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1. Introduction

Basic properties of Riemannian foliations on simply connected manifolds
have been established by P. Molino [Mol-1] and E. Ghys [Ghy]. In this paper
we complete their results by showing a close relationship between such
foliations and actions of tori on orbifolds.
As a general reference on Riemannian foliations, we refer to the book of

P. Molino [Mol].

1.1. We first give a typical example where tori actions on orbifolds arise
naturally.

Let H be a connected subgroup of the Lie group of isometries of an
orientable Riemannian manifold Y. Let us assume that H acts locally freely
on Y. Then the orbits under H of the points of Y are the leaves of a
Riemannian foliation - on Y.
Assume that the closure H of H is compact. Let K be a maximal compact

subgroup of H. As the Lie algebra of H is a compact Lie algebra ([Bki],
Chap. IX), this maximal compact subgroup is unique, hence invariant in H.
The quotient group_L =_H/K is a dense abelian contractible subgroup of
the compact group L H/K which must be isomorphic to a torus TN of
dimension N. The action of K on Y is also locally free; hence the orbits
under K are the fibers of a generalized Seifert fibration on Y (i.e. a foliation
whose leaves are compact with finite holonomy); its base space is naturally an
oriented orbifold X whose underlying topological space is Y/K. The torus
TN= /K acts effectively on X and the restriction of this action to the
dense subgroup L is locally free. The orbits under L are the leaves of a
foliation -x on X, and the foliation - is the pull back of -x by the
projection p of Y on X.

Conversely, given an action of a torus TN on an orientable orbifold X of
dimension n (see 3.1 and 3.2) and a dense contractible subgroup L of Tv
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acting locally freely on X, one can replace X by the manifold J of direct
orthonormal frames on X (with respect to a Tinvariant metric on X) and
get a local)y free action of H L SO(n) on ., by isometries giving a
foliation - on J. The above construction leads back to the action of L on
X (in that case, the maximal compact subgroup is SO(n)).

Note that the holonomy pseudogroups of 9z-, x and - are differentiably
equivalent (in the sense of 2.2).
The foliation on Y is a particular case of a Killing foliation, i.e., a

Riemannian foliation on a complete manifold for which the Molino central
sheaf is trivial (cf. [Mol-2]).
Other examples of Killing foliations are given by Riemannian foliations on

simply connected manifolds (cf. [Mol-1]). We prove in this paper the follow-
ing theorem:

1.2. THEOREM. Let - be a Riemannian foliation on a compact simply
connected manifold Y. Then one can construct, in a unique way up to isomor-
phism, an effective smooth action of a toms TN on a simply connected compact

orbifold X and a dense contractible subgroup L of TN whose action on X is
locally free. Let us denote by x the foliation ofX whose leaves are the orbits of
L; then the holonomy pseudogroups of -and -x are equivalent.

In fact we prove a more general version of this theorem for Killing
foliations (see Cor. 3.5)which can be interpreted as a sort of converse to 1.1.
The torus Tv and its subgroup L are related to - as follows: there is an

open dense subset of Y which is the union of the leaves with trivial
holonomy. These leaves are all isomorphic to each other and are called
generic leaves. Let F be a generic leaf of c-. The holonomy pseudogroup of
the foliation restricted to the closure of F is equivalent to the pseudogroup
generated by a dense subgroup F of Re acting by translation on Rk, where k
is the codimension of F in its closure. The torus Tv is isomorphic to
F (R) R/F (R) Z; its dimension N is the rank of F. The subgroup L is the
image in the quotient F (R) R/F (R) Z of the kernel of the homomorphism
from F (R) R on Rk sending y (R) r on ry. The dimension of X is N + dim W,
where W is the space of leaf closures on - (or the space of orbit closures
of TV).
As a consequence, the problem of classifying the possible holonomy

pseudogroups of Riemannian foliations on compact simply connected mani-
folds is essentially reduced to the problem of classifying tori actions on
compact 1-connected orbifolds. This will be the subject of a forthcoming
paper.

1.3. Realization of the classifying space. For any foliation - on Y, one can
construct the classifying space Bd- of its holonomy pseudogroup . It can
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be thought of as a space with a foliation Br whose holonomy pseudogroup
is equivalent to e., and such that the holonomy covering of each leaf is
contractible (cf. [Hae-1]). Moreover one has a classifying map p: Y B
transverse to B-such that -= p*(B-). The homotopy class of p is
unique up to an homotopy along the leaves.
For a Riemannian foliation on a complete Riemannian manifold Y, the

classifying space Be, plays the role of a "base space". Indeed the homotopic
theoretical fiber of the classifying map p of Y in Br. has the homotopy type
of the common holonomy covering F of the leaves (cf. [Hae-1], 3.1.5). When
Y is compact and 1-connected, F is the generic leaf. Hence it is important to
know the structure of the classifying space.
Now, let us suppose that Y is compact and 1-connected, and let us look at

the foliation -x constructed in theorem 1.2. The holonomy covering of each
leaf is isomorphic to L, hence contractible. So the orbifold X acts as the
classifying space (see 3.3) for the holonomy pseudogroup of gz-x (and
therefore of -). More precisely one has the following result (see 6):

1.4. THEOREM. With the notations of Theorem 1.2, the pair (X, -x) is a
model for the classifying space of the holonomy pseudogroup of -. In particular,
there is a smooth mapp ofYon X (in the orbifold sense) such that z-= p,(-x).
The cohomological dimension of the generic leaf F of - is equal to dim Y-
dim X dim F- N. This positive integer vanishes if and only if F is con-
tractible; in that case p is a homotopy equivalence and X is a smooth manifold.

One can prove in a number of cases that the generic leaf F has the
homotopy type of a finite Poincar6 complex F0. This occurs for instance
when F is simply connected (see 6), thus in particular if r2(X) 0.
The existence of the map p: Y X implies a theorem of E. Ghys [Ghy]

asserting that any Riemannian foliation on a compact simply connected
manifold can be approximated by a Riemannian foliation with compact
leaves (i.e., a generalized Seifert fibration). To get such an approximation,
one replaces the dense subgroup L of Tv by anearby closed subgroup L’; if
L’ is close enough to L, then it will act also locally freely on X defining a
foliation -at on X, close to and whose leaves are compact; the map p
will still be transverse to -d so that p*(rat) is a Riemannian foliation with
compact leaves which is close to r.
The following result shows that a map of a compact manifold Y’ in a

compact 1-connected manifold Y which is transverse to a Riemannian
foliation on Y can exist only if the dimension of Y’ is big enough.

1.5. THEOREM. Let - be a Riemannian foliation on a compact simply
connected manifold Y. Letf be a smooth reapof a compact connected manifold
Y’ in Y which is transverse to -.
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Then the .dimension of Y’ is bigger than or equal to the dimension of the
orbifold X associated to -.

In particular, if the generic leaf of - is contractible, then dim Y’ > dim Y,
and dim Y’ dim Y if and only iff is a homotopy equivalence.

