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1. Introduction and summary

Let M be a compact C manifold of dimension d. A Coo metric ,, on M
gives rise to the notions of a-potential and a-energy, a > 0. These were
discussed in [2] and [4] in the context of the asymptotic behaviour of the
diffusion on M with generator L A + V, where A is the Laplace opera-
tor associated with , and V is a vector field. In this paper we shall continue
that discussion, assuming for simplicity V 0 and d > 2. In particular, we
shall prove an almost everywhere central limit theorem (a.e. CLT) for the
occupation measures of the diffusion, a theorem similar to the one we proved
in [5] for liD random variables. The occupation measures assume their values
in a nuclear space. We shall exploit "exponential mixing" of the diffusion. As
an application of our a.e. CLT, we shall recover the spectrum of the operator
A from the development of the a-energy on a typical diffusion path. A
classical CLT for the occupation measures can be found in [2].
For background material on a-potentials and a-energy in Ra we refer the

reader to [8].
In the case of a compact Riemannian manifold, the a-potential kernels

{g, a > 0} were defined in [3] in terms of the fundamental solution of the
heat equation. To be precise, if p is the solution of

0p
0--(t,x,r) 7Ayp(t,x,r), p(0+,x,y) Tx(y),

with 3’ the total Riemann measure of (M, ), for a > 0 we let

(1.1) ga(x, y) F(a ta-l{ p(t’ x, y) 1} dt, x, y M.
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The kernels {g, a > 0} form a semigroup with respect to the normalized
Riemann measure rn on M. We recall that the Newtonian kernel g g is
also the solution of the differential equation

(1.2)(a) 1/2Ayg(X, y) -y8,,(y) + 1

with the normalizing condition

(1.2)(b) fMg(X, y) dm( y) O.

The potential kernels g,, by the way, are symmetric, bounded below, and if
a < d/2, have singularities on the diagonal which are bounded in both
directions by

c[r(x,y)] -d+2’

if a < d/2 and by

c(1 + log-Jr(x, y)])

if a d. Here r(x, y) is the geodesic distance between x and y.
We denote by G the operators

G,: L2(M) L2(M), (Go,f) (x) fgo,( x, y)f(y) dm(y)

and let G G 1. The inverse of G is A. The operators G,
finite measures on M, if we let

also act on

(G,/x) (x) fMg,(x, y) d/J,(y),

which is the a-potential of/x. For any finite measure/, on M, we define the
a-energy of/z by

(1.3) e,(I.t) ,(x, y) dl.t(x) dl.t(y) (Go,tx)(x ) dlx(X).

This expression may assume the value + . For a 1, we have the classical
Newtonian energy of/x. The semigroup property of {g,, a > 0} implies that

2 fl 2(1.4) e,(/_t) ao,/2l dm.



528 GUNNAR A. BROSAMLER

It follows that eE(/z)>_ 0 and e2(/x)= 0 iff /x cm. If l,/J,2 are finite
measures with finite a-energy, one may define eE(/z) for /x =/z -2 by
either (1.3) or (1.4).
For a smooth measure /z, e.g., d/z 0 din, o LE(M), p >_ 0, we have

G,/213. LE(M), hence eE(/x)< o. for all a > 0. In general, finiteness of
eE(/z) or equivalently, the property that Ga/21. LE(M), may serve as a
measure of the regularity of/z. Obviously, eE(/x) < implies eE:(/z) < oo for
al < a2" Moreover, finiteness of eE(/z) for a given measure/x is an invariant
of the C manifold M, i.e., does not depend on the particular metric
There is an equivalent way of describing the regularity of/x, expressed by

finiteness of e2(/x). It involves the Sobolev spaces H +/- (M), a [0, oo]. For a
discussion of these spaces see [9] for example. May it suffice here to recall
from [2] that the metric ,, on M induces in a natural way admissible scalar
products on the Hilbertian spaces H +’(M), a [0, ). Indeed, in H+(M)
--LE(M) the scalar product is defined with the normalized Riemann mea-
sure m. This scalar product is then carried over to H+’(M), a (0, o) by
the Hilbertian space isomorphism

K, G,/z + m" LZ(M) --, H’(M)

(see Theorem (3.2) in [2]), and the scalar products in H+’(M) define scalar
products in the dual spaces H-’(M), a [0, ).
Now any finite measure/z on M defines/2 H-oo(M) if we let

du for q C(M).

Actually/2 H-’(M) for any a > 1/2d by the Sobolev embedding theorem.
Using (1.4) and the isomorphisms K," L2(M) H’(M), a > 0, it is not
difficult to see that for a > 0, e2(/) < o iff/2 H-’(M). In this case,

2 2 2 2e,(z) lta,/2/ll --11/211 -[tt(M)]LZ(M) H-a(M)

In this case also, /x does not ch.arge any set of a-capacity 0, and for
f H’(M), fz(f) fMfdlx, where f is "f made precise". We recall that for
any f H’(M), there exists a sequence on Coo(M)which is a Cauchy
sequence in H"(M) and which converges outside a set of a-capacity 0 to a
finite limit, the latter coinciding with f m-a.e. Moreover, if Coo(M) is a
second sequence with the same properties, then limn_,oo 0, lim_,oo
outside a set of a-capacity 0, and either may be used as f. Regarding "f
made precise", we actually used in [2] an a-potential G,/Ef, f L2(M), and
in [4] a regularized version of f, defined in terms of its Lebesgue points
(independently of a).
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In this paper we are concerned with certain random measures on M which
are singular with respect to m, namely with the occupation measures of the
diffusion (12, 92; px, x M; Xt, tt, Ot, > 0) on M, which has generator A.
The occupation measures Zt, > O, of the diffusion path up to time t, are
defined by

fC(M).

