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THE McSHANE INTEGRAL OF
BANACH-VALUED FUNCTIONS

BY

RUSSELL A. GORDON

The generalized Riemann integral has, as the name suggests, a definition
similar to the Riemann integral. The difference lies in the class of partitions
that are used to form the Riemann sums. Two such generalizations have
been studied for real-valued functions. One of these generalizations leads to
an integral, often called the Henstock integral, that is equivalent to the
restricted Denjoy integral while the other yields an integral, which we will
refer to as the McShane integral, that is equivalent to the Lebesgue integral.
We shall confine our attention to the latter definition and develop the
properties of this integral for the case in which the function has values in a
Banach space. The main result of this paper is that every measurable, Pettis
integrable function is generalized Riemann integrable.
Throughout this paper X will denote a real Banach space and X* its dual.

We first extend the notion of partition of an interval.

DEFINITION 1. Let 3(-) be a positive function defined on the interval
[a, b]. A tagged interval (s,[c, d]) consists of an interval [c, d] c [a, b] and a
point s in [a, b]. The tagged interval (s,[c, d]) is subordinate to 3 if

[c,d] c (s +

Note that this may not be a point in [c, d]. Script capital letters such as
and . will be used to denote finite collections of non-overlapping tagged
intervals. Let

’-- {(Si, [ci, di] )" 1 < < N}

be such a collection in [a, b].
(a) The points {Si: 1 < < N} are called the tags of .
(b) The intervals {[ci, di]: 1 < < N} are called the intervals of .
(c) If (si, [ci, di]) is subordinate to t for each i, then we write is sub t.
(d) If [a, b] I,J/N=I[Ci di], then is called a tagged partition of [a, b].
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(e) If is a tagged partition of [a, b] and if is sub 6, then we write
is sub 6 on [a, b].

(f) If f: [a, b] -, X, then f(..) E= lf(si)(d ci).
(g) If F is defined on the intervals of[a, b], then

N

F() .F([ci, d]).
i=1

di(h) We will write/x() for E=l(di ci) and ff for E=lf,f.
DEFINITION 2. The function f: [a, b] X is McShane integrable on

[a, b] if there exists a vector z in X with the following property: for each
e > 0 there exists a positive function /5 on [a, b] such that IIf() z II < e
whenever is sub 6 on [a, b]. The function f is McShane integrable on the
set E c [a, b] if the function fXe is McShane integrable on [a, b].

For real-valued functions the McShane integral and the Lebesgue integral
are equivalent. See McShane [6] and Davies and Schuss [2].
The next three theorems record some of the basic properties of the

McShane integral. The proofs of these facts are virtually identical to the
proofs for real-valued functions and the reader is referred to McLeod [5] for
the details.

THEOREM 3. The function f: [a, b] - X is McShane integrable on [a, b] if
and only iffor each e > 0 there exists a positive function on [a, b] such that
IIf() f(2)II < e whenever ’1 and 2 are sub on a, b ].

THEOREM 4. Let f and g be functions mapping a, b] into X.
(a) If f is McShane integrable on [a, b], then f is McShane integrable on

every subinterval of a, b ].
(b) Iff is McShane integrable on each of the intervals [a, c] and [c, b], then

f is McShane integrable on [a, b] and

(c) If f and g are McShane integrable on [a, b] and if a and are real
numbers, then af + g is McShane integrable on a, b] and

b(af + g) afaf
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THEOREM 5. Let f: a, b] X be McShane integrable on a, b ], let F(t)
ftaf, and consider F as a function of intervals. Given e > O, let be a positive

function defined on [a, b] such that [[f() F(b)[[ < e whenever is sub
on a, b ]. If

_
is sub , then [[f(.) F(-)ll -< e.

THEOREM 6. Let f: a, b] - X be McShane integrable on a, b ]. If f g
almost everywhere on [a,b], then g is McShane integrable on [a,b] and

Proof It is sufficient to prove that if f 0 (the zero of X) almost
everywhere on [a, b], then f is McShane integrable on [a, b] and fbf O.
Since Ilfll 0 almost everywhere on [a, b l, the function Ilfll is McShane
integrable on [a, b] since it is Lebesgue integrable and jab Ilfl[ 0. Let e > 0
and choose a positive function 6 on [a, b] such that Ilfll() < e whenever
is sub 6 on [a, b]. Let be sub 6 on [a, b] and compute

IIf() 0 II IIf()ll Ilfll () < .
This shows that f is McShane integrable on [a, b] and that fabf O.