If dim -= 1 and if dim Y’ < dim Y, then f is homotopic to a diffeomor-
phism by an homotopy transverse to -.

1.6. A conjecture. Examples of Riemannian foliations on simply con-
nected manifolds whose associated orbifold is X are obtained as follows:
consider a simply connected smooth manifold Y which is a generalized
Seifert fiber space with base space an orbifold X like in Theorem 1.2, and
generic fiber a compact manifold F0, and let us denote by p the projection of
Y on the base space X. Then the foliation P*(-x) on Y is such a foliation.
From the remark following Theorem 1.4, one is lead naturally to the

following:

CONJECTURE. For a Riemannian foliation -on a compact simply con-
nected manifold Y, the classifying map p: Y --. X of Theorem 1.4 can be chosen
to be the projection of a Seifert fibration with generic fiber a compact manifold Fo
having the homotopy type of the generic leaf F of -.

This is obviously the case if the leaves of r are compact (in which case
F0 F). The conjecture is also true if the dimension of the leaves is one, or
if dim Y < 4 by an explicit classification (see 6.3).
A particular case of the conjecture would be that if - is a Riemannian

foliation on a compact simply connected manifold whose generic leaf is
contractible, the leaves would be the orbits of a locally free action of a group
L isomorphic to Rm.

This paper is organized as follows.
In 2 we recall the notion of a Killing foliation, and define the associated

notion of a Killing pseudogroup. We begin 3 by defining the notion of a
smooth action of a Lie group on an orbifold. We state in Theorem 3.4 a more
general version of Theorem 1.2 which relates Killing foliations, Killing
pseudogroups and actions of tori on manifolds. Corollary 3.7 of Theorem 3.4
gives Theorem 1.2 and the first part of Theorem 1.4.

In 4 we describe a local model for a Killing pseudogroup and its local
realization as the holonomy pseudogroup of a foliation on an orbifold. This
foliation is given by a locally free action of a dense contractible subgroup of a
torus acting on the orbifold. The glueing up of these local realizations is done
in 5, and ends up the proof of Theorem 3.4.

In 6 we prove the last part of Theorem 1.4 and make some remarks on
Conjecture 1.6. In the last paragraph, we prove Theorem 1.5.
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2. Review of some basic notions on Riemannian foliations and
complete pseudogroups of isometries

We begin by recalling some definitions and notations.

2.1. DEFINITION.
Y can be given by:

A foliation - of codimension m on a smooth manifold

(i) an open covering {/}i I of Y,
(ii) for each I, a surjective submersion with connected fibers fi of F/

on a manifold T/(of dimension m),
(iii) local diffeomorphisms hi: f( .) f.( .) with f. hio fi.

Such data describing the foliation will be called a 1-cocycle.
The connected components of the intersections of the leaves of - with F/

are the fibers of the submersion fi. The transverse changes of coordinates hji
generate a pseudogroup W of transformations, called the holonomy pseu-
dogroup of " (associated to the given cocycle). It acts on the transverse
manifold T which is the disjoint union of the T/’s.

It is clear that two 1-cocycles defining the same foliation - give rise to two
holonomy pseudogroups , and ee’ which are equivalent in the following
sense:

2.2. A differentiable equivalence. between two pseudogroups and
e_,, acting respectively on differentiable manifolds T and T’ is a maximal
collection of diffeomorphisms q from open sets of T to open sets of T’
such that:

(i) the sources (resp. the targets) of the elements of cover T (resp. T’);
(ii) if q, , h and h’ ’, then h -1 ,,

-1 oh’oq9 and h’oqoh .
2.3. The weak homotopy type of the classifying spaceB of the holon-

omy pseudogroup of - depends only on the equivalence class of (cf.
[Hae-1]). One can define the homotopy groups 7ri()of as the homo-
topy groups 7ri(B) of B (see [Sal-2] for a direct definition of 7r1()).
We shall say that the pseudogroup is connected if 7r0(e)= 1 (or
equivalently if the space of orbits of is connected) and 1-connected if
r0() rl() 1.

If is the holonomy pseudogroup of a foliation on a manifold Y, the
classifying map p’Y B induces a surjection of 7rl(Y)on 7rl(B)=
7r(). In particular if Y is simply connected, then its holonomy pseu-
dogroup is 1-connected.
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2.4. The holonomy pseudogroup of a Riemannian foliation is a pseu-
dogroup of local isometries of the transverse Riemannian manifold T. More-
over if the Riemannian foliation is defined on a complete Riemannian
manifold, then the holonomy pseudogroup is complete in the following
sense: for any two points x and y of T, there exists open neighbourhoods U
and 1/of x and y respectively such that each germ of an element of with
source in U and target in F" is the germ of an element of defined on the
whole of U.
We remark that if g is a complete pseudogroup of local isometries, then

the closure of in the space of local isometries with the cl-top__ology is
also a complete pseudogroup of local isometries of T. The orbit x of a
point x of T under is the closure of the orbit of x under , and the
space W of orbit closures under is a Hausdorff space.

2.5. For a complete pseudogroup ( of local isometries of T, one can
associate the structural sheaf / of -: for an open set U of T, one defines
/(U) to be the set of vector fields c on U verifying the following condition:
for any point x in U, there exists an open neighbourhood V of x in U and
e > 0, such that exp t is defined on Vx for < e and belongs to . The
pseudogroup acts by automorphisms on the sheaf /: for a local section :
of /, the action of an element h of is defined by

h*() d/dt(h oexp to h-1)lt=0.

This sheaf is locally constant; its stalks are finite dimensional Lie algebras of
Killing vector fields, and the elements of close to the identity can be
obtained by integrating local sections of / which are close to zero (cf.
[Sal-1]).
When the space W of orbit closures of W is connected, the stalks of /are

all isomorphic to a finite dimensional Lie algebra , called the structural Lie
algebra of .
Remark. Let be a Riemannian foliation on a complete Riemannian

manifold Y, defined by the cocycle (V/, fi, hij) and let be the associated
holonomy pseudogroup of -. Then the different pull-backs over Y of the
structural sheaf / by the local submersions fi glue together to form the
central transverse sheaf defined by Molino in [Mol-1].

2.6. Following the terminology of Molino, a Riemannian foliation on a
complete Riemannian manifold is called a Killing foliation if the Molino
central sheaf is trivial. Accordingly, a complete pseudogroup ,g of local
isometries is called a Killing pseudogroup if the structural sheaf /of has a
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trivialization invariant by the action of . This implies that the stalk b of /
is an abelian Lie algebra isomorphic to Rk [Sal-2].
Examples of Killing foliations on a complete Riemannian manifold Y are

given by locally free actions of connected subgroups of the group of isome-
tries of Y [Mol-2]. Other examples are given by Riemannian foliations on
complete 1-connected Riemannian manifolds (cf. [Mol-1]). Let us recall some
general properties of these foliations.

