1) \Rightarrow (2.2). Formal.
$(2.2) \Rightarrow(2.3) \quad$ Let $\varphi_{0}: B\left(E^{*}\right) \rightarrow B\left(C\left(B\left(E^{*}\right)\right)^{*}\right)$ be defined by $\varphi_{0}\left(e^{*}\right)(f)=$ $f\left(e^{*}\right)$ as above. Let φ_{1} be the restriction of \tilde{J}^{*} to $B\left(C\left(B\left(E^{*}\right)\right)^{*}\right)$. Then φ_{0} and φ_{1} are ω^{*} continuous; hence, if $\lambda=\|\tilde{J}\|$, the function $\varphi=\varphi_{1}{ }^{\circ} \varphi_{0}$: $B\left(E^{*}\right) \rightarrow \lambda B\left(X^{*}\right)$ is ω^{*} continuous and for every $e^{*} \in B\left(E^{*}\right)$ and $e \in E$ we have

$$
\varphi\left(e^{*}\right)(e)=\tilde{J}^{*}\left(\varphi_{0} e^{*}\right)(e)=\varphi_{0}\left(e^{*}\right)(\tilde{J} e)=\varphi_{0}\left(e^{*}\right)(e)=e^{*}(e)
$$

It follows that φ extends functionals.
(2.3) \Rightarrow (2.1) \quad Let

$$
\lambda=\sup \left\{\left\|\varphi\left(e^{*}\right)\right\|: e^{*} \in B\left(E^{*}\right)\right\}
$$

and let $T: E \rightarrow C(K)$ be any operator. With the above notations,

$$
\varphi \circ \varphi(T): K \rightarrow \lambda B\left(X^{*}\right)
$$

is ω^{*} continuous. Let

$$
\tilde{T}=T(\varphi \circ \varphi(T)): X \rightarrow C(K)
$$

then $\|\tilde{T}\| \leq \lambda\|T\|$ and for every $e \in E$ and $k \in K$,

$$
(\tilde{T} e)(k)=((\varphi \circ \varphi(T))(k))(e)=(\varphi(T)(k))(e)=(T e)(k)
$$

because φ extends functionals. It follows that \tilde{T} extends T. This proves (2.1).
$(2.4) \Rightarrow(2.1)$ Suppose that $S\left(C\left(B\left(E^{*}\right)\right)\right)$ is complemented in $C(K(\lambda))$ and let

$$
P: C\left(K(\lambda) \rightarrow S\left(C\left(B\left(E^{*}\right)\right)\right)\right.
$$

be a projection with $\|P\| \leq \lambda$. Let

$$
\varphi_{0}: B\left(E^{*}\right) \rightarrow B\left(C\left(B\left(E^{*}\right)\right)^{*}\right)
$$

be the function defined by

$$
\varphi_{0}\left(e^{*}\right)(f)=f\left(e^{*}\right)
$$

and let

$$
\varphi_{1}: B\left(C\left(B\left(E^{*}\right)\right)^{*}\right) \rightarrow\|P\| B\left(C(K(\lambda))^{*}\right)
$$

be the restriction of P^{*}. Then $\varphi=\varphi_{1} \circ \varphi_{0}$ is ω^{*} continuous and extends functionals, and therefore, since $(2.3) \Rightarrow(2.1)$, very operator $T: E \rightarrow C(K)$ can be extended to an operator

$$
T_{1}: C(K(\lambda)) \rightarrow C(K) \quad \text { with }\left\|T_{1}\right\| \leq\|P\|
$$

Regarding X as a subspace of $C(K(\lambda)$) (via the natural embedding U : $X \rightarrow C(K(\lambda))$ defined by $\left.(U x)\left(x^{*}\right)=x^{*}(x)\right)$ we put $\tilde{T}=T_{1} \mid x$; then \tilde{T} is the desired extension of T.
(2.3) $\Rightarrow(2.4) \quad$ Define $V: C(K(\lambda)) \rightarrow C\left(B\left(E^{*}\right)\right)$ by $(V f)\left(e^{*}\right)=f\left(\varphi\left(e^{*}\right)\right)$ and put $P=S V$. Then P is a projection of $C(K(\lambda))$ onto $S\left(C\left(B\left(E^{*}\right)\right)\right.$). This proves Proposition 1.

Proposition 1 suggests a general method of proving that a subspace E of X is almost complemented. All that has to be done is to construct a ω^{*} continuous function

$$
\varphi: B\left(E^{*}\right) \rightarrow X^{*}
$$

which extends functionals.

Example 3. Let $1<p<\infty$ and let E be a subspace of l_{p}. Then $\varphi\left(e^{*}\right)$, the Hahn Banach extension of e^{*}, is a suitable function from $B\left(E^{*}\right)$ to $B\left(l_{p}^{*}\right)$ because, as is easily checked, φ is ω^{*} continuous. It follows that E is almost complemented in l_{p}.

3. The Algebraic construction

Let E be a separable Banach space and regard E as a subspace of a space Y^{\prime} with a monotone basis (for example, we may let $Y^{\prime}=C[0,1]$). Consider the space $Y=Y^{\prime}+c_{0}$ where the norm is defined by $\|(x, z)\|=\max \{\|x\|,\|z\|\}$ for any $x \in Y^{\prime}$ and $z \in c_{0}$. The space Y has a normalized monotone basis $\left\{y_{n}\right\}_{n=1}^{\infty}$ with biorthogonal functionals $\left\{y_{n}^{*}\right\}_{n=1}^{\infty}$ such that $\left\{y_{2 n-1}\right\}_{n=1}^{\infty}$ and $\left\{y_{2 n}\right\}_{n=1}^{\infty}$ are monotone bases of Y^{\prime} and c_{0} respectively. We may assume that $E_{0}=E \cap \operatorname{Span}\left\{y_{2 n-1}\right\}_{n=1}^{\infty}$ is norm dense in E. Let $\left\{P_{n}\right\}_{n=1}^{\infty}$ denote the natural basis projections so that $\left\|P_{n}\right\|=1$ for all n. Put $E_{n}=E_{0} \cap P_{n}(Y)$.

Now select a subsequence of even integers $\{\alpha(n)\}_{n=1}^{\infty}$ satisfying the following conditions.
(3.1) $\alpha(1)$ is so large that $E_{\alpha(1)} \neq \phi$.
(3.2) $\alpha(n+1)$ is an even integer so large that $E_{\alpha(n+1)}$ is strictly larger than $E_{\alpha(n)}$ and if $e \in E_{0}$ and $P_{\alpha(n)} e \neq 0$ then there is an $e_{0} \in E_{\alpha(n+1)}$ such that $P_{\alpha(n)}^{\alpha(n)} e=P_{\alpha(n)} e_{0}$. For every n let $\tilde{G}_{n}=\left\{e \in E_{0}: P_{\alpha(n)} e=0\right\}$ and $G_{n}=\tilde{G}_{n}$ $\cap E_{\alpha(n+1)}$.