It was shown in [2] and [4] that the critical index for their regularity type is
1/2d-1. To be precise, for all xM, P-a.e. e,(L)< for t>0 if
Ix > 1/2d 1, and e/._l(L) for > 0. Equivalently

L f’]{H-’(M); a > 1/2d 1} \ {H-td/2-1)(M)} for > O.

For the Newtonian energy Ix 1, and this index is > 1/2d 1 iff d < 3. In
other words, the classical Newtonian energy of the diffusion path is finite iff
d<3.

It may be worth noting that the measures Lt, supported by the range of
nowhere differentiable paths on M, are somewhat less singular than one-
dimensional Hausdorff measure on M, restricted to the range of smooth,
nondegenerate paths. It is not hard to see, that for the latter the critical
index is 1/2d

In [2] and [4] the asymptotic behaviour of L as - oo was studied in terms
of the H-"(M)-valued process f-.t, and more simply in terms of the real-val-

ea(tt) (= liltued process 2 -tmllH-.(M)) for Ix > 1/2d- 1 Both processes
satisfy laws of the iterated logarithm. Regarding e(Lt) we showed that for
all x M, px-a.e.

2e’(Lt) [0,2/-(a+l)], tx > 1/2d- 1,(1.5) clustert__, set log2

where /1 denotes the smallest positive eigenvalue of A. (See [4].) This
implies in particular, that for all x M, P-a.e.

Le2(t-ILt-m) lim t ,(Lt) =0, Ix> 1/2d- 1,(1.6) lim e

i.e., convergence of t-1Lt to m in the Ix-energy norm.
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It is also possible to prove an analogue of a result of V. Strassen [10] for
one-dimensional Brownian motion: We have for all x M, P*-a.e.

(1.7) 1- dsX(c2,og2,.oo)(e,(L)) 1 exp -4
t-+oo

for a > 1/2d 1, 0 < c < 2A-(+1). (See [6].)
Notice that (1.5) allows us to recover , the smallest positive eigenvalue of
A, by observing the a-energy of a nonexceptional path for large values of

t. In this paper we shall recover the whole spectrum of A, if for some
nonexceptional o and some a > 1/2d 1 the function eZ(Lt(w)), > o,
is given. (Theorem (1.11) below.) It appears that such recovery cannot be
achieved by a log z-law, as in the case of A1.

In this context it may be of interest that for any a > 0, the classical
max rain method permits the recovery of the spectrum of A from the function

2q e(q dm)= ]]q dml] 2 defined on the vector space {q C(M);H-a(M)
m(q)--0}, if the latter is endowed with the inner product (ql, 2)Lz(m,m)
This recovery is of course also possible from the function q I]q ]]2 forHa(M)
any a > 0.

Let now 0 A0 </1 /2 be the eigenvalues of 7A. By a theo-
rem of H. Weyl,

(1.8) hn Cdy-2/dn2/d

which implies that

(1.9) ]/-(a+ 1) < oo

n>l

iffa> 1/2d-.1.

It follows that for a > 1/2d 1, the function

(1.10) (I(z) 1-I (1 +/-(a+l)z)
n=l

is an entire function. Its zeros togethm with their multiplicities determine the
spectrum of . Notice that > 1 on the positive real axis, and that is
determined by its restriction to the positive real axis. The latter can be
observed on a nonexceptional path, by the following theorem.

(1.11) THEOREM. For all x M, px-a.e, for all > O, a > 1/2d 1,

2

(1.12) ,--,=lim log -- exp -/s [%(/3)]
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This theorem can be proved directly. However, we shall see that it is also
an easy corollary of Theorem (1.15) below, which is an a.e. CLT for the
H-a(M)-valued process {Lt, >_ 0}, a > 1/2d 1. In order to formulate this
a.e. CLT, we note that the operator G determines for a > 1/2d- 1, in a
natural way a normal distribution N on H-"(M). To be precise, for
a > 1/2d 1, there exists a unique probability measure on H-a(M),
such that

(1.13) fH_a(M exp{ il( f)} dN"(1) exp{ ( f, Gf) L2(M,m)}

for f (H-a(M)) * Ha(M).

This follows from the general theory of normal distributions on Hilbert
spaces (see [11] for example), since for fl, f2 Ha(M),

(fl’ af2)L2(M,m) (fl, aa+lf2)Ha(M),

and Ga+ is a trace class operator iff a > 1/2d 1, by (1.9).
If a > 1/2d- 1, we have trace Ga+ EnzlA(a+l) < o% and the trace

formula

(1.14) d/-/-(M) N (1) trace G+ .
In the following we denote by , H-a(M), the probability measure

on H-a(M), which assigns its total mass to the point 1.

(1.15) THEOREM. For all x M, px-a.e, for all a > 1/2d 1,

(1.16) lim
1 ,.t ds s_

too log Jl -- (Ls-sm)/v- N"’

where the convergence is weak convergence ofprobability measures on H-a(M).

Notice that for a2 > a > 1/2d- 1, Na2 is the image of Nffal under the
embedding H-am(M) H-a2(M). Similarly, 8/-a2 is the image of t/-"1.
Therefore, the to-set defined by (1.16) is increasing in a > 1/2d 1. Hence, if
for every a > 1/2d 1, px-a.e. (1.16) holds, then px-a.e. (1.16) holds simulta-
neously for all a > 1/2d 1.
We may rephrase Theorem (1.15) using the projective limit Na of N",

a > 1/2d- 1, on the linear space 3= f"I>1/2d_IH-(M). The space 3,
endowed with the smallest topology which makes all embeddings

i_,’.H-a(M), a> 1/2d- 1,
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continuous, was introduced in [4]. It is a nuclear space in the sense of [7].
Notice that 3 is separable, metrizable and complete. If we use on 3 the
Borel field 8ae, then {Ls, s > 0} is a continuous additive -valued functional.
Moreover, there exists a unique probability measure NG on (, 8e), such
that for all a > 1/2d 1, N is the image of NG under the embedding

i_a: -’-> H-a(M).