2.7. Let - be a Riemannian foliation on a complete 1-connected Rie-
mannian manifold . The leaves with trivial holonomy, called generic leaves,
form an open dense set in Y. The restriction of - to the closure of a generic
leaf F has the following structure: there is a dense subgroup F of Rk, where
k is the codimension of F in F, acting in a properly discontinuous way on
F Re and preserving the foliation whose leaves are the factors F {x}.
The projection of this action on Rk is the action of F by translations. The
foliation - restricted to ff is the quotient of the foliation on F Rk by this
action.
One has the corresponding properties for a 1-connected complete pseu-

dogroup of local isometries of T. Namely the structural sheaf is a
constant sheaf with stalk isomorphic to the trivial Lie algebra Rk and it has a
global trivialization invariant by . There is an open dense set in T which is
the union of orbits of points with trivial isotropy; such orbits are called
generic orbits. The closure of a generic orbit is a closed manifold of
dimension k.
We end up this section with the following finiteness property.

2.8. PROPOSITION. Let be a 1-connected complete pseudogroup of local
isometries of T such that the space W of orbit closures is compact. Then the
restriction of to the closure of a generic orbit is equivalent to a pseudogroup
generated by the action of a finitely generated dense subgroup F of Rk acting by
translations on Rk.

Proof. As is 1-connected, there is on T an orientation invariant by .
Let T be the manifold of direct orthonormal frames on T and let be the
natural extension of to 7. Then the space of orbit closures if’ of is a
compact manifold, and the natural projection zr: 7 --* if" is a submersion.
Moreover the restriction of to any orbit closure of is equivalent to the
pseudogroup generated by the action of a dense subgroup F of Rk acting by
translations on Rk (cf. [Sal-1]). It is also equivalent to the restriction of to
a generic orbit closure.
For the case rn dim T 2, one uses the explicit classification of 1-con-

nected complete pseudogroups (cf. [Hae-Sal]) to deduce that F is finitely
generated (F is either or rank 0, and then k 0; or of rank 2, and then

= ).
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For the case m > 3, we remark that the classifying space B’ is a
principal SO(m)-principal fiber bundle over B. So one has the homotopy
exact sequence

--+ rrl(SO(m)) 7’/’1( ) 7’/’1(o ) ---+ 1.

As "/TI(C)-- 1, and 7rl(SO(m))= Z/2Z for m >_ 3, one has 7r1()= Z/2Z
or 1. One also has the exact homotopy sequence

where a0 is the restriction of o to a fiber of 7r: f if" (so 7rl(#0) r).
This sequence can be obtained directly, or by constructing a realization of
B which is a fiber bundle over W, with fiber Bo0. One has that l is a
compact manifold with rrl(ffz)= 1 or Z/2Z. In any case rr2(ff’) is finitely
generated, so F is also finitely generated.

3. Statement of the results

We first recall some basic notions on orbifolds.

3.1. Smooth action of a Lie group on an orbifold. Let X be a differen-
tiable orbifold of dimension n, and let IXI be its underlying topological
space. The smooth orbifol.d structure X on IXI is given by an atlas made up of
uniformizi.ng charts q" U U whose targets U form an open covering of
IXI; the U’s are smooth manifolds of dimension n with a smooth effective
properly discontinuous action of a group Gv and r# induces an homeomor-
phism of O/Gv on U. Two charts 0: U U and q" 12- V are related by
local diffeomorphisms: for u and v 12 such that 0(u) qKv), there is
a local diffeomorphism h of a neighbourhood W of u on a neighbourhood of
v, called a change of charts, such that q h =q on W. Note that the
elements of Gv are particular cases of change of charts. The pseudogroup
acting on the disjoint union of the U’s and generated by all changes of charts
will be denoted by e.x. The equivalence class of x does not depend on
the choice of a compatible atlas for X. The orbifold structure on X is
completely characterized by the equivalence class of x and the identifica-
tion of ISl with the space of orbits of x.
A smooth effective action of a Lie group H on a smooth orbifold X is an

effective continuous action a" H IX]- IX] of H satisfying the following
conditions. For each h0 H and x0 IXI, there are uniformizing charts

q’UU and @’V-V
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such that x0 U and a(h0, x0) V., tog.ether with a neighbourhood A of h 0

in H and a smooth map &: A U - V such that ff(&(h, u)) a(h, q(.u)).
Moreover for each h A, the map u &(h, u) is a diffeomorphism of U on
an open set of
For instance suppose that X is the orbifold quotient of a manifold X by a

smooth, properly discontinuous, effective action of a discrete group G. A
smooth effective action of a Lie group H on X is a smooth action on . of a
Lie group/ which is an extension of H by G:

this action of extending the given action of G on ,.
As a specific example, let X be the quotient of R by the cyclic group G

generated by a rotation of order n; if H is the circle group acting by rotation
on R2/G, then is the n-fold covering of H acting by rotation on R2.
The above situation occurs locally around an orbit when the group H is a

connected solvable Lie group: for every point x in X, there is a neighbour-
hood U of the orbit Hx of x such that U, as an orbifold, is the quotient of a
manifold /.) by the action of a discrete group G acting in a properly
discontinuous way on . This follows from the arguments of [Hae-Qua, 2.5].
Indeed, the orbit Hx is contained in a stratum of the natural stratification of
X and zr2(Hx) 0. This is not true in general for a non solvable Lie group
(see [Hae-2] for a specific example when H SU2).

3.2. Foliation on an orbifold. By definition, a smooth foliation xx on an
orbifold X is given by a smooth foliation on the disjoint union of the U’s
which is invariant by the changes of charts. We can choose the U’s such that
the foliation on each U is given by a surjective submersion with connected
fibers on a manifold Tv, so that the holonomy pseudogroup of the
foliation xx is generated by the local diffeomorphisms of the disjoint union
T of the Tv’s which are the projections of the elements of de-x (i.e., the
change of charts of the orbifold).

3.3. Classifying space BX of an orbifold X. The classifying space BX of an
orbifold X is a generalized Seifert bundle with a contractible generic fiber
and base space X. More specifically [Hae-1], if X is a smooth orbifold of
dimension n, we choose on X a Riemannian metric (i.e. a Riemannian
metric in the source of each uniformizing chart invariant by x). For each
N > n, let us consider the manifold BX(N)which is the bundle associated to
the principal bundle P of orthonormal n-frames on X, with fiber the Stiefel
manifold V(N, n) of orthonormal n-frames in Rs. Then BX(N) is a general-
ized Seifert fibration with base space X and generic fiber V(N, n), and BX is
the direct limit of the BX(N). The leaves of the universal foliation on BX
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are the limits of the fibers of the BX(N)’s. They are the fibers of the
projection of BX on X.
A continuous map f, in the orbifold sense, of a topological space Y in an

orbifold X is given by a continuous 1-cocycle defined over an open covering
of Y with value in the topological groupoid of germs of elements of r.fx.
There is a 1-1 correspondence between the continuous maps of Y in X and
the classes of continuous maps of Y in BX under the equivalence relation
given by the homotopy along the fibers of the projection ff of BX on X
[Hae-1].