Now we divide the construction to five steps.
Step 1. We find a subspace W_{n} of $E_{\alpha(n+1)}$ such that the following two conditions are satisfied.
(3.3) $E_{\alpha(n)}+W_{n}+G_{n}=E_{\alpha(n+1)}$ is a direct sum (and hence $\left.P_{\alpha(n)}\right|_{W_{n}}$ and $I-\left.P_{\alpha(n)}\right|_{W n}$ are isomorphic mappings);

$$
\begin{equation*}
P_{\alpha(n-1)} \omega=0 \text { for every } \omega \in W_{n} \tag{3.4}
\end{equation*}
$$

Indeed, start with any subspace U_{n} of $E_{\alpha(n+1)}$ such that $E_{\alpha(n)}+U_{n}+G_{n}$ $=E_{\alpha(n+1)}$ is a direct sum. Let $\left\{u_{i}\right\}_{i=1}^{N}$ be a basis of U_{n}. If $P_{\alpha(n-1)} u_{i} \neq 0$ then, by condition (3.2), there is a $v_{i} \in E_{\alpha(n)}$ with $P_{\alpha(n-1)} v_{i}=P_{\alpha(n-1)} u_{i}$. Put $\omega_{i}=u_{i}$ if $P_{\alpha(n-1)} u_{i}=0$ and $\omega_{i}=u_{i}-v_{i}$ if $P_{\alpha(n-1)} u_{i} \neq 0$. Let $W_{n}=\operatorname{span}\left\{\omega_{i}\right\}_{i=1}^{N}$ then W_{n} is the desired subspace.
So far we have an algebraic separation between $E_{\alpha(n)}$ and W_{n} in the sense that

$$
E_{\alpha(n)} \cap W_{n}=\{0\}
$$

For future arguments we need the stronger separation property:

$$
\left(I-P_{\alpha(n-1)}\right) E_{\alpha(n)} \cap P_{\alpha(n)} W_{n}=\{0\}
$$

which need not hold in general. In order to achieve this kind of separation we will have to perturb E_{0} slightly. The only reason for starting with $Y=Y^{\prime}+c_{0}$ (instead of Y^{\prime}) at the beginning of this section is to ensure that this perturbation process is possible. To achieve this perturbation, we will construct a certain linear mapping $S: E_{0} \rightarrow Y$. Before doing this, let us consider the motivation for this construction. Since E_{0} is supported on $\left\{y_{2 n-1}\right\}_{n=1}^{\infty}$ and $\alpha(n)=2 N$ for some N we have by (3.4) that $P_{\alpha(n)} W_{n}$ is a subspace of

$$
\left(P_{\alpha(n)}-P_{\alpha(n-1)}\right) Y
$$

supported only on the odd basis elements

$$
\left\{y_{2 i-1}\right\}_{i=1}^{\infty} \quad \text { with } \alpha(n-1)<2 i-1<\alpha(n)
$$

$\left(I-P_{\alpha(n-1)}\right) E_{\alpha(n)}$ is also a subspace of

$$
\left(P_{\alpha(n)}-P_{\alpha(n-1)}\right) Y
$$

supported on the same

$$
\left\{y_{2 i-1}\right\}, \quad \alpha(n-1)<2 i-1<\alpha(n)
$$

and

$$
\operatorname{dim}\left(I-P_{\alpha(n-1)}\right) E_{\alpha(n)} \leq \frac{1}{2}(\alpha(n)-\alpha(n-1))
$$

If we can achieve a perturbation so that W_{n} is still supported on the odd
basis vectors while for each $x \in\left(I-P_{\alpha(n-1)}\right) E_{\alpha(n)}, x \neq 0$, we could have

$$
y_{2 i}^{*}(x) \neq 0 \quad \text { for some } \frac{1}{2} \alpha(n-1)<i<\frac{1}{2} \alpha(n)
$$

then it would follow that

$$
\left(I-P_{\alpha(n-1)}\right) E_{\alpha(n)} \cap P_{\alpha(n)} W_{n}=\{0\}
$$

Step 2. Given $\varepsilon>0$, we construct a linear mapping $S: E_{0} \rightarrow Y$ satisfying the following conditions:

$$
\begin{gather*}
\|S e-e\| \leq \varepsilon\|e\| \quad \text { for all } e \in E_{0} \tag{3.5}\\
S\left(E_{\alpha(n)}\right)=S\left(E_{0}\right) \cap P_{\alpha(n)} Y, \quad n \geq 1 \tag{3.6}\\
S\left(G_{n}\right)=\left(I-P_{\alpha(n)}\right) Y, \quad n \geq 1 \tag{3.7}\\
S\left(E_{\alpha(n)}\right)+S\left(W_{n}\right)+S\left(G_{n}\right)=S\left(E_{\alpha(n+1)}\right) \quad \text { is a direct sum } \tag{3.8}
\end{gather*}
$$

and

$$
\begin{gather*}
P_{\alpha(n-1)} S w=0 \quad \text { for all } w \in W_{n} \\
\left(I-P_{\alpha(n-1)}\right) S\left(E_{\alpha(n)}\right) \cap P_{\alpha(n)} S\left(W_{n}\right)=\{0\} \tag{3.9}
\end{gather*}
$$

The construction of S is a simple but tedious process. The reader is referred to the appendix for details.

Step 3. Clearly the space $E_{0}^{\prime}=S\left(E_{0}\right)$ is isomorphic to E_{0} with

$$
\|S\|\left\|S^{-1}\right\| \leq(1+\varepsilon)(1-\varepsilon)^{-1}
$$

and if we put $E_{\alpha(n)}^{\prime}=S\left(E_{\alpha(n)}\right), W_{n}^{\prime}=S\left(W_{n}\right)$ and $G_{n}^{\prime}=S\left(G_{n}\right)$ then these new subspaces satisfy conditions (3.2), (3.3) and (3.4) in addition to the following condition:

$$
\begin{equation*}
\left(I-P_{\alpha(n-1)}\right) E_{\alpha(n)}^{\prime} \cap P_{\alpha(n)} W_{n}^{\prime}=\{0\} \tag{3.10}
\end{equation*}
$$

In order to avoid complicated notation we will assume that $E_{0}=E_{0}^{\prime}, E_{\alpha(n)}=$ $E_{\alpha(n)}^{\prime} W_{n}=W_{n}^{\prime}$ and $G_{n}=G_{n}^{\prime}$ for every $n \geq 1$. Now let $Y_{0}=\operatorname{span}\left\{y_{i}\right\}_{i=1}^{\infty}$,
$\eta>0$ and $\delta(i)>0$ so small that

$$
\prod_{k=1}^{\infty} \prod_{i=k}^{\infty}(1+\delta(i))<1+\eta
$$

Let $\{n(k)\}_{k=1}^{\infty}$ be an increasing sequence of integers such that $n(1)=1$ and $n(k+1)$ is so large that the following condition is satisfied:
(3.11) Let $e \in E_{0}$ and $P_{\alpha(n(k))} e \neq 0$ and put

$$
\nu_{k}(e)=\inf \left\{\left\|e_{1}\right\|: e_{1} \in E_{0}, P_{\alpha(n(k))} e_{1}=P_{\alpha(n(k))} e\right\}
$$