DEFINITION 7. Let F: [a, b] X and let E c [a, b]. The function f:
E X is a scalar derivative of F on E if for each x* in X* the function x*F
is differentiable almost everywhere on E and (x’F)’ x*f almost every-
where on E.

The next theorem follows easily from the known properties of the Mc-
Shane integral of real-valued functions. See Gordon [4].

THEOREM 8. Let f: [a, b]- X be McShane integrable on [a, b] and let
F(t) ftf.

(1) For each x* in X* the function x*f is McShane integrable on [a, b] and
ftx*f x*F(t).

(2) The function F is continuous on a, b] andf is a scalar derivative ofF on
[a,b].

In order to prove that every measurable, Pettis integrable function is
McShane integrable we need a convergence theorem for the McShane
integral. The convergence theorem that we will prove is essentially an
iterated limits theorem. The next definition and the proof of the theorem
that follows can be found in McLeod [5].

DEFINITION 9. (a) Let V be a set. A direction ’ in V is a nonempty
collection of nonempty subsets of V that is directed downward by inclusion.
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That is, for each pair of sets S and S2 in a there exists a set S3 in ’ such
that S3CSland S3cS2.

(b) Let f: V - X. The vector z is the limit of f with respect to a if for
each e > 0 there exists a set S in /such that Ill(v) z[[ < e for all v in
S. In this case we write z limj f(v).

(c) The function f is Cauchy with respect to ’ if for each e > 0 there
exists a set S in such that IIf(v 1) f(v2) ][ ( E for all v and v2 in S.

(d) Let W be a set and let g: V W - X. Suppose that

h(w) limg(v,w)

exists for all w in W. Then h(w) limo g(v, w)uniformly for w in W if for
each e > 0 there exists a set S in o such that [g(v, w) h(w)[ < e for all
v in S and for all w in W. That is, the set S works for all w in W.

It is a standard exercise to prove that the limit of f with respect to is
unique when it exists and that the limit of f with respect to exists if and
only if f is Cauchy with respect to .
THEOREM 10. Let be a direction in V, let - be a direction in W, and let

f: V W --* X. If g(v) lim- f(v, w) exists for each v in V and if h(w)
lim f(v, w) exists uniformly for w in W, then each of the iterated limits exists
and the values are equal. That is,

lim g(v) lim limf( v, w) lim limf( v, w) limh(w).

In order to apply the theorem on iterated limits to obtain a convergence
theorem for the McShane integral we introduce the concept of uniform
McShane integrability. The idea behind the uniform McShane integrability of
a family {f} of McShane integrable functions is that for each e > 0 there
exists a single positive function 6 that works for all of the functions f.
However, some care in the definition is required. Consider the sequence {f}
of functions defined on [0, 1] by fn(t) 0 for (0, 1] and fn(O) n. All of
these functions belong to the same equivalence class but there is no positive
function 6 on [0, 1] for which Ifn()l < 1 for all n and for all sub 8 on
[0,1].

DEFINITION 11. Let {f} be a family of McShane integrable functions
defined on [a, b ]. The family {f} is uniformly McShane integrable on [a, b] if
there exists a set E in [a,b] such that (E)--b-a and for each e > 0
there exists a positive function 6 on [a, b] such that [[f,,xe() fabf[[ < e

for all a and whenever is sub on [a, b].

Now we are ready to state two convergence theorems for the McShane
integral that are direct consequences of Theorem 10. We first set up the
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necessary notation. Let V be the set of positive integers and let a be the
direction in V defined by

’= {Sn {n,n + 1,...}: n e V}.

Let W be the set of all tagged partitions of[a, b] and let - be the direction
in W defined by

-= T {" . is sub on a, b ]}"/5 is a positive function on a, b]}.