Keeping in mind that Y* U > a/2- I(H-a(M))* U > a/2-1Ha(M) (see
p. 61 in [7] for example), we have that NG is the unique normal probability
measure on (3, 8) such that

(1.17) f.l(f) dNG(I ) 0 for f e :*

and

(1.18) f/(fl) l(f2) dNa(1) 2(f,, af2)L2(M,m) for fl, f2

Obviously, NG{l 3;/(1) 0} 1. For the existence of NG we only remark
that for a > O, H-a(M) may be identified with the space of sequences of
real numbers

{l,, n =0,1,2,...; _a;al,2<}
n>l

and that the measure NG on (3, 8) may be obtained as the distribution of
the random sequence 1/-{0,,-1/21, /-1/22,...} where the :n, n N, are
independent N(0, 1)-random variables. Notice that Na(H-(a/z-1)(M))= O.
Denoting by 61, 3, the probability measure on 3 which assigns its total

mass to l, we may rephrase Theorem (1.15) as follows.

(1.19) THEOREM. For all x M, P*-a.e.

(1.20) tli+rnoo log ---a(Ls-sm)/x/7 NG’

where the convergence is weak convergence ofprobability measures on (, ).

(1.21) Remark. If to satisfies (1.20), it obviously satisfies (1.16) for all a
> 1/2d- 1. We shall see later that if to satisfies (1.16) for O/n , 1/2d- 1, it
satisfies (1.20).
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We mention without proof that there are Donsker versions of Theorems
(1.15) and (1.19).
An immediate corollary of Theorem (1.19) is the following simultaneous

a.e. CLT.

(1.22) COROLLARY. Outside one single to-set which has pX-measure 0 for all
x M, we have simultaneously for all q C(,) and all Borel sets B

_
R with

Leb(0B) 0,

(1.23) tlLrn log t f --XB q (No)(B),

where q(No) is the image ofNo under q.

Notice that for continuous linear functions

q" l(f), with U H’(M),
a>d/2-1

q(No) is the normal distribution with mean 0 and variance

trf
2 2( f, Gf ) L2(M, m)

and, for nonconstant f, (1.23) reads

(1.23’) }irnlog i, --XB
1 /2tr du. fe-u

Using q(l) !11 2IIH-(M), we have again Theorem (1.11) (apart from the
identification of the limit).

Finally we shall prove a.e. convergence results for certain unbounded
continuous functions on , which do not follow immediately from the CLT.

(1.24) COROLLARY. For all x M, PX-a.e.

2

( 1.25) lim
1 fit ds e ( Ls)

t--oo log t -" s trace G+ for a > 1/2d 1,

(1.26) lim
1 fl, dSLs(f) =0,__, log s V
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for all f U > 1/2a- 1H"(M) such that m(f) O,

(1.27) lim
1 i, da L,(fl)L,(L)

2(Gfl, f2)L2(M,m>
t--, log J1 s s

for all fl, f2 [J > 1/2d- 1H’(M) such that m(fl) m(f2) O.

These latter results are a.e. analogues of (1.14), (1.17), (1.18). Moreover,
(1.27) together with the ergodic theorem gives a new method for recovering
the spectrum of G, hence the spectrum of A, from the random subspace
{s f(Xs), s > 0; f C(M)} of C(R+), observed on a nonexceptional
path.
The key to the proofs is the Ornstein-Uhlenbeck process

where W is 1-dimensional Brownian motion. This process is stationary and
allows an extensive use of ergodic theory. An immediate result is the
following easy analogue of Theorem (1.11). Let W1,..., Wd be independent
1-dimensional Brownian motions, let al,...,ad > 0 and let Z
(Walt,..., Wat), > 0. Then P-a.e. for all/3 > 0,

lim
1 fatds(--:-exp -3/31 IIZll2)st--, log

E exp(- 2/3 IlZlll )

1-I(1 +/3a.)
n=l

Thus P-a.e., d and al,... ad may be recovered by observing {llZtl I, > 1}.

2. Maximal inequalities

In this section we shall present Lemma (2.7), a maximal inequality for
certain stationary, mixing sequences of random variables in L1+8 ( > 0
arbitrarily small). Its corollary, Lemma (2.16) seems indispensible for the
proof of our key Lemma (4.11) below.

For K > 0, Y > 0, we say that the sequence {Y/, N} of random variables
on a probability space (f, 92, P) is (K, y)-mixing, if for r, N, A Borel
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Rt, A 2 Borel c_ RN,

(2.1) IP{(Y1,...,Y) Al,(Yt+r+l,Yt+r+2,...) A2}

-P{(Y1,...,Yt) A1} "P{(Yt+r+l,Yt+r+2,...)
< Ke-vrP((Y1,...,Yt) A1} P((Yt+r+l,Yt+r+2,... ) A2}.

Notice that this is equivalent to saying, that for r,t N, U: 12- R
integrable and (Yk, k >_ + r + 1)-measurable,

IE{UIYI,...,Yt} EU < Ke-rrEIUI, P-a.e.

It is also equivalent to the following property. For all r, N, for all UI:
ll R integrable and (Y1,..., Yt)-measurable, for all U2" 12 ---> R integrable
and (Yk, k > + r + 1)-measurable, such that UIU2 is integrable, we have

E UIUu EUI EU21 < Ke "/rE UI E U21.