Let -x be a foliation on X; then the pull back of -x by the projection
of BX(N) on X is a foliation -(N) on BX(N) whose limit in BX is a
foliation B-x; its holonomy pseudogroup is equivalent to the holonomy
pseudogroup of -x.
The pair (X, x) is a classifying space for the holonomy pseudogroup of

-x if the holonomy covering of each leaf of -x is contractible (cf. [Hae-1]).
This will be the case if and only if the holonomy covering of each leaf of B-x
is contractible, i.e., if the pair (BX, B-x) is a classifying space.

3.4. THEOREM. There are canonical bijections between the following three
sets:

(1) The set A of equivalence classes of Killing foliations on complete
Riemannian manifolds Y (cf. 2.6) such that the leaf closures are compact, two
such foliations being equivalent if their holonomy pseudogroups are differentiably
equivalent;

(2) The set A 2 of differentiable equivalence classes of complete Killing
pseudogroups of local isometries such that restricted to a generic orbit
closure is equivalent to the pseudogroup generated by the action ofa dense finitely
generated group F of rank N of translations of Rk;

(3) The set A3 of equivalence classes of quadruples (X, TN, L, a) where X is
a differentiable orbifold, a is a smooth effective action of a torus TN on X, and
L is a dense contractible subgroup of TN whose action on X is locally free, two
quadruples (X, TN, L, a) and (X’, TN’, L’, a’) being equivalent if there is an
isomorphism of TN on TN’ (so N N’) and a diffeomorphism h ofX on X’
conjugating the actions a and a’.

The bijection A --> A3 associates to -a canonical realization (X, z-x) of the
classifying space of its holonomy pseudogroup, where -x is the foliation on X
whose leaves are the orbits of L. In particular there is a differentiable map p:
Y - X in the orbifold sense such that P*(-x) -.
The bijection of A on A2 associates to a foliation the differentiable

equivalence class of its holonomy pseudogroup.
The map from Z3 to A2 associates to (X, Tv, L, a) the holonomy pseu-

dogroup of the foliation -x. The main point is to construct an inverse for
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this map. Namely, one can associate to a pseudogroup in A2 a quadruple
(X, Tv, L, a), where Tv= F (R) R/F (R) Z and the dense subgroup L is the
image in the quotient Tv= F (R) R/F (R) Z of the kernel of the homomor-
phism from F (R) R on Rk sending 3’ (R) r on ry.

3.5. COROLLARY. Let - be a Killing foliation on a compact oriented
connected Riemannian manifold Y. Then there is a locally ee action by
isometries of a connected Lie group H on a compact manifold X such that -and the foliation on ) whose leaves are the orbits of H have equivalent
holonomy pseudogroups.

Proof. The map of A in A3 associates to -a foliation x on an
orbifold X. We choose a Riemannian metric on X invariant by the action of
TN and we consider the manifold ) of direct orthonormal frames on X. The
natural projection zr"

, - X is a generalized Seifert fibration whose fibers
are the orbits of the natural action of SO(n) on ), where n dim X. The
action of L on X lifts to a locally free action of L on 2 commuting with the
action of SO(n). Hence, we get a locally free action of the group H L
SO(n) on ) defining a foliation - which is the inverse image by 7r of -x.
The holonomy pseudogroups of - and of -x are equivalent.

3.6. Remark. If the leaves of - are the orbits of an isometric flow on a
compact Riemannian manifold Y whose generic orbit is non compact, then
the closure of the flow in the group of isometries of Y gives an action of a
torus TN on Y. It follows from the injection of Z 3 in A that there is a
TN-equivariant diffeomorphism of Y on the orbifold X (which is then
a manifold) mapping the flow on the action of L.
By specifying Theorem 3.4 to the compact simply connected case, we get

the following statement.

3.7. THEOREM. There are canonical bijections between the following three
sets:

(1) The set A of equivalence classes of Riemannian foliations - on
compact 1-connected manifolds Y, two foliations being equivalent if their holon-
omy pseudogroups are differentiably equivalent;

(2) The set A2 of differentiable equivalence classes of 1-connected complete
pseudogroups of local isometries whose space of orbit closures is compact;

(3) The set A3 of equivalence classes of quadruples (X, TN, L, t), where a
is an effective smooth action of the torus TN on a compact 1-connected orbifold
X and L is a dense contractible subgroup of TN whose action on X is locally free.

It is clear that Theorem 3.7 is a particular case of Theorem 3.4. Indeed, a
Riemannian foliation on a 1-connected compact manifold is necessarily a
Killing foliation [Mol-1]. Moreover, any 1-connected complete pseudogroup
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of local isometries is Killing (cf. 2.6); if the space of orbits closures is
compact, we can apply 2.8 to verify that the hypothesis in 3.4.2) is satisfied.

4. Local model and canonical local realization

4.1. Local model for a Killing pseudogroup. We assume that is a
connected Killing pseudogroup acting on a manifold of dimension m, and
that the restriction of to the closure of a generic orbit is equivalent to the
pseudogroup generated by the action of a dense subgroup F of Rk of rank N,
acting by translations on Rk.

It follows from [Hae-2] and [Hae-Sal] that a model for the restriction of
to a tubular neighbourhood of the closure of an orbit is equivalent to a
pseudogroup (F0, A, p) described as follows:

(i) F0 is a subgroup of F discrete in Rk of rank s < k;
(ii) A is a central extension of a finite group D by F/F0:

0 - F/Fo --* A D 1.

The inclusion of F/F0 in Rk/F0 induces a central extension

which defines a Lie group G (with Lie algebra Rk) containing A as a dense
subgroup. The maximal subgroup K of G is unique.

(iii) a slice representation p" K O(B)which is injective, where B is an
Euclidean ball of dimension m k + s and O(B) its group of isometries.
Then (F0, A, p) is the pseudogroup generated by the action of A on the

homogeneous ball bundle G )< rB.
We recall that G >(rB is the quotient of G B by the equivalence

relation which identifies (g, b) and (gk -1, p(k)b) if k K. The group A acts
on G )< rB by A[g, b] [Ag, b].

4.2. Local realization. In this paragraph we construct canonically a folia-
tion -x on an orbifold X whose holonomy pseudogroup is equivalent to
(F0, A, p). The leaves of this foliation are the orbits of a locally free action
of a dense subgroup L of a torus TN acting on X.
The group F/F0 is a dense subgroup of Rk/F0, It is also identified to the

discrete cocompact subgroup F (R) Z/Fo (R) Z of the Lie group F (R) R/F0 (R) R
(which is isomorphic to R- T, where s is the rank of F0). After the
choice of a basis of F, the quotient F (R) R/F (R) Z is canonically isomorphic
to a torus Tv, and we shall always make this identification in what follows.
The linear surjective map F (R) R Rk sending 3’ (R) r on ry induces an

homomorphism F (R) R/F0 (R) R Rk/F0, and we have the following com-



718 A. HAEFLIGER AND E. SALEM

mutative diagram

r/ro r (R)  /ro (R) z

R /ro

This diagram induces a commutative diagram of central extensions

O--’-- F/Fo----* A---* D ’1

O , F (R) R/Fo (R) Z ----* G D ---- 1

0 R/Fo ----* G D 1

defining a Lie group ( whose connected component of the identity is
F (R) R/F0 (R) Z.
The.map of A in ( i.s injective; its image is a discrete cocompact subgroup
of G. The quotient G/A F (R) R/F (R) Z is canonically isomorphic to the

torus TN (using the basis of F chosen above).
The homomorphism of ( in G is a surjective submersion. Its kernel f_, is a

contractible subgroup of ( ( is also the projection in F (R) R/F0 (R) Z of the
kernel of F (R) R ---, Rk). The projection G." --, ./ TN maps / onto a
dense contractible s.ubgroup L (note that L C A 1).
Under the map G ---, G, the maximal compact subgroup/ of ( is mapped

isomorphically on the maximal compact subgroup K of G. The faithful
representation p of K in O(B) gives an effective action of/ on B.