Let {fn} be a sequence of McShane integrable functions defined on [a, b] and
suppose that fn - f pointwise on [a, b]. Define

g: V WX

by

g(n,) fn(,.).

Note that

f() limg(n, )

exists for every in W and that

fbafn ling(n, )

exists for every n in V. Suppose that one of these limits exists uniformly.
Then by Theorem 10 the function f is McShane integrable on [a, b] since
limjf() exists and we have

f f= lim limg( n, ,.) lim./lim_ g(n, ) noolim faf,,.
This observation proves the next two theorems.

THZOREM 12. Let fn: a, b X be a McShane integrable function on a, b]
for each positive integer n. If fn f uniformly on [a, b], then f is McShane
integrable on a, b] and
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THEOREM 13. Let f,: a, b] X be a McShane integrable function on a, b]

for each positive integer n and suppose that f, f pointwise on [a, b]. If the
family {f,} is uniformly McShane integrable on [a,b], then f is McShane
integrable on a, b] and

We now proceed to prove that every measurable, Pettis integrable function
is McShane integrable.

THEOREM 14. If f: [a, b] X is a simple function, then f is McShane
integrable on a, b].

Proof Since the McShane integral is linear it is sufficient to consider the
case f(t)= XE(t)x where E is a measurable set in [a,b] and x X. Let
e > 0 be given. Choose an open set G such that

EcG and /z(G) </z(E) +e

and choose a closed set H such that

HcE and /x(H) >/x(E)-e.

Define a positive function 6 on [a, b] as follows. Let

B (t- 6(t), + 6(t)).

(i) If H, then choose 6(t) > 0 so that B C G.
(ii) IftG-H, thenchoose 6(t)>0sothat BtCG-H.
(iii) If [a, b] G, then choose 6(t) > 0 so that B
Let . be sub 6 on [a, b] and let -e be the subset of that has tags in

E. Since

- < ,(H) (E) _< () ,(E) _< ,(6) ,(E) <

we find that

IIf() (E)xll Ilxlll() (E)I Ilxll,

Therefore, the function f is McShane integrable on [a, b] and ff Ix(E)x.
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THEOREM 15. Let {E,} be a sequence of disjoint measurable sets in
let {xn} be a sequence in X, and let f: [a, b] - X be defined by

[a,b],

f( t) EXnXE.( t).
n

If the series Z,.ix(E.)x is unconditionally convergent, then the function f is
McShane integrable on [a, b] and

f)f El( En) Xn.
n

Proof For each positive integer n let

n

f( t) E XkXFk( t)"
k=l

By Theorem 14 each fn is McShane integrable on [a, b] and

n

E
k=l

Note that fn f pointwise on [a, b] and that

lim fabf, E I(En)Xn"
noo n=l

By Theorem 13 it is sufficient to prove that the family {f.} is uniformly
McShane integrable on [a, b].

Let e > 0 and for each n choose a positive function 6. on [a, b] such that

n

fn( ) E
k=l

< e2-n-2

whenever . is sub tn on [a, b]. Since the series Enl(En)x is uncondition-
ally convergent there exists a positive integer N such that

E Ix*(xk)I/z(E) < e/4
k=N
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for all x* with IIx* II 1. Let

H- UEU [a,b]- UE
k=l k=l

and let Hn En for n > N. Now the Hn’S are disjoint and [a, b] U=lnn
Define a positive function on [a,b] by 6(t)= min{6l(t),...,Sn(t)} for
Hn. We will show that IIf() E=g(E)xkll < e for all n whenever
is sub 6 on [a, b].
Let be sub 6 on [a, b]. Then is sub n on [a, b] for each n < N and

we find that

n

f() E g()x
k=l

< e2-n-2 < e for each n < N.

Now fix n > N. For each > N let i be the subset of that has tags in
Hi. Let .x U n-i=Ni let -2 U i=ni, and let Fi(t)= fafi" Then "2 is
sub 6 and for N < < n we see that fn f/ on H and i is sub 6i. Using
Theorem 5 and treating the Fi’s as functions of intervals we obtain

n

f() E (E)x
k=l

n-1

i=N

n-1

i--N

E (F/(i) Fn(i))
i=N

e2-n-2

n-1

e2-i-2 -t-
i=N

E (en +
i=N

E (Fn 5)()
i=N

E
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By the choice of N we find that

E (Fn Fi)( i)
i=N

Combining the last two inequalities we obtain Ilfn() Y",--ll-t(Ek)Xkll < e.
Since this is valid for all n we conclude that the family {fn} is uniformly
McShane integrable on [a, b]. This completes the proof.