Then there is an $e_{0} \in E_{\alpha(n(k+1))}$ such that

$$
P_{\alpha(n(k))} e_{0}=P_{\alpha((k))} e \quad \text { and } \quad\left\|e_{0}\right\| \leq(1+\delta(k+1)) \nu_{k}(e)
$$

Step 4. Let $F_{0}=E_{0}, F_{k}=E_{\alpha(n(k))}, Q_{k}=P_{\alpha(n(k))}, \tilde{H}_{k}=F_{0} \cap\left(I-Q_{k}\right) Y_{0}$, $H_{k}=F_{k+1} \cap \tilde{H}_{k}$ and $U_{k}=W_{n(k)}$. We claim that the following conditions hold:

$$
\begin{gather*}
F_{k+1}=F_{k}+U_{k}+H_{k} \text { is a direct sum } \tag{3.12}\\
Q_{k-1} u=0 \text { for all } u \in U_{k} \tag{3.13}\\
\left(I-Q_{k-1}\right) F_{k} \cap Q_{k} U_{k}=\{0\} \tag{3.14}
\end{gather*}
$$

Indeed, (3.12) and (3.13) are evident; to prove (3.14) note that

$$
\begin{aligned}
F_{k}+ & U_{k}+H_{k} \\
= & E_{\alpha(n(k))}+W_{n(k)}+G_{n(k)}+W_{n(k)+1}+G_{n(k)+1}+\cdots \\
& \quad+W_{n(k+1)-1}+G_{n(k+1)-1} \\
= & F_{k+1}
\end{aligned}
$$

By (3.4), if $u \in U_{k}=W_{n(k)}$ then $P_{\alpha(n(k)-1)} u=0$; hence, clearly,

$$
Q_{k-1} u=P_{\alpha(n(k-1))} u=0
$$

Finally, if $x \in\left(I-Q_{k-1}\right) F_{k} \cap Q_{k} U_{k}$ then $x \in P_{\alpha(n(k))} W_{n(k)}$ hence, by (3.4),

$$
P_{\alpha(n(k)-1)} x=0
$$

It follows that $x \in\left(I-P_{\alpha(n(k)-1)}\right) E_{\alpha(n(k))}$ and so, by (3.10) $x=0$. This proves (3.14).

Step 5. To complete the construction, let

$$
X_{0}=\operatorname{span} F_{0} \cup\left(\bigcup_{k=1}^{\infty} Q_{k} F_{0}\right)
$$

let

$$
C=\text { convex hull of } B\left(F_{0}\right) \cup \bigcup_{k=1}^{\infty} Q_{k}\left(B\left(F_{0}\right)\right)
$$

let μ be the gauge functional of C and define $\|x\|=\mu(x)$ for every $x \in X_{0}$. The space X_{0} thus becomes a normed space and F_{0} is a subspace of X_{0}. If $x \in X_{0},\|x\|=1$ and $\varepsilon>0$ is given then there exist elements $\left\{e_{i}\right\}_{i=1}^{N} \subset B\left(F_{0}\right)$, positive numbers $\left\{\lambda_{i}\right\}_{i=1}^{N}$ and integers $\{j(i)\}_{i=1}^{N}$ such that

$$
\begin{equation*}
x=\sum_{i=1}^{N} \lambda_{i} Q_{j(i)} e_{i} \quad \text { and } \quad \sum_{i=1}^{N} \lambda_{i} \leq 1+\varepsilon \tag{3.15}
\end{equation*}
$$

It follows from (3.15) that, as a projection on $X_{0},\left\|Q_{n}\right\|=1$. Note that, by (3.11), if $x \in Q_{n}\left(X_{0}\right)$, at the small cost of allowing

$$
\left.\sum_{i=1}^{N} \lambda_{i}<1+\delta(n+1)\right)
$$

(instead of $\sum_{i=1}^{N} \lambda_{i}<1+\varepsilon$) we may assume that

$$
\begin{equation*}
N=n, \quad e_{i} \in B\left(F_{n+1}\right) \quad \text { and } \quad j(i)=i \quad \text { for all } 1 \leq i \leq N \tag{3.16}
\end{equation*}
$$

We have thus constructed a Banach space $X=$ the completion of X_{0} with an f.d.d. which contains E_{0} and hence contains E. In the next section we will show that X / E has an f.d.d.

4. Topological consequences

Our algebraic construction yields the following two results.
Lemma 1. Let $X_{n}=Q_{n} X_{0}$ and assume that $x^{*} \in X_{0}^{*}$ is a functional which satisfies the inequality $\left|x^{*}(x)\right| \leq\|x\|$ for all $x \in X_{n-1} \cup F_{n}$. Then

$$
\left|x^{*}(x)\right| \leq(1+\delta(n+1))\|x\| \quad \text { for all } x \in\left[X_{n-1}+F_{n}\right]
$$

Proof. Assume that $x=y+e$ with $y \in X_{n-1}$ and $e \in F_{n}$ and that $\|x\|=$ 1. Then, by (3.15) and (3.16),

$$
y+e=\sum_{i=1}^{n} \lambda_{i} Q_{i} e_{i} \quad \text { where } e_{i} \in B\left(F_{n+1}\right), \lambda_{i} \geq 0
$$

and

$$
\sum_{i=1}^{n} \lambda_{i} \leq 1+\delta(n+1)
$$

Applying $Q_{n}-Q_{n-1}$ to both sides of the above equation we get

$$
\left(I-Q_{n-1}\right) e=\left(Q_{n}-Q_{n-1}\right)(y+e)=\lambda_{n}\left(Q_{n}-Q_{n-1}\right) e_{n}
$$

Suppose that $e_{n}=z+u+h$ where $z \in F_{n}, u \in U_{n}$ and $h \in H_{n}$. Then

$$
\left(I-Q_{n-1}\right) e=\lambda_{n} Q_{n} u+\lambda_{n}\left(I-Q_{n-1}\right) z
$$

and so

$$
\left(I-Q_{n-1}\right)\left(e-\lambda_{n} z\right)=\lambda_{n} Q_{n} u
$$

where $u \in U_{n}$ and $e-\lambda_{n} z \in F_{n}$. It follows from (3.12) and (3.14) that $\lambda_{n} u=0, e-\lambda_{n} z \in F_{n-1}$. Therefore $Q_{n} e_{n}=Q_{n} z=z$ and $\|z\| \leq 1$. Hence

$$
\left|x^{*}(x)\right| \leq \sum_{i=1}^{n} \lambda_{i} x^{*}\left(Q_{i} e_{i}\right) \leq(1+\delta(n+1))
$$

as claimed.
The statement of Lemma 1 means, in fact, that

$$
\begin{equation*}
B\left[X_{n-1}+F_{n}\right] \subset(1+\delta(n+1)) \operatorname{conv}\left(B\left(X_{n-1}\right) \cup B\left(F_{n}\right)\right) \tag{4.1}
\end{equation*}
$$

Lemma 2. Let $q: X \rightarrow X / E$ be the quotient map; let $x \in X_{n-1}$ and $\omega_{1}=Q_{n} \omega$ where $\omega \in U_{n}$. If $\left\|q\left(x+\omega_{1}\right)\right\|<1$ then $\|q(x)\|<\prod_{i=n+1}^{\infty}(1+$ $\delta(i)$).