Let us .consider the homogeneous ball bundle , t X gB. The group (
acts on X.by left translations and the.sub.group acts properly discontinu-
ously on X so that the quotient X A/X is an orbifold on which the torus

J/ TN operates.
The subgroup L of ( acts freely on ., defining a foliation invariant by the

action of ( (recall that is in the center of (). Hence the image L of / in
TN= J/fk acts locally freely on X and defines a foliation x on X.
The holonomy pseudogroup of x is equivalent to the pseudogroup

(F.0, A,.p) acting on G X KB. Indeed the fibers of the natural submersion
f: X G X/B ---) G X/(B are the orbits of /. Moreover f is equivariant
with respect to the surjective.homomorphism G G, hence equivariant with
respect to the isomorphism A A.

Remarks. (1) The orbifold X is a manifold if and only if A is without
torsion (equivalently if A c K 1). In this case A is free abelian.
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(2) Dim X N + dim B dim K.

4.3. Local model for the action of a toms TN on an orbifold. Let X be a
smooth orbifold of dimension n, together with a smooth effective action of a
torus TN. We identify TN with the quotient of RN by the lattice F Zu.
For a point x ]X], the orbit of x is a torus T TN/H of dimension

N- s, where H is the stabilizer of x. There is a small invariant tubular
neighbourhood E of T, which is a bundle over T with fiber an orbifold which
is the quotient of a ball B (of dimension n N + s) by a finite group I. As
.n-z(T)--0, the orbifold E is the quotient of a differentiable 1-connected
manifold / by the action of the fundamental group of E acting in a
properly discontinuous way on / (see [Hae-Qua], 2.5).

Let q be the natural p.rojection of/ on E. We denote by ( the Lie group
of diffeomorphisms of E which projects by q on the diffeomorphisms of E
given by the action of TN. The group ( is an e.xtension of TN by which is
identified to a discrete invariant subgroup of G.

Let be a point of/ such that q($) x; the stability subgroup/ of is
a com.pact subgroup of ( (which is an extension of H by I). The action of (
on E is proper. So by the Slice Theorem, we can assume that / is
isomorphic to the homogeneous ball bundle ( /B, where B is a slice at $

which is an Euclidean ball on which / acts through the slice representation

" I O(B).
As / is 1-connected, the quotient (// is also 1-connected, so it is the

universal covering of the torus T TN/H, hence it is contractible. It follows
that the invariant subgroup/ is the unique maximal compactsubgroup.of (.
.Let (0 (resp. /0)be.the cgmponent of the identity in G (resp. K). As
G/K is connected, G/G0 K/Ko is a finite group D.
The group (0 is a covering of TN, so it is the quotient of RN by a

subgroup Fo of F ZN, and we have A (0 F/F0. Hence we have the
central extensions

Conversely the last extension determines the groups ( and /. Indeed, the
first central extension ( is induced from the second one by the inclusion of
F/F0 in RU/Fo The group ( contains , as an invariant subgroup, (/_
RN/F TN, and / is the unique maximal compact subgroup of (.
Summing up, we have the following description:

4.4. PROPOSITION. A smooth effective action ofa toms TN on an orbifold X
restricted to an invariant tubular neighbourhood E of an orbit is characterized by
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the following data"
(i) A subgroup F0 of the lattice F ZN in RN;
(ii) A central extension fk of a finite group D by F/F0

0 F/F0--* A D 1;

(iii) A faithful representation : K - O(B), where K is the maximal com-
pact subgroup of the Lie group which is the central extension

0 RN/Fo --> --> D --9 1

induced by the inclusion of F/F0 in RN/F0, and O(B) is the group of
isometrics of an Euclidean ball B.

E is the orbifold quotient of )< iB by fk, with the action of /fk TN.

4.5. Moreover let L be a contractible dense subgroup of codimension k
in TN, acting locally freely on X and whose orbits are the leaves of a
foliation -x on X. Let L0 be the component of the identity of the inverse
image of L by the canonical projection of RN on RN/zN= TN. If we
identify RN/Lo with Rk, the canonical projection of RN on RN/Lo Rk

identifies the lattice ZN with a dense subgroup F on Rk (because L is dense
and contractible). Let /, be the connected Lie subgroup of ( mapped on L
by the proj.ecti.on of ( on TN. The hypothesis that L acts locally freely on X
and t.hat G./K is simply connected imjali.es that / is a closed subgroup and
that L n K 1. Hence the quotient G/L is a Lie group G with Lie algebra
identified to Rk. Moreover (resp. /) maps isomorphically on a dense
subgroup A (resp. the maximal compact subgroup K) of G. The intersection
of A with the connected component Go Rk/F0 of the identity in G is
canonically isomorphic to F/F0. Hence the restriction of -x to the tubular
neighbourhood E is equivalent to the pseudogroup generated by the action
of A on G X KB, where K acts on B b.y the representation p: K O(B)
deduced from t5 by the isomorphism of K on K.

In conclusion, we see that the action of the pair (TN, L) on the tubular
neighbourhood E of the closure of an orbit of L can be deduced from the
invariants describing the holonomy pseudogroup of the restriction of the
foliation -x to E.

5. Proof of Theorem 3.4

We have to construct maps Eft: A --)Aj for i,j,k {1,2,3} such that
Fk Fj ---Fk and Fii- identity.
The obvious maps F21 and F23 have been defined in 3.4 and F13 was

constructed at the end of 3.3, so that F21 F13 F23. The main task is to
construct a map F32: A2 A3, which is a right inverse of F23 and prove that
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it is a bijection. As F21 is obviously injective, it will follow that all maps Fji
are bijective.

5.1. Let be a Killing pseudogroup in A2 acting on a manifold T. We
have described in 4.1 a local model for and in 4.2 its realization as the
holonomy pseudogroup of a foliation on an orbifold, given by a locally free
action of a dense subgroup L of a torus. We still have to glue up these pieces
to get a global orbifold with an action of L. This will be done with lemmas
5.2 and 5.3. We first fix up some notations.