THEOREM 16. If f: a, b] X is Bochner integrable on a, b ], then f is
McShane integrable on a, b].

Proof. Since f is measurable there exist E c [a, b] with (E) b a
and a sequence {fn} of countably-valued functions such that for each n the
inequality [Ifn(t)- fXE(t)[[ < 1/n holds for all in [a,b]. It is clear that
each fn is Bochner integrable on [a, b]. For each n let

XkXEg
k=l

where the sets {E" k > 1} are disjoint and measurable. The series Ekt.t(E)x
is absolutely convergent and hence unconditionally convergent for each n. By
Theorem 15 each of the functions f is McShane integrable on [a, b]. Since

fxe is the uniform limit of {fn} on [a, b], the function fxe .is McShane
integrable on [a, b] by Theorem 12. By Theorem 6 the function f is McShane
integrable on a, b ].

THEOREM 17. Let f: [a, b] - X be measurable. If f is Pettis integrable on
a, b], then f is McShane integrable on a, b ].
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Proof Since f is measurable there exist E c [a, b] with (E)= b-a
and a countably-valued function g: [a, b] X such that

for all in [a, b]. It is easy to see that g fXF is Bochner integrable on a, b]
and that g is Pettis integrable on [a, b]. By Theorem 16 the function g fxe
is McShane integrable on [a, b]. Let

g EXnXEn
n

where the En’S are disjoint, measurable sets in [a,b]. Since g is Pettis
integrable on [a, b] every subseries of Entx(En)x is weakly convergent. By a
theorem of Orlicz and Pettis (see Diestel and Uhl [3, p. 22]) the series
Ent.(En)x is unconditionally convergent. By Theorem 15 the function g is
McShane integrable on [a, b] and it follows that the function fxe g (g
-fxE) is McShane integrable on [a,b]. By Theorem 6 the function f is
McShane integrable on a, b].

Hence, in separable spaces every Pettis integrable function is McShane
integrable. In order to determine conditions on a Banach space for every
McShane integrable function to be Pettis integrable we need the result that
appears next. Recall that a function f: [a, b] X is Dunford integrable on
[a, b] if x*f is Lebesgue integrable on [a, b] for each x* in X*. The proof of
the theorem below is a consequence of the Bessaga-Pelczyfiski characteriza-
tion of Banach spaces that do not contain a copy of co (see Diestel and Uhl
[3, p. 221).

THEOREM 18. Suppose that X contains no copy of co and let f: [a, b] - Xbe Dunford integrable on a, b ]. If fir Xfor every interval I c a, b ], then f is
Pettis integrable on a, b ].

The fact that every McShane integrable function is Dunford integrable and
X-valued on intervals yields the following result.

THEOREM 19. Suppose that X contains no copy of co. If f: [a, b] X is
McShane integrable on a, b ], then f is Pettis integrable on a, b ].

Putting Theorems 17 and 19 together we obtain:

THEOREM 20. Suppose that X is separable and contains no copy of co. A
function f: a, b] - X is McShane integrable on a, b] if and only iff is Pettis
integrable on a, b ].
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Unfortunately, we have been unable to prove containment in either direc-
tion for arbitrary Banach spaces or to find an example of a function
integrable in one sense but not the other.
We end this paper with two comments. A McShane integrable function

need not be measurable. It is easy to show that the function

f: [0, 1] - 1=[0, 1]

defined by f(t) Xto, tl is McShane integrable and not measurable. Further-
more, even for measurable functions the collection of McShane integrable
functions properly includes the collection of Bochner integrable functions:
simply take any measurable, Pettis integrable function that is not Bochner
integrable. This invalidates a statement by Artstein [1] that the Bochner
integral and McShane integral are equivalent.
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