Proof. Pick $e \in F_{0}$ such that $\left\|x+\omega_{1}+e\right\| \leq 1$.
Suppose that $e \in F_{m}$ with $m>n$. Then, by (3.15) and (3.16) there exist $\left\{e_{i}\right\}_{i=1}^{m} \subset B\left(F_{m+1}\right)$ and positive numbers $\left\{\lambda_{i}\right\}_{i=1}^{m}$ such that

$$
\sum_{i=1}^{m} \lambda_{i}<1+\delta(m+1) \quad \text { and } \quad x+\omega_{1}+e=\sum_{i=1}^{m} \lambda_{i} Q_{i} e_{i}
$$

Let $e_{m}=f+u+g$ where $f \in F_{m}, u \in U_{m}$ and $g \in H_{m}$; then

$$
\left(Q_{m}-Q_{m-1}\right)\left(x+\omega_{1}+e\right)=\left(I-Q_{m-1}\right) e
$$

On the other hand,

$$
\begin{aligned}
\left(Q_{m}-Q_{m-1}\right)\left(\sum_{i=1}^{m} \lambda_{i} Q_{i} e_{i}\right) & =\left(Q_{m}-Q_{m-1}\right) \lambda_{m} e_{m} \\
& =\left(Q_{m}-Q_{m-1}\right)\left(\lambda_{m}(f+u+g)\right) \\
& =\lambda_{m}\left(I-Q_{m-1}\right) f+\lambda_{m} Q_{m} u .
\end{aligned}
$$

It follows that

$$
\left(I-Q_{m-1}\right)\left(e-\lambda_{m} f\right)=Q_{m}\left(\lambda_{m} u\right)
$$

and, therefore, by (3.14), $e-\lambda_{m} f \in F_{m-1}$ and $\lambda_{m} u=0$. This means that

$$
f=Q_{m} f=Q_{m}(f+g)=Q_{m} e_{m} \quad \text { and } \quad\|f\| \leq\|f+g\|=\left\|e_{m}\right\| \leq 1
$$

Thus we have the equality $x+\omega_{1}+e=\sum_{i=1}^{m-1} \lambda_{i} Q_{i} e_{i}+\lambda_{m} f$ and so

$$
x+\omega_{1}+\left(e-\lambda_{m} f\right)=\sum_{i=1}^{m-1} \lambda_{i} Q_{i} e_{i}, \quad e-\lambda_{m} f \in F_{m-1}
$$

and

$$
\left\|x+\omega_{1}+\left(e-\lambda_{m} f\right)\right\| \leq 1+\delta(m+1)
$$

We now repeat the procedure $m-n$ times to get an $e_{0} \in F_{n}$ such that

$$
\left\|x+\omega_{1}+e_{0}\right\|<(1+\delta(m+1))(1+\delta(m)) \cdots(1+\delta(n+2))=\mu
$$

It follows that there exist $\left\{e_{i}\right\}_{i=1}^{n} \subset B\left(F_{n+1}\right)$ and non-negative $\left\{\mu_{i}\right\}_{i=1}^{n}$ such that

$$
\sum_{i=1}^{n} \mu_{i}<\mu(1+\delta(n+1)) \quad \text { and } \quad x+e_{0}+\omega_{1}=\sum_{i=1}^{n} \mu_{i} Q_{i} e_{i}
$$

Let $e_{n}=f+u+g$ where $f \in F_{n}, u \in U_{n}$ and $g \in H_{n}$. Then

$$
\begin{aligned}
\left(Q_{n}-Q_{n-1}\right)\left(x+e_{0}+\omega_{1}\right) & =\left(I-Q_{n-1}\right) e_{0}+Q_{n} \omega_{1} \\
& =\left(I-Q_{n-1}\right) e_{0}+Q_{n} \omega .
\end{aligned}
$$

On the other hand,

$$
\left(Q_{n}-Q_{n-1}\right)\left(\sum_{i=1}^{n} \mu_{i} Q_{i} e_{i}\right)=\mu_{n}\left(I-Q_{n-1} f+\mu_{n} Q_{n} u .\right.
$$

It follows from (3.14) that $e_{0}-\mu_{n} f \in F_{n-1}$ and $\omega=\mu_{n} u$. Consider the element

$$
y_{1}=\sum_{i=1}^{n-1} \mu_{i} Q_{i} e_{i}+\mu_{n}(f+u+q)
$$

Then, clearly, $\left\|y_{1}\right\| \leq \mu(1+\delta(n+1))$ and

$$
\begin{aligned}
y_{1} & =\sum_{i=1}^{n-1} \mu_{i} Q_{i} e_{i}+\mu_{n} Q_{n-1} e_{n}+\left(I-Q_{n-1}\right)\left(e_{0}+\omega\right) \\
& =x+e_{0}+\omega+\mu_{n} g \in x+E_{0}
\end{aligned}
$$

This proves Lemma 2.

Corollary. $\quad X / E$ has an f.d.d. determined by $\left\{X_{n}+E\right\}_{n=1}^{\infty}$

Proof. Let $y \in X_{n}$ then $y=x+e+\omega_{1}$ where $x \in X_{n-1}, e \in F_{n}$ and $\omega_{1}=Q_{n} \omega$ with $\omega \in W_{n}$. Moreover, if y has another representation $y=x^{\prime}+$ $e^{\prime}+\omega_{1}^{\prime}$ of the same type then $x+e=x^{\prime}+e^{\prime}, \omega=\omega^{\prime}$ and $\omega_{1}=\omega_{1}^{\prime}$. It follows from Lemma 2 that the map

$$
s_{n-1}: X_{n}+E \rightarrow X_{n-1}+E
$$

defined by $s_{n-1} q(y)=q(x)$ is a projection of norm

$$
\left\|s_{n-1}\right\| \leq \prod_{i=n+1}^{\infty}(1+\delta(i))
$$

(as above, $q: X \rightarrow X / E$ is the quotient map). It follows that there is a projection S_{n-1} of X / E onto $X_{n-1}+E$ (defined for $x \in X_{k}+E$ by $S_{n-1} x$ $=s_{n-1} \ldots s_{k-2} s_{k-1} x$ and extended by continuity to all of X / E) with

$$
\left\|S_{n-1}\right\| \leq \sum_{k=n+1}^{\infty} \prod_{i=k}^{\infty}(1+\delta(i))<1+\eta
$$

It is easy to see that $S_{k} S_{n}=S_{m}$ with $m=\min \{k, n\}$ and hence these projections determine an f.d.d. for X / E. This proves Corollary 1. This result plus Step V of the construction of Section 3 finishes the proof of (1.2) of the main theorem.