Let r" T --* W be the projection on the space W of orbit closures. We take
a covering of W by open sets U/ (i I), such that the restriction of to
7r-l(ui) is equivalent to the pseudogroup J/= (F, Ai, pi ) generated by
the action of a subgroup A of G acting on T/= G X K, Bi (as in 4.1).
We can assume, after changing by an equivalence, that acts on the

disjoint union T of the T’s and that the restriction of to T is . The
ancollection J’i of elements of withsourcel( in T/ and target in T: l(iSuj).equivalence of J restricted to T/N r- U/)on J’ restricted to

We introduce on the space W a differentiable structure in the following
manner: a map 0 from W to a manifold Z is differentiable if the map
T Z is differentiable. It is equivalent to say that, for each I the
canonical projection of B on Bi/g composed with 0 is differentiable.
From the local model /, we can construct as in 4.2 an orbifold X

together with a locally free action of a dense contractible subgroup L of the
torus TN= F (R) R/F (R) Z defining on Xi a foliation whose holonomy
pseudogroup is equivalent to /. We summarize the notations in the follow-
ing commutative diagram:

i i XK Bi

Ti GiXKiBi :i

where rr and /5 are the projections of T/ and i on the space of orbit
closures U/= Bi/Ki, and (i is the natural projection from -’i to Xi.

Now we have to glue up the orbifolds X to obtain a global orbifold X
with a torus action.

5.2. LEMMA. (a) For any i,j I, there is a diffeomorphism nji of
p/-l(U/ Uj) c S on pj--l(uj O U/) Sj commuting with the action of TN,
such that near each point i of/I/-I(u/O Uj) there is a local lifting Iji of nji
which projects by fi and f: on an element of .
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(b) If Hji and Hj are two such diffeomorphisms, there is a differentiable
map li of U N U. in L such that, for x p-I(U/ N U.),

Hj( x) lji ( Pi( x) ).Hji(x).

Proof. For any x U U., the restriction of to a tubular neighbour-
hood of the orbit closure zr-l(x) is equivalent to a pseudogroup =
(F0, A, p) generated by the action of a dense subgroup A of a Lie group G
acting on G )<rB (see 4.1). We can choose B small enough so that the
projection of G I,:B in W is an open set U in U/ U.. As G I,:B is
1-connected, the natural equivalence of with /zr/-l(u) (F, Ai, Pi)
is generated by a map hi: G >(I,:B G X I,:,B which is a covering of its
image (the argument is the same as in [Shl-2]), well defined up to a
translation by an element of Ag and equivariant with respect to a homomor-
phism ai: A- Ai. This homomorphism is the restriction of a homomor-
phism of Lie groups G Gi, still denoted by a, inducing the identity on
their Lie algebras (which are isomorphic to Rg). Moreover there is a
commutative diagram of central extensions

0 ,F/Fo ---- A ,D 1

0 A >O 1

where the restriction of a to F/F0 is induced by the identity of F.
As in 4.2, we construct an extension G of D by F (R) R/F0. (R).Z containing

a discrete subgroup isomorphic to A, and such that G/A TN. The
homomorhism, a lifts to a homomorphism of Li.e g.roups &i from ( to (i,
mapping A in Ai, and inducing the identity from. Gz/A TN to Ji/i TN.
We now construct an &i-equivariant lifting Hi: G )< I;:B - G >( i;:iBi of h

with respect to the submersions f and fi. To do this, we choose an
homomorphism r of G in (i which is a section of the projection of (i on
Gi. There is a .unique homomorphism r of G in G which is a section of the
projection of G on G, and such that o- a &i O’. The maps r (resp. o"i)
define sections s (resp. si) of f (resp. fi), which are r (resp. ri) equivariant.
So we get a map of s(G rB) in si(G >( K, Bi)which extends uniquely to an
&i-equivariant map i. If .’,. is anoth.er /-equi.variant lifting of hi, then
there is a differentiable map of B in L Ker(G G)such that

IYli’([g,b]) IYIi([t( b)g, b]) &i([(b)). Ii([g, b]).

Moreover the map is K-invariant, so it defines a differentiable map of U
in L.
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Passing to the quotien.t by and i, the map /qi gives a TN-etuivariant
diffeomorphism H of A \ (( X/B) on p/- I(U) c X i \ (Gi X iciBi).
Another choice Hi’ for a lift of h gives a diffeomorphism Hi’ which differs
from H by composition with a differentiable map of U in L.

Replacing by j, we also have a map hi: G X gB G. )</qB. which is a

covering on its image. A local inverse of hi, composed with hi is an element

hi of . As before we can construct a TN-equivariant diffeomorphism H,
and Hii H HI- is a TN-equivariant diffeomorphism from p/- I(U) to
p7 I(U), uniquely defined up to a differentiable map of U in L.

For an open covering {Ur}r n of U/C3 U., one can construct such

Hj" p-l(ur) -- p?l(ur)
and patch them using a partition of unity. Indeed, let L be the sheaf over W
of germs of differentiable maps of W in L. It is a fine sheaf because
differentiable partitions of unity exist on W. Hence the Cech cohomology
groups HP(a, L)with respect to any covering a# vanish for p > 0.

In particular, the collection of maps lrs: U 0 U L defined by

Hj(X) lrs(u) .Hj(x) where X /9/-I(U),

is a 1-cocycle which is a coboundary: lrs(U)= lr(U)-l.ls(u). Hence Hyi(x)
defined by lr(Pi(X)), nj(x) for x U verifies the properties of Lemma 5.2.

5.3. LEMMA. (a) One can choose the Hji’S in Lemma 5.2 such that, for
every i, j, k I, Hki Hk1 Hji.

(b) If the Hi[’s are another such choice, there are differentiable maps 1[ of U
in L such that, for x p: I(U f Ui),

Hj(x) "-l(pj(x))-l.l[(Pi(X)).Hji(x).

Proof We start with a collection of Hi’s as in Lemma 5.2. We can
assume that Hii Hi- 1. The diffeomorphism Hiio H,o nki of p/’-" I(U/ (") Uj
U) evaluated on p-X(u) is a translation by an element lijk(U) of L. The

lik’S form a 2-cocycle. Indeed, by restriction above U/n U. n Uk c Urn, one
has

lijk( U) .likm( U) .lijm( U) -1 Hij( lykm(u) .Hi-] 1) ljkm(U)

as the map Hil commutes with the action of TN (hence of L).



724 A. HAEFLIGER AND E. SALEM

As H2(-2g, _L) 0, there are differentiable maps 11i of U/N U. in L such
that

liik(U ) l[i(u).lfik(U).l[k(U) -1 :for U - V Vj ("1 Uk.

If we define

Hi ( x) x) x)

we have Hi H/k Hi’k. The vanishing of H(’, .L) implies part (b) of
Lemma 5.3.
Lemma 5.3 implies the existence of an orbifold X together with an action

of the dense contractible subgroup L of TN acting locally freely on X and
defining on X a foliation x whose holonomy pseudogroup is equivalent to
the given Killing pseudogroup . Indeed the orbifold X may be obtained by
glueing up the local realizations Xi’s using the diffeomorphisms Hi’s of
Lemma 5.3. This glueing is compatible with the action of TN and gives the
map F32 of A 2 in A 3.