We shall call {Y/, i N} an SM(K,y)-sequence, if it is stationary and
(K, y)-mixing.

(2.2) LEMMA. Let K, y > O. There exists c > 0 with the following properly.

If {Yi, N} is an SM(K, y)-sequence on a probability space (12, 9A, P) such
that EY O, then for all [0, 1] and .all n N,

(2.3) E

(2.4) P{ max
k=l,...,n

1+6

<_ cnEIYll 1+,

1
>__. / < C/I+6 "n" EIYII l+a for all h > O.

Proofi Estimate (2.3) for n N is trivial if 6 0, and easy to prove for
6 1. It then follows for 8 (0, 1), for example from the Riesz-Thorin
interpolation theorem. It is also possible to prove (2.3) directly using (2.1")
and convexity of the function x Ix 1/, x R.
As for (2.4), we may assume that E[Yll 1+ < . Let Sk E/k=IY/, k N.

Let

/ inf{k e N; ISkl > } if( :#

if{ }=3.
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Now

1
ISl A e{ls-/xnl A} AI+EIS.^,,I 1+

Furthermore,

EIS^nl 1+ <_ 2EISnl+ + 2EIS,,- S.r^nl 1+’3

<_ 2EISnl 1+ + 2EIS, S.^nl +.

We may apply (2.3) to EISnl 1+, and it remains to show that for all n e N,
8 [0, 1],

(2.5) EISn S. ^hi 1+ _< cnElYl x+.

Now, for n 3, 4,...,

(2.6) EISn S./n[ 1+-- E{X{.=)" [Sn Ski 1+8}
k=l

n-1

< 2 E E{X{=}" [Y+l[ l+a}
k=l

n-2

+ 2 E E{/{,=k}’lSn Sk+lll+6}
k=l

The first sum on the right of (2.6) is majorized by

n-1

2 E[Y,+I[ l+n _< 2n" ELY1[ 1+.
k=l

As for the second sum on the right of (2.6), we notice that [Sn Sk+l] 1+8 is
(Yk/z,-..)-measurable, and we conclude from (2.1’) that for n 3, 4,...,
and k 1,2,..., n- 1,

E{IS,, Sk+xll+lYx,...,Yk} < (1 + Ke-/)EIS,,- Sk+ll 1+, P-a.e.

An application of (2.3) completes the proof of (2.5).

(2.7) Lzr.. For K, y > O, 6 [0, 1], O < 6/(1 + 6), there exists c with
the following property. If {I/i, N} is an SM(K, y)-sequence with EY O,
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then for all A > O,

/ / c
(2.8) P sup > A < Al+6 ELY1[

+ a

k>l k -p

Proof Letting Sk Eik= 1Y/ again, k >_ 1, we have

P sup Iskl >A P sup
k>l kl- n=O 2n<k<2n+l

< , P{ sup
n =0 k<2n+l

[Ski >_ A2n(1-o)}
ISkl > x2n(1-)},

and the proof is completed by (2.4).

We shall now apply Lemma (2.7) to the diffusion

(12, 9.1; px, x e M; Xt, t,Ot,t >_ O)

on M. We recall that the normalized Riemann measure m on M is the
invariant measure of the diffusion, and we denote by pm the law of the
diffusion if its initial distribution is m. Under pm the diffusion is stationary,
i.e., pm is preserved under Or, > O. It is well known that the diffusion is
also mixing in the following strong sense. (See [1] for example.) There exist
K, y > 0 depending only on M and ,, such that for r > 1, > 0, Z: 12 R
integrable,

(2.9) Em{Zo Or+tl tt EmZl <- ge-rEmlZl, pm-a.e.

Indeed, Em{Z Or+t tt} Ext(Z Or), pm.a.e. and since for any x e M,

EX(ZoOr) EXExrz fMdm(y)p(r,x, Y)ErZ,

it follows that for x M, r > 1,

IEX(ZoOr) -EmZl fMdm(y){p(r, x, Y) 1}ErZ

<_ fMdm( Y) P( r, x, Y) 11 E, IZ _< ge-EmlZl,

which proves (2.9). For the last estimate see [1] for example.
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Now if f LI(M), then pm-a.e, f fqt 0LI(M, Lt), and if fl, f2 LI(M)
coincide m-a.e., then pm-a.e. Lt(fl)= Lt(f2)for > 0. Moreover, for f
LI(M), the random variables

Yi(f) Li(f) Li-l(f) m(f), N,

form an SM(K, ),)-sequence on (1), 91, em) with K, ), > 0 of (2.9), and
EmYl(f) 0. We have

(2.10) LEMMA. For [0, 1], p < 6/(1 + 8), there exists c such that for all
f LI+(M) and all h > m(lf[),

(2.11) pm( suPt>_l
ILt(f) tm(f)l

> AIt_o

c

{A m(lf]))l+6 f[’ +a dm.

Proof Letting Zi(f) Li([fl) Li_l(lfl), for > 1 we have

ILt(f) tm(f)l
-p

It]

EYe(f)
i=1 Z[t]+

]l-p + 21- + m(lfl).
[t ([t]-[- 1) 1-p

For the first term on the right, the tail probability of the maximal function is
estimated by Lemma (2.7). As for the second term, we have obviously for any
6>0,

) /’/ 1+6pm max Z(f) > h <_ .Al$iEm{Zl(f)l<k<n

n fAf], +6 dm,

and the argument for Lemma (2.7) gives an estimate for the tail probability of
its maximal function.