5. The operator extension property

We will proceed to prove (1.1).
Recall that, by Proposition 1, the existence of a number $\lambda>0$ such that every operator

$$
T: E \rightarrow C(K)
$$

has an extension $\tilde{T}: X \rightarrow C(K)$ with $\|\tilde{T}\| \leq \lambda\|T\|$ is equivalent to the existence of a ω^{*} continuous function $\varphi: B\left(E^{*}\right) \rightarrow \lambda B\left(X^{*}\right)$ which extends functionals. If E is a subspace of a separable Banach space X and $S: E \rightarrow X$ is the isometric embedding, let

$$
\psi: B\left(E^{*}\right) \rightarrow 2^{X^{*}}
$$

be defined by $\psi\left(e^{*}\right)=S^{*-1}\left(e^{*}\right)$. We search for a ω^{*} continuous selection φ : $B\left(E^{*}\right) \rightarrow X^{*}$ of ψ. Since Michael's selection theorem [6] does not hold in the ω^{*} topology we need certain modifications. Let us first make three easy observations.

Observation 1. Let X_{1} be a finite dimensional subspace of X. Then $S^{*}\left(X_{1}^{+}\right)=\left(X_{1} \cap E\right)^{+}\left(Z^{+}\right.$denotes the annihilator of Z in $\left.X^{*}\right)$.

Observation 2. S^{*} is an ω^{*} open mapping. Indeed, if $B^{\circ}\left(X^{*}\right)$ denotes the open unit ball of X^{*} then the collection $\left\{\varepsilon \stackrel{\circ}{B}\left(X^{*}\right)+X_{1}^{+}: \varepsilon>0\right.$ and $X_{1} \subset X$ a finite dimensional subspace\} is a base for the ω^{*} neighborhood system of 0 in X^{*}. By Observation 1,

$$
S^{*}\left(\varepsilon \stackrel{\circ}{B}\left(X^{*}\right)+X_{1}^{+}\right)=\varepsilon \stackrel{\circ}{(}\left(E^{*}\right)+\left(X_{1} \cap E\right)^{+}
$$

is a ω^{*} neighborhood of 0 in E^{*}.
Observation 3. The carrier $\psi: B\left(E^{*}\right) \rightarrow 2^{X^{*}}$ defined by $\psi\left(e^{*}\right)=S^{*-1}\left(e^{*}\right)$ is an ω^{*} lower semicontinuous carrier into the collection of the closed convex subsets of X^{*} (i.e., for every $e^{*} \in B\left(E^{*}\right)$ and ω^{*} open set $V \subset X^{*}$ for which $\varphi\left(e^{*}\right) \cap V \neq \varnothing$ there is an ω^{*} open $U \subset E^{*}$ such that $e^{*} \in U$ and for each $\left.e_{0}^{*} \in U, \varphi\left(e_{0}^{*}\right) \cap V=\varnothing\right)$. Indeed $U=S^{*}(V)$ is the desired ω^{*} open neighborhood of e^{*} in E^{*}, by Observation 2.

We will first prove:
Proposition 2. Let E be a subspace of a separable Banach space X. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of finite dimensional subspaces of X with $X_{1} \subset X_{2} \subset \cdots$, $\cup_{n=1}^{\infty} X_{n}$ dense in X and $\cup_{n=1}^{\infty} X_{n} \cap E$ dense in E. Let $\{\beta(n)\}_{n=1}^{\infty}$ and
$\{\varepsilon(n))_{n=1}^{\infty}$ be decreasing sequences of positive numbers with

$$
\prod_{n=1}^{\infty}(1+\varepsilon(n))<\lambda \quad \text { and } \quad \sum_{n=1}^{\infty} 2^{n} \beta(n) \leq 1
$$

and let $V_{n}=\beta(n+1) B\left(X^{*}\right)+X_{n}^{+}$. Finally, put $\lambda(n)=\prod_{i=1}^{n}(1+\varepsilon(i)), \lambda(0)$ $=1$ and make the following assumption:
(5.1) For every $n \geq 1, e_{0}^{*} \in B\left(E^{*}\right)$, $x_{0}^{*} \in X^{*}$ and $v^{*} \in V_{n}$ for which $x_{0}^{*}+v^{*} \in \psi\left(e_{0}^{*}\right)$ and $\left\|x_{0}^{*} \mid x_{n}\right\| \leq \lambda(n-1)$ there is an $\omega^{*} \in V_{n}$ such that

$$
x_{0}^{*}+\omega^{*} \in \lambda(n) B\left(X^{*}\right) \cap \psi\left(e_{0}^{*}\right)
$$

Then there is an ω^{*} continuous function $\varphi: B\left(E^{*}\right) \rightarrow \lambda B\left(X^{*}\right)$ which extends functionals.

Proof. Our argument is a modification of the proof of Theorem 2.3 of [6]. We will construct a sequence of ω^{*} continuous functions $\varphi_{n}: B\left(E^{*}\right) \rightarrow \lambda(n$ $-1) B\left(X^{*}\right)$ such that the following two conditions are satisfied for every $e^{*} \in B\left(E^{*}\right)$:

$$
\begin{gather*}
\varphi_{i}\left(e^{*}\right) \in \psi\left(e^{*}\right)+V_{i} \quad i=1,2, \ldots \tag{5.2}\\
\varphi_{i}\left(e^{*}\right) \in \varphi_{i-1}\left(e^{*}\right)+2 V_{i-1} \quad i=2,3, \ldots \tag{5.3}
\end{gather*}
$$

Once this is proved, the ω^{*} compactness of $\lambda \cdot B\left(X^{*}\right)$ will yield a uniform limit function

$$
\varphi: B\left(E^{*}\right) \rightarrow \lambda B\left(X^{*}\right)
$$

which is an ω^{*} continuous selection of ψ. We will construct the ϕ_{n} by induction. Our first step is to construct ϕ_{1}. To do this, for each $e_{0}^{*} \in B\left(E^{*}\right)$ pick an

$$
x_{0}^{*}=x_{0}^{*}\left(e_{0}^{*}\right) \in B\left(X^{*}\right) \cap \psi\left(e_{0}^{*}\right)
$$

and consider the set

$$
\begin{aligned}
U^{1}\left(e_{0}^{*}\right) & =\left\{e^{*} \in B\left(E^{*}\right): x_{0}^{*}\left(e_{0}^{*}\right) \in \psi\left(e^{*}\right)+V_{1}\right\} \\
& =\left\{e^{*} \in B\left(E^{*}\right): \psi\left(e^{*}\right) \cap\left(x_{0}^{*}\left(e_{0}^{*}\right)+V_{1}\right) \neq \varnothing\right\}
\end{aligned}
$$