If X’ is another orbifold with a locally free action of L defining a foliation
,-x on X with holonomy pseudogroup equivalent to e,, then using the
considerations of 4.5 and part (b) of Lemma 5.3, one can construct a
Tg-equivariant isomorphism of X on X’. This shows that F32 is bijective.

6. On the homotopy type of the generic leaf

The results of this paragraph are independent of the previous ones.
Let - be a Riemannian foliation on a compact simply connected Rieman-

nian manifold Y. The foliation - restricted to the closure F of a generic leaf
F is a Lie foliation whose holonomy pseudogroup is equivalent to the
pseudogroup generated by a dense subgroup F of Rk acting by translations
on Rk. Let N be the rank of F (note that k is the codimension of F in ).

6.1. THEOREM. With the above assumptions, the fundamental group and the
homology groups of the generic leaf F are of finite type and the fundamental
group of F is abelian.

The dimension ofF is greater than or equal to N k, and Hi(F, Z) Z for
dim F N and Hi(F, Z) 0 for > dim F N.

IfF is 1-connected, then F has the homotopy type of a finite Poincar( complex
Fo of dimension equal to dim F- N.

If F is contractible, then the orbifold X associated to c- in Theorem 3.4 is a
smooth manifold, the map p" Y - X is a homotopy equivalence and F has the
homotopy type of TN.
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Proof. Let aW be the holonomy pseudogroup of -. Let Bd( be its
classifying space and denote by B- the universal foliation on BaW. There is
a classifying map f of Y in Bdta such that r= f,(BZ-). A model for the
classifying space of the foliation restricted to the closure F of F is the torus
TN with a linear foliation (cf. 1.2).

Let g" ff TN be the classifying map. The theoretical homotopic fiber of
f and g has the _homotopy type of the generic fiber F (cf. [Hae-1])._ We can
replace and F by homotopy equivalent spaces ’ and F’ to obtain a
commutative diagram:

if, y,

TN BaW

where f’ and g’ are projections of locally trivial fiber bundles with fiber
homotopy eq_uivalent to F, and where has the homotopy type of the
inclusion of F in Y.
BW is 1-connected because Y’ Y is 1-connected; hence the local sys-

tems formed by the homology groups of the fibers of the fibrations f’ and g’
are trivial. Hence the finiteness of the homology of ff and TN implies the
finiteness of the homology of F (cf. [Ser]). The homotopy exact sequence of
the fibration f’ shows that rrl(F) is a quotient of zr2(Bd(d), hence is abelian.
The E2-term of the Serre’s spectral sequence of the fibration g’ is

isomorphic to HP(TN) (R) Ha(F). As ff is a closed orientable manifold of
dimension equal to dim F + k, it follows easily that the integral homology of
F is isomorphic to Z in dimension equal to dim F- N dim F + k- N
and vanishes in higher dimensions. Hence dim F + k N > 0.

If F is simply connected, then F has the homotopy type of a finite complex
(cf. [Wall). It follows from results of D. Gottlieb [Got-l] that F, which is the
homotopy theoretical fiber of the map g of F in TN, has the homotopy type
of a finite Poincar6 complex.
Assume F contractible. Then f and g are homotopy equivalences (cf.

[Hae-1]). Also the restriction of f to f-l(v), where V is an open set of B
saturated by leaves of B-, is an homotopy equivalence on V. If the orbifold
X is not a manifold, there is a TN-invariant open set U of X which is the
quotient of a contractible manifold U by the action of a discrete group G
acting in a properly discontinuous way on and having an element of
torsion. Hence BU (constructed as in 3.3) is homotopy equivalent to the
classifying space BG of G, hence has infinite cohomological dimension. As a
model for B, we can choose BX as constructed in 3.3, and BU is identified
to an open set of Bd(d saturated by leaves. But BU has the same homotopy
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type as the open set f-(BU) of Y which is of course finite dimensional,
hence a contradiction.

6.2. Remark. D. Gottlieb [Got-2] has proved, using the existence of the
diagram (*), that the generic leaf is always dominated by a finite Poincar6
complex and that it has the homotopy type of a finite Poincar6 complex if its
fundamental group is infinite (or trivial).

6.3. Remarks about the conjecture 1.6. The conjecture is true in the
following cases:

(a) All the leaves of - are compact. Then - is a generalized Seifert
fibration. The space of leaves is naturally an orbifold X and the projection p
of Y on X is a classifying map for the holonomy pseudogroup of -, and has
generic fiber the generic leaf of -.

(b) The dimension of the leaves is one. Then - is an isometric flow (see
[Mol-Ser]). If the generic orbit for the flow is compact, we are back to case
(a). If not, we apply remark 3.6.

(c) dim Y < 4. In that case, the only possibilities for a Riemannian foliation- on Y are generalized Seifert foliations or isometric flows on Y S3.
Indeed, let X be the 1-connected orbifold with the action of the torus Tv

associated to - and let W be the space of orbits. If we are not in the case of
a Seifert fibration, then 0 < dim W < dim X- 2. If dim W < 2, the only
possibilities (cf. [Hae-Sal]) are:

(i) dim W 1; then X S3 with an isometric flow.
(ii) dim W 2; then dim X > 5.
Hence if dim Y 3, then Y S3", the case when dim Y 4 can not occur

because Y would have the homotopy type of a circle bundle over S3, which is
impossible if is 1-connected.

Remark. If dim Y 5, the only case for which ,- is not a Seifert fibration
or an isometric flow, is when - is the pull-back by a map f: Y S3 of an
isometric flow 0 on S3. In that case, the conjecture would imply the
existence of a fibration p: Y S3 with fiber S2 such that -= P*(0).

7. Maps transverse to a foliation

The proposition below is the generalization to pseudogroups of the follow-
ing well known fact: if p: T’ T is an 6tale map of Riemannian manifolds
which is locally an isometry, and if T’ is complete and T connected, then p is
a covering projection.

7.1. A pseudogroup of local isometries of T is said to be geodesically
complete if for any unit tangent vector at a point x of T and any positive
number a, there is an o-geodesic of length a and initial vector sc.
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Such an e-geodesic is given by a sequence 0 to < < < tk+ a,
by geodesic arcs ci: [ti, ti+l] "---) T parametrized bythe arc length for0 < < k
and by elements h of defined at ci(ti+ 1) such that the image by the
differential of h of the unit velocity vector ci(ti+ 1) is the velocity vector
i+l(ti+ 1) for i> 0 and : 60(0). This notion is obviously invariant by
differentiable equivalence of pseudogroups. As an example, the holonomy
pseudogroup of a Riemannian foliation on a complete Riemannian manifold
is geodesically complete.