It is well known that weak type estimates such as Lemma (2.10) imply
strong type estimates. For our purposes however the following lemma suf-
fices.
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(2.12) LEMMA. For (0, 1], p < /(1 + 15),/5’ [0, ), there exist 1,172
such that for all f L +(M),

(2.13) Era( sup
lLt(f) tm(f)l

tl-p

1+6’

1+ dm.<C +C2

Proof Let

Z(f) sup
t>_l tl-P

IL,(f) -tm(f)l

We have to show that

(2.13’) A’’em{z(f) >_ A} dA < 171 + c2fMIfll+ dm.

If m(Ifl) > 1, we conclude from (2.11), that

f2 A’Pm{ Z( f ) _. 1} dA
m(Ifl)

c f; u’
[m(lfl)] -’ {u- 1} x+

du f)fl + dm

< cfMlfll +’s dm.

Since

fo2m(Ifl)A’’em{z(f) >_A} dA <_ c{m(Ifl)} 1+

<_ cfMIfl + din,

(2.13’) follows.
If m(lfl) < 1, we conclude from (2.11), that

.o A*’ dAf *’’Pm{Z(f) >_ *} d, <_ CI
"2 "2 1} 1+ fMIfll+a dm

< cfMIfl + dm,

and (2.13’) follows.
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(2.14) Remark. If f L=(M), we have flf[ + dm < oo for all > 0, and
in this case Lemma (2.12) implies that for p < 1/2, 1 < p < 2,

(2.15) Em(sup [Lt(f) tm(f)[ }
p

t> tl-o < oo.

In this case a stronger result is actually true. It is easy to conclude from
Lemma (6.1) in [2], that for f L(M), (2.15) holds for all p > 1.
We shall now apply Lemma (2.12) to the functions

f(.) =[grad Gg,/2(, ")12, a > 1/2d 1, 5 M.

For a > 1/2d 1 and s M, f{ LI(M) (even LI+(M) for 6 > 0 suffi-
ciently small). Letting AT(:)= Lt(f), t > O, and v()= m(f), we have
the following result.

(2.16) LEMMA. For

a (1/2d- 1,1/4d- 1), 0,
a- 1/2d+l
d-a-1 2(ao< #+ 1),

2
p < (a- d+ 1),

we have

(2.17) supEm{sup iA(sc)- tv,()[ )1+8tl_P < o.
4M t>

Proof For a (0, d 1), there exists c such that for s M,

Igrad Gg/2(, )l= -2(d-a-I)__< c.[r(:, ")1

Now, for

a(1/2d-l,d-1), 0,
a- 1/2d+ 1)d-a-1

we have

2(d-a- 1)(1+) <d,
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and hence

(2.18) sup fAfll+6 dm < o.
5M

Notice also that if a < 1/4d 1 (< d 1), then

a-1/2d+l

Moreover

2(a1+’ d+l) a-1/2d+l
ifS’ d-a- 1

Now the assertion of the lemma follows at once from Lemma (2.12).

3. A lemma for time changed Brownian motions

(3.1) LEMMA. For 6 > O, p R, 6’ [0, 6), 7 (-% P) there exist

1, c2, c3 with the following property. If {Wt, > 0} is a one-dimensional
Brownian motion on some probability space (12, 9.1, P), and if %: 12 [0, o),
> 1, is a continuous process on (, 92, P), and if’v > O, then

(3.2) E( sup
[Wzt wvt [2

tl-"

1+6’

C + C2b’ + c3E sup_<
t>l

1+6

Proof

where

In the following we fix tr (0, (6 6’)/(1 + 6)). For A > 0,

> A < II(A) + I2(A)-n
t>l

Ii(h) P(sup [*t vt[
> ,l-

t>l tl-
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and

12(A) P( sup > A sup
t>

l-r/
t>

Now for A > 0,

This implies

II(A) < A(I_rXI+)E sup tl_t>_l

hence

fl A’/I(A) dh _< cE sup
t>l tl-P

1+8

(3.3a) fo /8’/1(/)d/ 1 -]-cE sup
I’, tl

t>l tl-

Turning now to I2(A), we have

I2(A) --< E an(A),
n=0

where

> h sup 17"t tl < Al-tr1-n 1-p
en <_t <en+l t>

for n >_ O.
Letting h h if r/ < 1, h he1-n if r/ > 1, and h2 h if p _< 1,

A 2 Ae -(1-p)/(1-r) if p > 1, we obtain

an(A) < P( sup ]Wzt Wvt >_ All/2e(1-n)n/2 sup
[’rt t’tl < h1-r)en<t<en+l t>

tl-p

en < < en+ t’ > O,

It’ tl < -h12-re(1-p)(n+ l) >-All/2e(1-’O)n/2

In order to estimate this last expression we shall argue, that there exist



AN ALMOST EVERYWHERE CLT FOR DIFFUSIONS 543

C1, C2 > 0 such that for all v > 0, T2 > T > 0, e > 0, 19 > 0,

(3.4) P{sup[[ Wt, Wvtl; T <_ <_ T2, t’ > O, It’ t[ < el >_ O}

 c1( + 1 exp -c2e 0 7?-"

Distinguishing the cases < t’ and t’ < t, one shows first that the left side in
(3.4) is majorized by

(+) 2P{sup[lWt, W,tl;0 < < T2 T1, < t’ < + el > 0}.

To be more precise, in the first case we use the fact that

{Wt, t > 01 and {W,r+,, W,,T,, t> O)

have the same laws, and in the second case we use the fact that

{Wt, 0 < < T} and {WvT2_vt WvT2, 0 <__ < T21
have the same laws.
Using similar transformation laws for Brownian motion, we see that the

expression ( + ) equals

2P{sup[lW,- Wl’O < s T2- Tl s s’ < s + 1]>_ 0}
,S<e <s+ 1 >

[(T2-T1)/el
<_2 F.