Since ψ is ω^{*} l.s.c., $U^{1}\left(e_{0}^{*}\right)$ is an ω^{*} open set and the collection $\left\{U^{1}\left(e_{0}^{*}\right)\right.$: $\left.e_{0}^{*} \in B\left(E^{*}\right)\right\}$ covers the ω^{*} compact $B\left(E^{*}\right)$. Hence there is a finite subcover $U^{1}\left(e_{1,1}^{*}\right), \ldots, U^{1}\left(e_{1, N(1)}^{*}\right)$ and a partition of the unit consisting of the ω^{*}
continuous non-negative functions $p_{1}^{1}, \ldots, p_{N(1)}^{1}$ such that

$$
\sum_{i=1}^{N(1)} p_{i}^{1}\left(e^{*}\right)=1 \quad \text { for all } e^{*} \in B\left(E^{*}\right)
$$

and for every $1 \leq i \leq N(1), p_{i}^{1}$ vanishes outside $U^{1}\left(e_{1, i}^{*}\right)$. Let $x_{1, i}^{*}=x^{*}\left(e_{1, i}^{*}\right)$ then the function

$$
\varphi_{1}\left(e^{*}\right)=\sum_{i=1}^{N(1)} p_{i}^{1}\left(e^{*}\right) x_{1, i}^{*}
$$

is ω^{*} continuous and if $p_{i}^{1}\left(e^{*}\right) \neq 0$ then $e^{*} \in U^{1}\left(e_{1, i}^{*}\right)$ and hence $x_{1, i}^{*} \in$ $\psi\left(e^{*}\right)+V_{1}$. Since V_{1} is convex we get $\varphi_{1}\left(e^{*}\right) \in \psi\left(e^{*}\right)+V_{1}$ and, clearly $\left\|\varphi_{1}\left(e^{*}\right)\right\| \leq \max \left\|x_{1, i}^{*}\right\| \leq 1$. This completes the construction of ϕ_{1}. Suppose now that the ω^{*} continuous functions $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ have been constructed with

$$
\varphi_{i}: B\left(E^{*}\right) \rightarrow \lambda(i-1) B\left(X^{*}\right)
$$

so that (5.2) and (5.3) are satisfied for $1 \leq i \leq n$ and proceed by induction. Let $e_{0}^{*} \in B\left(E^{*}\right)$ and put $x_{0}^{*}=\varphi_{n}\left(e_{0}^{*}\right)$. Then $\left\|x_{0}^{*}\right\| \leq \lambda(n-1)$ and, by (5.2), there is a $v^{*}=v^{*}\left(e_{0}^{*}\right) \in V_{n}$ such that $x_{0}^{*}+v^{*} \in \psi\left(e^{*}\right)$. By (5.1) there is an $\omega^{*}=\omega^{*}\left(e_{0}^{*}\right) \in V_{n}$ such that

$$
x_{0}^{*}+\omega^{*} \in \lambda(n) B\left(X^{*}\right) \cap \psi\left(e_{0}^{*}\right) .
$$

Since φ_{n} is ω^{*} continuous, it follows from Proposition 2.5 of [6] that the carrier

$$
\left(\varphi_{n}\left(e^{*}\right)+V_{n}\right) \cap \psi\left(e^{*}\right)
$$

is ω^{*} l.s.c. and therefore the set

$$
\begin{aligned}
U^{n+1}\left(e_{0}^{*}\right)= & \left\{e^{*} \in B\left(E^{*}\right): \varphi_{n}\left(e_{0}^{*}\right)+\omega^{*}\left(e_{0}^{*}\right)\right. \\
& \left.\in\left(\varphi_{n}\left(e^{*}\right)+V_{n}\right) \cap \psi\left(e^{*}\right)+V_{n+1}\right\} \\
= & \left\{e^{*} \in B\left(E^{*}\right):\left[\left(\varphi_{n}\left(e^{*}\right)+V_{n}\right) \cap \psi\left(e^{*}\right)\right]\right. \\
& \left.\cap\left(\varphi_{n}\left(e_{0}^{*}\right)+\omega^{*}\left(e_{0}^{*}\right)+V_{n+1}\right) \neq \varnothing\right\}
\end{aligned}
$$

is ω^{*} open. Since the collection $\left\{U^{n+1}\left(e_{0}^{*}\right): e_{0}^{*} \in B\left(E^{*}\right)\right\}$ covers $B\left(E^{*}\right)$, there
is a finite subcover

$$
U^{n+1}\left(e_{n+1,1}^{*}\right), \ldots, U^{n+1}\left(e_{n+1, N(n+1)}^{*}\right)
$$

and a partition of the unit which consists of the ω^{*} continuous non-negative functions $p_{1}^{n+1}, \ldots, p_{N(n+1)}^{n+1}$ with $\sum_{i=1}^{N(n+1)} p_{i}^{n+1}\left(e^{*}\right)=1$ for every $e^{*} \in B\left(E^{*}\right)$ such that each p_{i}^{n+1} vanishes outside $V^{n+1}\left(e_{n+1, i}^{*}\right)$. Define
$\varphi_{n+1}\left(e^{*}\right)=\sum_{i=1}^{N(n+1)} p_{i}^{n+1}\left(e^{*}\right) x_{n+1, i}^{*}$ where $x_{n+1, i}^{*}=\varphi_{n}\left(e_{n+1, i}^{*}\right)+\omega^{*}\left(e_{n+1, i}^{*}\right)$.
It follows that

$$
\left\|\varphi_{n+1}\left(e^{*}\right)\right\| \leq \max \left\|x_{n+1, i}^{*}\right\| \leq \lambda(n) \quad \text { for all } e^{*} \in B\left(E^{*}\right)
$$

If $p_{i}^{n+1}\left(e^{*}\right) \neq 0$ then $e^{*} \in U^{n+1}\left(e_{n+1, i}^{*}\right)$ and so

$$
x_{n+1, i}^{*} \in\left(\varphi_{n}\left(e^{*}\right)+V_{n}\right) \cap \psi\left(e^{*}\right)+V_{n+1}
$$

Since V_{n} and V_{n+1} are convex sets we get

$$
\begin{gathered}
\varphi_{n+1}\left(e^{*}\right) \in \varphi_{n}\left(e^{*}\right)+V_{n}+V_{n+1} \subset \varphi_{n}\left(e^{*}\right)+2 V_{n} \text { and } \\
\varphi_{n+1}\left(e^{*}\right) \in \psi\left(e^{*}\right)+V_{n+1} .
\end{gathered}
$$