7.2. For pseudogroups, there is a natural generalization of the notion of
covering. Let ’ and be pseudogroups of local diffeomorphisms of
manifolds T’ and T; denote by [’] and [] the topological groupoids
of germs of elements of and ’; the spaces T’ and T are identified with
the subspaces of units in [’] and []. A continuous surjective homomor-
phism q: [aW’] [] is a covering homomorphism if the restriction q0:
T’- T of q is a covering map and if the kernel of q is T’ (namely
T’= q-l(T)). More generally, an 6tale morphism of pseudogroups (cf.
[Hae-2] 1.4) is a covering if it is equivalent to a covering homomorphism in
the above sense.

7.3. PROPOSITION. Let and ’ be complete pseudogroups of local
isometries of T and T’ respectively. Assume that ’ is geodesically complete
and that is connected. Then any homomorphism q: [’]- [] whose
restriction qo" T’ T is locally an isometry is equivalent to a covering homo-
morphism. In particular if is 1-connected and ’ is connected, then qo
generates an equivalence.

Proof We recall that the definitions of connectedness and completeness
for a pseudogroup are given respectively in 2.3 and 2.4. We first note that the
completeness of a pseudogroup implies the following: let c and c’:
[0, a] T be o-geodesic arcs parametrized by arc length. We suppose that
there is an element of defined locally around c(0), mapping the velocity
vector of c at 0 on the velocity vector of c’ at 0. Then c(a) and c’(a) are in
the same oe-orbit.

1st step. q0(T’) meets all the orbits of . Let TO be the open set of T
which is the union of the o-orbits which meet q0(T’) and let c: [0, a] T be
a geodesic arc with c(0) in T0. There is a point x’ in T’ and an element h of

such that h(qo(X’))= c(0). Let c’ be a ’-geodesic arc of length a,
whose initial vector is mapped on the tangent vector of c at 0 by the
differential of h q0. By the remark above, the extremity c(a) of c is in the
same orbit as the extremity of c’. This shows that TO is an e-invariant open
and closed set, hence is equal to T by the o--connexity assumption.
2nd step. Up to equivalence, we can assume that T T’ and q0 is the

identity. Indeed, let U’= {Uit}ii be an open covering of T’ such that
the restriction of q0 to each U/’ is an isometry on q0(U/’) U/. Let Tv be the



728 A. HAEFLIGER AND E. SALEM

disjoint union of the open sets U/ and denote by WU the pseudogroup
generated by the local isometries of TU projecting on elements of d( by the
natural projection of Tt on T. We define similarly t3’ and Try,. It is clear
that the projection of Tv on T (respectively of T, on T’) generates an
equivalence of ggv on (resp. of ggt’ on ’). The map of T, on Tv
whose restriction to each U/’ is q0 is a bijective isometry generating an
injective homomorphism of [Wt,] in
Hence we can assume that T T’ and that ’ is a subpseudogroup

Third step. Let 2? be the quotient []/[’]; in particular the germs [h i]
and [hE] of elements of are equivalent if there is a germ [h’] [’] such
that [h E] [hl]o[h’]. The target projection gives an 6tale map p" 7 - T. We
assert that p is a covering map.
The completeness of ’ implies that 7 is Hausdorff. So it is sufficient to

check that each geodesic arc on T can be lifted to 7. If c" [0, a] - T is a
geodesic arc, and [h] is the germ of an element of with target c(0), there
is a lifting : [0, a] 7 of c such that (0) is the class of [h] in 7. Consider a
de-’-geodesic arc c’ of length a, whose initial vector is mapped by the
differential of h on the initial vector of c. The lifting d is the image in 7 of
the a-geodesic arc obtained by composing c’ with h-1.

To finish the proof, let us denote by the pseudogroup of local
isometries of 7 given by the left action of on 7. The natural map of[]
on [] induced by the projection p is a covering homomorphism. Moreover
the projection p generates an equivalence of W on W’ (cf. [Hae-2] 2.5).

If is 1-connected, any connected covering of aW is an equivalence (cf.
[Hae-2] 2.4), so W’ is equivalent to .

7.4. COROLLARY. Let - be a Riemannian foliation on a compact con-
nected manifold Y and let f be a differentiable map of, a compact connected
manifold Y’ in Y which is transverse to -. Let -’ f*(-) be the foliation on
Y’ which is the pull back by f of -. Then the morphism of the holonomy
pseudogroup of -’ in the holonomy pseudogroup of - induced by f is
equivalent to a covering homomorphism.

Proof. We recall how the transverse map f induces a morphism of the
holonomy pseudogroups. Assume that the foliation -on Y is given by
submersions f/" V T/ like in 2.1 which are surjective and with connected
fibers. Then -’= f*(-) can be defined by the submersions f/o f: f-l(g/)

T/. Those submersions in general are not surjective and do not have
connected fibers, so to define the holonomy pseudogroup of -’, we cover
each f-I(V/) by open sets V/k such that the restriction f/k of fi f to V/g is a
submersion with connected fibers on an open set T/k of T/. The holonomy
pseudogroup ,W’ of -’ can be defined using the submersions f/k as in 2.1,
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and it acts on the disjoint union T’ of the T/e’s. The obvious 6tale map of T’
on T whose restriction to T/e is the inclusion in T/generates the morphism of
aW’ in .
As -’ is a Riemannian foliation on a compact manifold Y’, its holonomy

pseudogroup is geodesically complete, hence the hypothesis of the proposi-
tion 7.3 are satisfied.

Proof of Theorem 1.5. If Y is 1-connected and Y’ is connected, then the
morphism induced by f on the holonomy pseudogroups is an equivalence. If
the generic leaf of - is contractible, then Y is a classifying space for the
holonomy pseudogroup of - and we can apply Theorem 6.1. The map f:
Y’ Y is a classifying map for -’, so dim Y’ > dim Y. Moreover dim Y’=
dim Y iff f is an homotopy equivalence.

If dim -= 1 and if the generic fiber is contractible, then f is homotopic to
a diffeomorphism by Remark 3.6. If the generic fiber is not contractible, then

is a circle Seifert fibration. Let X be the orbifold which is the space of
leaves of -. From the homotopy exact sequence of the Seifert fibration
Y X (cf. [Hae-1]), we see that the connecting homomorphism 2(X)
1(S 1) is surjective.
The dimension of Y’ cannot be equal to the dimension of X, because the

composition of f with the projection on X would be a covering, hence an
isomorphism. This would imply the existence of a section of the Seifert
bundle Y X, contradicting the surjectivi of the connecting homomor-
phism.

If dim Y’= dim Y, then the foliation ’= f*() on Y’ is also a circle
Seifert fibration and f maps fibers to fibers inducing an isomorphism of X’
on X, where X’ is the orbifold which is the space of leaves of ’. The
restriction of f to a generic fiber S is a map of degree one, because we have
the commutative diagram

2(X’) ,1(S1) 1

2(X) l(S1) 1

The leaves of and ’ are the orbits of an effective action of S02; using an
average process we can homotopy f to a smooth S02-equivariant diffeomor-
phism, by an homotopy along the leaves.

[Bki]
[Ghy]

[Got-l]
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