/=0

<2( T2-Txe
--<2( T2-e T1

<4( r2-Tle

--<Cl e

P/sup[lW, WI;/<s <l + 1, s <s’ <s + 1]

+ 1 P sup[IW,-Vl;0<s,s’<2] >_

+1 P 2sup[ll,Vl;0 <s < 2] >_

+ 1 P 2v-sup[Ws; 0 <s < 1] >_

+ 1P WI>-. 8x/

+1) vvr ( 02)0 exp --C2"---proving (3.4).
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We shall apply (3.4) to complete the estimate for an(A). We let

T1 en,Te= en + ,E-" --ulh_e(X-on+ x), 0 All/2e(1-n)n/e

For n >_ 0, h > 0 we obtain

T2 T vent’ 02

> cAOe(O-’o)n
E A PE

and therefore

an(A ) < c’(hlV_, epn + 1)h -r/2 exp{-c"hre(’-n)n},

with c’, c" > 0. Choosing )t o > 0 such that for n > 0, )t > )to,

c"h’e(t’-n)n pn >_ 1/2c"h’re(t’-n)n,

we obtain for n >_ 0, )t > )to,

an()t) <_ C"(P q- 1)exp{- 1/2C")tre(ta-’o)n},

with c" > 0. We conclude that for )t > )to,

E an(A) < c"(v + 1)f0 exp{-1/2c")te(-’)t} dt
n=l

_< c(v + 1)exp{ -15c’)t}
It follows that for )t >_ )to,

Ie()t) < E an()t) < c(v + 1)exp{ -lc’)t}
n=0

and hence for any p > 1,

(3.3b) J0 )tp-li2()t) a)t -< c q- c2b,.

Estimate (3.2) now follows from (3.3a) and (3.3b).

4. The almost everywhere central limit theorem

(4.1) LEMMA. For q C(M), x M, we have P-a.e.

ltdstal (/(q) m(q)s }(4.2) lim log [ exp exp{ (q, Go) -(t,m)}.
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Proof We may assume that q constant, or equivalently that
(qg, Gqg)L2(M,m > 0. Furthermore, it suffices to prove that (4.2) holds pm-a.e.
Indeed, if A 9/is the event defined by (4.2), then the function x PX(A),
x M, is harmonic and hence constant. Harmonicity follows from shift
invariance of A. The latter means that for any u > 0, to A iff Outo A.
For its verification, we observe that

is majorized by

s-1/2[Zs(to)(qg) z(Ouoo)(q) <_ 2us-’/211,plloo

for s > u, and therefore converges to 0, as s ’ oo.
In order to show that (4.2) holds pm-a.e., notice first that with q C(M),

we also have Gq C(M) and f, def grad Gql 2 Coo(M). We recall
from (4.1) in [2] that

(4.3) M =def Ls(q) m(q)s + (Gq)(Xs) (Gq)(Xo), s > O,

is an obviously square integrable pm-martingale with increasing process
s Ls(f,), s > O. There exists a probability space (’, 9/’, P’) supporting a
one-dimensional Brownian motion {Wt, >_ 0} and a continuous time change
{rt, > 0} such that the pm-law of M and the P’-law of W - coincide. As
the increasing process of the square integrable P’-martingale W r is r, it
follows that the pm-law of Lt(f), > O, and the P’-law of ,l’t, > 0,
coincide.
Now in order to verify (4.2), pm-a.e., it suffices to prove that

(4.4) tlirnoo log -- exp i--s
exp{ ( q, Gq)/2t, m)}, pm-a.e.,

since by (4.3),

lexp{is-/2[L(,p) m(q)s]} exp{is-1/2M}l

is majorized by

s-1/2lM L(q) + m(q) s[ < 2s-1/2llaqlloo,
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and therefore converges to 0 as s ’ oo. Moreover, (4.4) is equivalent to

(4.5)

Letting

tlirn log 7 exp i---s
exp{ (q, G) L2(M, m)} P’-a.e.

u m(f) fMIgrad Gql e dm 2(q, aqg)L2(M,m),

we shall obtain (4.5) from

(4.6) lim
l fatds ( Wvs } e-V/2 P’-a.e

t--) log ’t - exp

and

(4.7) lim 0 P’-a.e-as

[exp{iWs/v/} exp{iW=,/v} <_ s-/2lW, w,,,s I.
Equation (4.6) follows from the ergodic theorem. Indeed, as the process
{Wveu/V, u R} is stationary and has a trivial tail-field, we have P’-a.e.

lim
1 fo /eV}du exp iWeu

n n

lim -llfkC+lduexp{iWeu/VC
n-oo n

k=O

E du exp{iW./e}
E exp{iW}

e-V2.

This implies, that P’-a.e.

which proves (4.6).

lim 7 du exp{iWeu/f e-/2
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In order to prove (4.7), we recall that f is bounded. We conclude by
Remark (2.14), that for p < 3, 0 < 6 < 1,

or equivalently

E,( sup
[’t- tv[ )t>_l tl-P

It follows from Lemma (3.1), that for all r/ < 1/2,

sup
t>l

1-n

which implies (4.7) and completes the proof of the lemma.
Notice that for f L=(M), finiteness a.e. of

sup I’, vt[/tl-p, p < .,l
t>l

follows also from a log2-1aw for Lt(f). Then (4.7) could be proved like
Lemma (3.5) in [5].

In 1 we fixed in the Hilbertian spaces H(M), a > O, the norms carried
over from L2(M, m) by the isomorphisms K. In H-"(M), a > O, we fixed
the dual norms.