This completes the induction step and the proof of Proposition 2.
In order to complete the proof of Theorem 1 we only have to show that condition (5.1) holds for the spaces X and E constructed in Sections 3 and 4. Let

$$
1+\varepsilon(n)=\prod_{i=n+1}^{\infty}(1+\delta(i)) \quad \text { and } \quad \lambda(n)=\prod_{i=1}^{n}(1+\varepsilon(i))
$$

as above; then

$$
\prod_{n=1}^{\infty}(1+\varepsilon(n)) \leq 1+\eta
$$

by the definition of $\delta(i)$ in Section 3. Suppose that

$$
e_{0}^{*} \in B\left(E^{*}\right), \quad x_{0}^{*} \in X^{*}, \quad\left\|x_{0}^{*} \mid x_{n}\right\| \leq \lambda(n-1)
$$

and

$$
x^{*}=x_{0}^{*}+v^{*} \in \psi\left(e_{0}^{*}\right)
$$

This means that $\left|x^{*}(x)\right| \leq \lambda(n-1)$ for all $x \in B\left(X_{n}\right)$ and $\mid x^{*}(x) \leq 1$ for all $x \in B(E)$. It follows from Lemma 3.1 that

$$
\left|x^{*}(x)\right| \leq(1+\delta(n+2)) \lambda(n-1)\|x\| \quad \text { for all } x \in\left[X_{n}+F_{n+1}\right]
$$

Let y_{0}^{*} denote the restriction of x^{*} to $\left[X_{n}+F_{n+1}\right]$; then by the Hahn-Banach Theorem, there is a $y^{*} \in X_{n+1}^{*}$ which extends y_{0}^{*} and

$$
\left\|y^{*}\right\| \leq(1+\delta(n+2)) \lambda(n-1)
$$

Let $z^{*}=Q_{n+1} x^{*}-y^{*}$; then $z^{*} \in X_{n+1}^{*} \cap\left[X_{n}+F_{n+1}\right]^{+}$. Extend z^{*} to $X_{n+1}+E_{0}$ by putting

$$
z^{*}(h)=0 \quad \text { for all } h \text { with } Q_{n+1} h=0
$$

and

$$
z^{*}(\omega)=0 \quad \text { for } \omega \in W_{n+1}
$$

(this can be done by defining $z^{*}\left(I-Q_{n+1}\right) \omega=-z^{*} Q_{n+1} \omega$ for $\omega \in U_{n+1}$). Now use Hahn Banach's Theorem again to get an extension u_{n+1}^{*} of z^{*} to all of X. Clearly

$$
\begin{gathered}
u_{n+1}^{*} \in\left[X_{n}+E\right]^{+} \\
\left\|Q_{n+1}^{*}\left(x^{*}+u_{n+1}^{*}\right)\right\| \leq(1+\delta(n+2)) \lambda(n-1)
\end{gathered}
$$

and

$$
x^{*}+u_{n+1}^{*} \in \psi\left(e_{0}^{*}\right) .
$$

We now have

$$
\left\|\left.\left(x^{*}+u_{n+1}^{*}\right)\right|_{X_{n+1}}\right\| \leq(1+\delta(n+2)) \lambda(n-1) \quad \text { and } \quad x^{*}-u_{n+1}^{*} \in \psi\left(e_{0}^{*}\right)
$$

so, repeating the above procedure we can find $u_{n+2}^{*} \in\left[X_{n+1}+E\right]^{+}$such that

$$
\left\|\left.\left(x^{*}+u_{n+1}^{*}+u_{n+2}^{*}\right)\right|_{X_{n+2}}\right\| \leq(1+\delta(n+3))(1+\delta(n+2)) \lambda(n-1)
$$

Proceeding by induction we can find a sequence $\left\{u_{n+i}^{*}\right\}_{i=1}^{\infty} \subset X^{*}$ such that

$$
u_{n+i}^{*} \in\left[X_{n+i-1}+E\right]^{+}
$$

and

$$
\begin{aligned}
\left\|x^{*}+\left.\sum_{j=1}^{i} u_{n+j}^{*}\right|_{X_{n+i}}\right\| & \leq \lambda(n-1) \prod_{j=n+2}^{n+2+i}(1+\delta(j)) \\
& \leq \lambda(n-1) \cdot \prod_{j=n+2}^{\infty}(1+\delta(j)) \leq \lambda(n) .
\end{aligned}
$$

Let $u^{*}=\omega^{*} \lim _{i} \sum_{j=1}^{i} u_{n+j}^{*}$; then

$$
u^{*} \in X_{n}^{+} \subset V_{n}, \quad x^{*}+u^{*} \in \psi\left(e_{0}^{*}\right) \quad \text { and } \quad\left\|x^{*}+u^{*}\right\| \leq \lambda(n)
$$

It follows that $\omega^{*}=v^{*}+u^{*}$ is the desired functional. Condition (5.1) is thus satisfied and so, by Proposition 2 and Proposition 1, (1.1) of the main theorem is established.

Remark. We can easily strengthen this result to show that every separable space E is contained in a space X so that both X and X / E have bases. To see this, let $\left\{E_{n}\right\}_{n=1}^{\infty}$ be a sequence of finite dimensional spaces which is dense in the family of all finite dimensional spaces in the Banach-Mazur distance and let $C_{p}=\left(\Sigma \oplus E_{n}\right)_{l_{p}}$, for $1<p<\infty$. It is known (see e.g. [3]) that $Y \oplus C_{p}$ has a basis for any Banach space Y with an f.d.d. so if we replace the X above with $X^{\prime}=X \oplus C_{p}$, both X^{\prime} and $X^{\prime} / E=X / E \oplus C_{p}$ have bases.

Appendix. We construct the operator $S: E_{0} \rightarrow Y$ by using a suitable biorthogonal system. Let $m(k)=\operatorname{dim} E_{\alpha(k)}, p(k)=\operatorname{dim} W_{k}$ and $q(k)=$ $\operatorname{dim} G_{k}$ and suppose that the sequences

$$
\left\{e_{i}\right\}_{i=1}^{m(k)} \subset E_{\alpha(k)} \quad \text { and } \quad\left\{f_{i}\right\}_{i=1}^{m(k)} \subset Y^{*}
$$

have been constructed such that:
(a) $f_{i}\left(e_{j}\right)=\delta_{i j}$ and $\left\|e_{i}\right\|=1$ for all $1 \leq i, j \leq m(k)$.
(b) For each $1 \leq j \leq k-1$,

$$
\left\{e_{i}\right\}_{i=1}^{m(j)}, \quad\left\{e_{i}\right\}_{i=m(j+1)-q(j)+1}^{m(j+1)} \quad \text { and } \quad\left\{e_{i}\right\}_{i=m(j+1)-p(j)-q(j)+1}^{m(j+1)-q(j)}
$$

are bases of $E_{\alpha(j)}, G_{j}$ and W_{j} respectively.
(c) For all $1 \leq j \leq k-1$, if $1 \leq i \leq m(j)+p(j)$ then $P_{\alpha(j)}^{*} f_{i}=f_{i}$ and if $m(j)+p(j)<i \leq m(j+1)$ then $P_{\alpha(j)}^{*} f_{i}=0$.
(d) For all $1 \leq j \leq k-1$ and $1 \leq i \leq m(j) f_{i}(\omega)=0$ for all $\omega \in W_{j+1}$.