If now is a finite measure on M, such that for an a > 0, e2(/x) < or
equivalently/2 H-(M), we have for f H"(M),

(4.8) z( f ) fjdl.t, ( ?, Ga /2l.l, -b Iz(M) ) LZ(M, m
+

where f K,f, m-a.e., f L2(M). It follows that for finite measures /’1,/’/’2
on M, such that eZ(/zi) < 0% 1, 2,

(4.9) 112 IIIH-(M) [IG.(2 -/-tl) q-/x2(M) 1(M)

=llG/z(tx2- 1) + z2(M) t’tl(M)[[LZ(M,m)
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If we apply (4.9) to the measures 1.
>1/2d-1

tm and 2 --’-Lt, we obtain for

(4.10) lilt tm[ 2 fMIH-"(M) dm() g,/2(, Xs) ds

2e(L, tin).

(4.11) LEMMA. For a > 1/2d 1, there exists 6’ > 0, such that

2+26’

(4.12) Emsup 10g’i -- < "t>e

Proof It suffices to consider a sufficiently close to 1/2d- 1. We shall
assume that a (1/2d 1, 1/4d 1), and we shall show that (4.12) holds for
any

For

. (1/2d- 1, 43-d- 1),

we have by (2.18),

(4.13) sup fMI grad2M

Similarly, one gets

(4.13’) sup fMlgrad2 ga/2+l(,’O)l2+2 dm() < oo,
7M

and certainly,

(4.14) sup

The subscript 2 after grad in (4.13) indicates differentiation with respect to
the second variable.
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As we want to use formula (4.10) for I1- smIIH-(M), we define by
analogy with (4.3), for : M,

(4.15) Mff() ga/2(, Su) du + ga/2+l(, Ss)

-ga/2+l(,go), s >_0.

For all s M, the process {M(s), s > 0} is a square integrable pm.
martingale (because a > 1/2d- 1) with the process s A’(:), s > 0, of
Lemma (2.16) as its increasing process. (See also (6.4), (6.5) in [2]).
From (4.10), (4.15) and (4.14)we have

IIL sm 2 fMIn-( <-- C + C dm(e)lM()]2

and hence

(4.10’) II/_,s smll 2+2’,-( <_ c + cfdm()lM()l+’
aM

Thus, in order to verify (4.12), it suffices to prove

1 tds fMdm()lM()12+2’(4.16) E sup log fl -- S1 +,
( 0.

t>e

For the proof of (4.16) it is sufficient to prove

1 tds
(4.17) ftdm()Emsup log fl S- s1+’

< ’t>e

and for the proof of (4.17) it suffices to prove

1 .tds IM ( )I/1 10 Emsup sup <.-.xo) log -]1 s1+’
0.

M te

In the notation to be introduced now, we shall suppress the dependence on
a, which is kept fixed anyway. For M, there is again a probability space
(12e, 92e, P) supporting a one-dimensional Brownian motion {Wt, > 0} and
a continuous time change {-t(s), t > 0} such that the Pro-law of M"(:) and
the oPt-law_ of W -(sc) coincide. As M(:) is square integrable, so is
We -(:). It follows that -() is the increasing process for W -(:). Hence
the P’-law of A"(:) and the PC-law of ’() coincide.
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Obviously, assertion (4.18) is equivalent to

(4.19) sup Eesup log f 7 a +’ <
M t>e

Here Ee denotes the expectation with respect to Pe on (fe, 9.1e), not to be
confused with Pe on the measurable space (f, 9.1), which supports the
diffusion.

Let

u’(e) fMIgrad2 g,/2+l(:, r/)12 dm(rl),

as in Lemma (2.16). Obviously, v"(sc) > 0 for all : M, and (4.13)with
6 0 reads

(4.20) sup v() < .
M

Moreover, for the proof of (4.19) it suffices to prove

1 tdsll(4.21) sup E sup log fl -7 7I7; < ’M t>e

and

+
W (). 12(4.22) sup Ee sup S +8’ < "M s>l

Assertion (4.21) follows from the dominated ergodic theorem. Indeed, for
fixed : M, the process

", (g)e
e uR

on (12e, 9.1e, P) is stationary. If we fix 6 > ’, and for sc e M let

Z*= sups- Z
nN k=0

2+26’

k 0,1,2,...,
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then, by the dominated ergodic theorem, for all sc M we have

+2

It follows that for all : M,

Esup 7 du
t>l

2
W; (). e

+23’

_< C + C[Pa(:)] 1+3,

which in view of (4.20) implies (4.21).
We shall now derive (4.22) from Lemma (2.16) and from Lemma (3.1). We

d-a- 1 pc O,-d(a--d+ 1) r/=O

and conclude by Lemma (3.1) that the left side of (4.22) is majorized by

C + C2 sup [v(:)] + c3 sup E ( supM M t>l

I’t() tl_o.---E()t[ }
1+3

In view of (4.20), it remains to show that the last term in this sum is finite.
Since for all sc M,

E{ sup
’t(sc)

t>l tl--- -v’(sc)t } sup -o
t>_l

we just need to appeal to (2.17).

(4.23) Remark. It follows immediately from Lemma (4.11) that there is a
function " (1/2d- 1, oo) (0,1) such that for all x M, px-a.e, for all
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a > d/2- 1,

1 tds(llL-smllH-,M))
2+2’’)

(4.24) sup log f --t>e

as the events defined by (4.24) are shift-invariant. It can actually be shown
that the assertion of Lemma (4.11) remains true if in (4.12) "Em’’ is replaced
by "SUPx

(4.25) LEMMA. For all x M, P-a.e. (4.2) with q replaced by f, holds for
all f t.J > 1/2d 1H"(M).