We proceed by induction to construct $\left\{e_{i}\right\}_{i=m(k)+1}^{m(k+1)}$ and $\left\{f_{i}\right\}_{i=m(k)+1}^{m(k+1)}$. Pick a basis $\left\{u_{i}\right\}_{i=1}^{p(k)}$ of W_{k} with $\left\|u_{i}\right\|=1$ and put $v_{i}=P_{\alpha(k)} u_{i}$. Then, by (3.3), $\left\{v_{i}\right\}_{i=1}^{p(k)}$ is a basis of $P_{\alpha(k)} W_{k}$. It follows that there exist functionals $\left\{u_{i}^{*}\right\}_{i=1}^{p(k)}$ in $\left[y_{n}^{*}\right]_{n=\alpha(k)+1}^{\alpha(k+1)}$ such that $u_{i}^{*}\left(v_{j}\right)=u_{i}^{*}\left(u_{j}\right)=\delta_{i, j}$ for all $1 \leq i, j \leq p(k)$. For each $1 \leq i \leq p(k)$ let

$$
e_{m(k)+i}=u_{i} \quad \text { and } \quad f_{m(k)+i}=u_{i}^{*}-\sum_{j=1}^{m(k)} u_{i}^{*}\left(e_{j}\right) f_{j}
$$

Then, by (d),

$$
f_{i}\left(e_{j}\right)=\delta_{i, j} \text { for all } 1 \leq i, j \leq m(k)+p(k)
$$

and

$$
P_{\alpha(k)}^{*} f_{i}=f_{i} \quad \text { if } 1 \leq i \leq m(k)+p(k)=m(k+1)-q(k)
$$

Since $E_{\alpha(k+2)}=E_{\alpha(k+1)}+W_{k+1}+G_{k+1}$ is a direct sum we have

$$
P_{\alpha(k+1)} W_{k+1} \cap G_{k}=\{0\} .
$$

Therefore there exists a basis $\left\{g_{i}\right\}_{i=1}^{q(k)}$ of G_{k} with $\left\|g_{i}\right\|=1$ and functionals $\left\{g_{i}^{*}\right\}_{i=1}^{q(k)}$ in $\left[y_{i}^{*}\right]_{i=\alpha(k)+1}^{\alpha(k+1)}$ such that $g_{i}^{*}\left(g_{j}\right)=\delta_{i, j}$ for $1 \leq i, j \leq q(k)$ and $g_{i}^{*}(\omega)=0$ for every $\omega \in W_{k+1}$. Put

$$
e_{m(k)+p(k)+i}=g_{i} \quad \text { and } \quad f_{m(k)+p(k)+i}=g_{i}^{*}-\sum_{j=1}^{m(k)+p(k)} g_{i}^{*}\left(e_{j}\right) f_{j}
$$

Then $f_{i}\left(e_{j}\right)=\delta_{i, j}$ for all $1 \leq i, j \leq m(k+1)$ and $P_{\alpha(k+1)}^{*} f_{i}=f_{i}$ if $1 \leq i \leq$ $m(k+1)$. Moreover, if $1 \leq i \leq m(k+1)$ then $f_{i}(\omega)=0$ for all $\omega \in W_{k+1}$. This completes the induction step in the construction of the biorthogonal system. Let $\{\varepsilon(n)\}_{n=1}^{\infty}$ be a decreasing sequence of positive numbers such that

$$
\varepsilon(n) \cdot \sum_{j=1}^{m(n+1)}\left\|f_{j}\right\| \leq 2^{-n} \varepsilon
$$

Recall that each $e \in E_{0}$ is supported on $\left\{y_{2 i-1}\right\}_{i=1}^{\infty}$ and

$$
\operatorname{dim}\left(I-P_{\alpha(k)} E_{\alpha(k+1)} \leq \frac{1}{2}(\alpha(k+1))-\alpha(k)\right)
$$

For each $k \geq 1$ and $m(k)<i \leq m(k+1)$ put

$$
e_{i}^{\prime}=e_{i}+\varepsilon(k) y_{j(i)} \quad \text { where } j(i)=\alpha(k)+2(i-m(k))
$$

Then $\left\|e_{i}^{\prime}-e_{i}\right\| \leq \varepsilon(k)$. Let $S e_{i}=e_{i}^{\prime}$ and extend S to a linear operator from E_{0} into Y. Condition (3.5) is clearly satisfied by the definition of $\varepsilon(k)$. Since

$$
\left.P_{\alpha(k+1)}\right) e_{i}^{\prime}=e_{i}^{\prime} \quad \text { for all } m(k)<i \leq m(k+1)
$$

we get (3.6). If $m(k)+p(k)<i \leq m(k+1)$ (i.e., $\left.e_{i} \in G_{k}\right)$ then $P_{\alpha(k)} e_{i}^{\prime}=0$; hence

$$
S\left(G_{k}\right)=\left(I-P_{\alpha(k)}\right) Y \quad(\mathrm{cf.}(7))
$$

If $m(k)<i \leq m(k)+p(k)$ (i.e., $e_{i} \in W_{k}$) then $P_{\alpha(k)} e_{i}^{\prime}=P_{\alpha(k)} e_{i}$ is an element supported on $\left\{y_{2 i-1}\right\}_{i=1}^{\infty}$; hence

$$
\left(I-P_{\alpha(k-1)}\right) S E_{\alpha(k)} \cap P_{\alpha(k)} W_{k}=\{0\}
$$

and $P_{\alpha(k-1)} e_{i}^{\prime}=0$ and so (3.8) holds. This concludes the construction of S.
Acknowledgement. We thank the referee for many valuable remarks which made this paper readable and for making the remark preceding the appendix.

References

1. N. Dunford and J. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1958.
2. W.B. Johnson and H.P. Rosenthal, On ω^{*}-basic sequences and their applications to the study of Banach spaces, Studia Math., vol. 43 (1972), pp. 77-92.
3. W.B. Johnson, H.P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math., vol. 9 (1971), pp. 488-506.
4. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc., vol. 48, 1964.
5. \qquad , On James' paper "Separable conjugate spaces", Israel J. Math., vol. 9 (1971), pp. 279-284.
6. E. Michael, Continuous selections I, Ann. of Math., vol. 63 (1956), pp. 361-382.

The Hebrew University of Jerusalem
Jerusalem, Israel