Proof Let ak= 1/2d- 1 + 1/k, kN. It suffices to show that for all
k N, x M, px-a.e., (4.2) holds for all f H(M). Now, there is a
countable set of functions in C(M), which is dense in H(M). By Lemma
(4.1), (4.2) holds simultaneously for all functions in this set. Moreover, for any
fl, f2 H’(M),

exp{is- 1/2[ s(fl) m(fl) S]} exp{is-1/2[ s(f2) m(f2) s]}[
"< S-1/21Ls(fl f2) sm(fl f2)[

and by Remark (4.23) for all x M, PX-a.e.

1 ftds 1
sup log -- --s IIL mslln-,() < .
t>e

This completes the proof.
For a > 1/2d 1, we define the random probability measures /t > 1,

on H-"(M) by

1 ftds -a/x- logt J1 -- (Ls-sm)/x/"

(4.26) LEMMA. Let a > 1/2d- 1. For all x M, px-a.e, the family

{-,t>e}

is tight.
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Proof Fix e (0, a 1/2d + 1). The operator K on L2(M) also defines
an isomorphism

K.Ha-(M) --+Ha(M).

Therefore the adjoint is an isomorphism

K*" H-a(M) H-(a-*)(M)
_
H-a(M).

As IIflIH-’(M)= IIKflIH() for f e Ha-(M), we get

(4.27) IIIII/-<M) IIK*III.-(-,<M) for e H-a(M).

Moreover as K is a compact and symmetric operator on Ha(M), K* is a
compact operator on H-a(M). Indeed, if l(.)= (h t, ")H,(M) with h
Ha(M), then (K*I)(’) I(K, ) (Kht, )i_r(u).

If we now let Bn {1 H-a(M); IIIIIH-’(M) < "0}, then K*B
_

H-(a-)(M) is a compact set in H-a(M), and we shall show that
-a{(K*B,)C} is small uniformly in if ’0 is large. From (4.27)we have

Therefore,

> 1 flllll 2
H-(a-e)(g)

=1
1 1 tdS IlLs smll H-(-e)(M)
,02 log S S

By Remark (4.23), for all x M, px-a.e.

1 tds IlLs smll 2
H-(a-e)(M)

sup log s

which completes the proof.
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Proof of Theorem (1.15). As we explained in 1, it suffices to show that
for all a > 1/2d- 1, x M, px-a.e. (1.16) holds. But this follows from
Lemma (4.25) and Lemma (4.26).

Proof of Remark (1.21). We want to show that if to satisfies (1.16) for
ol 1/2d- 1 + l/n, n N, then it satisfies (1.20). We define the random
probability measures/xt, > 1, on (3, ) by

1 fltdS.]’t log s (Ls-sm)/x/"

Obviously, the /xt-", a > -12d- 1, are the image measures of ]J,t under the
embeddings

We shall argue first that the family {jl.6t, >_. e} on (3, B) is tight. As for
n N, the families {/x-"n, > e} on H-an(M) are tight, we know that for all
n N, e > 0, there exist compact sets K in H-an(M) such that

inf/x ln( Kn) > 1
e

t>e 2n

inf/xt(Kn. ) > 1
t>_e 2n

Letting K f) n>_l(Kn) 0 n>_lKn, we have inft> p,t(K) >_ 1 e. More-
over, a diagonal argument shows that K is compact in 3; i.e., for any
sequence n K, there exists a subsequence lnk converging to an 0 K, in
the topology of all H-"(M), a > 1/2d 1.

It remains to show, that if k $0% limk.=/ztk =/z0, then g0 No- Now,
limk--,o ]d,t J[./’0 implies that

-"=i_.(/zo) for alln eN,lim Itkk--->

therefore i_,,(/x 0) N- i_,(No), for all n e N. It follows that/x 0 and
No coincide on the traces on 3, of the Borel fields on H-(M), a > 1/2d 1,
and therefore that/x No on .



AN ALMOST EVERYWHERE CLT FOR DIFFUSIONS 555

Proof of Theorem (1.11). We apply Theorem (1.15). As

es (Ls)

and exp{-/3111112/-/-(M)} is a bounded continuous function on H-(M), it
remains to show that

(4.28) 2_.XM)exp{--[[I[[.-(M)} dN"( l) [(13)]-./2

There is a CON system {1, 1,... in Ha(M)such that

/3>0.

Moreover.

IIIII/-(M)- [/(1)] 2 + ] [/(i)]2.
i=1

Now for n N the image measure in Rn+l of N" under the mapping

l (l(1),l(l),...,l(n))

is normal with mean 0 and covariance matrix a0. a0 0 for j 0,..., n,
a,... 2A/-(a+l)6i/ for i, j 1,..., n. It follows that

( ) n

fH exp -/3 [/(qk)] 2 dN(l) 1-I 1

-’(M) k=O k= 1 + /3A-(’+ 1)

and we obtain (4.28) by letting n --. .
Proof of (1.25). We apply Theorem (1.15) again. For n N,

111112H-a(M) / n

is a bounded continuous function, so for all x M, px-a.e, we have

IH-(M)(4.29) lim
1 tds IIL sml 2

t--, logt s s An

fn II/II/-M) / n dN’(1),
-(M)
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for all a > 1/2d 1, n N. As n oo, the right side of (4.29) converges to

fH_M)IIIII2 dN,’(1) trace G+H-a(M)

Now, (1.25) follows from the fact that for x M, px-a.e, for a > 1/2d 1,

1 tds{[ls-Sm[[ 2
.-O(M) IlL, sm II 2n-a(M)

A n O,lira sup log -- s snoo t>e

which follows immediately from Remark (4.23).

Proofs of (1.26) and (1.27). It suffices to prove (1.27) for fl f2. The
proofs of (1.26) and (1.27) then follow the lines of the proof for (1.25). They
use again truncation, Theorem (1.15) and Remark (4.23).
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