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CLASSIFICATION THEORY FOR A 1-ARY FUNCTION

BY

CARLO TOFFALORI

1. Introduction

Let T be a countable, complete 1st order theory; assume for simplicity that
T has no finite models. It is sometimes possible to assign every model M of T
an invariantmlike a cardinal number, or something similar--such that M
M’ if and only if M and M’ have the same invariant. For instance, if T is the
theory of algebraically closed fields of some fixed characteristic, then, for
every M T, the isomorphism type of M is given by its transcendence
degree. Let us say that T is classifiable if this assignment of invariants can be
done. The classification problem, namely the problem of characterizing
classifiable theories, was (almost) thoroughly solved by S. Shelah. It would be
too long to report here the development and the results of Shelah’s analysis
(a clear introduction can be found in [B] and [Sh]); briefly summarizing, we
can say that, it one agrees to the (reasonable) assumption

T is classifiable if and only if there is an uncountable cardinal h such
that T has < 2x non-isomorphic models of power ,

then Shelah’s main theorem states that

T is classifiable if and only if T is superstable, presentable, shallow and
satisfies the existence property.

The classification problem involves an obvious algebraic question, namely
to find, given an elementary class K of 1st order structures, under which
conditions a structure M K satisfies "Th(M) classifiable". This is the
question we wish to deal with for the class K of all structures M with a 1-ary
(total) function. Hence Sections 2 and 3 are devoted to translating in this
context some of the basic notions of classification theory (like regular types,
orthogonal types, and so on); 4 contains the main theorems on classifiable
1-ary functions, while, finally in Sections 5 and 6 we will study the characteri-
zation of non-multidimensional, unidimensional and categorical 1-ary func-
tions.
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Main references are [CK] for basic model theory, [B] and [M] for classifi-
cation theory. We shall adopt the same notation as [M]. The 1st order
language for the structures we are going to study contains only one extra-logi-
cal symbol for a 1-ary function f. We will denote by L this language.
As the referee let me know, some results of this paper were independently

obtained by Ryaskin: see [R] for a comparison.

2. Regular types

Let M be a structure of L. Consider the following binary relation
M: for all a, b M,

on

a b iff there are i, j to such that fi(a) fJ(b).

Then is an equivalence relation. Every ~-class of M will be called a
connected component of M, and, for any a M, y(a, M)will denote the
connected component of a in M. We need introduce a further notion. Let
a M, define the tree of a in M -(a, M) in the following way:

(1) If fro(a) a for all rn to {0}, then

-(a, M) {b M: ::1 n to such that fn(b) a};

(2) If there is rn to {0} such that fro(a) a, then let rn be minimal
with this property and put -(a, M) {b M: either b a or ::1 n to {0}
such that fn(b) a but f"- l(b) frn- l(a)}"

It is easy to see, in this second case, that, if b -(a, M), b a and n is
minimal such that f"(b) a, then, for every p to {0}, f’(b) a if and
only if p n (mod m); moreover, if p > n, then fP-l(b) --fm-l(a).

Notice that, in any case, if b z(a, M), then -(b, M)
___

-(a, M). Let us
come back to y(a, M). We can distinguish two cases.

Case 1. For all n, rn to with n < rn, f"(a) fm(a). Then y(a,M)
contains no loop, namely, for all b y(a, M) and h to {0}, fh(b) b.
Otherwise, let i, j to be such that fi(a) fJ(b); then we have

fh+i( a) fh+y(b) fY( b) fi( a).

Secondly

T( a, M) U "r( f’i( a), M)
jo
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Case 2. There are n, rn to such that n < m, fn(a) fro(a). Let n to

be minimal such that there is rn > n satisfying fn(a) fm(a); and let rn > n
be minimal such that f’(a) fro(a). Put b fn(a), rn -n; then fl(b)

b while fh(b) =/= b for 0 < h < l; similarly for if(b) when j < I. Then
y(a, M) contains a loop of length l:

{b,f(b),...,f’-l(b)}.

This is the only loop in y(a, M); in fact, if c y(a, M), k to {0} and
c fk(c), then there are i,j to such that fi(b)= f(c). Let j kq / r
with 0 _< r < k; then

C fk(q+l)(c) fk+j-r(c) fk-rfJ(c) fk-rfi(b)

where s is the remainder of the division of k r + by I. Hence in this case
/(a, M) is determined by the only loop

{b,...,fl-l(b)}

it contains and, moreover, by {z(ff(b), M): j < l}. In fact

T(a, M) l,.J ’r(fJ(b), M);
j<l

notice that, for every < j < 1, ,r( fi(b), M) N ’(fY(b), M) J.
Now let T be a 1st order theory of a 1-ary function f. (We tacitly assume T

countable, complete, with no finite models; also we adopt the usual conven-
tion that all models of T are elementary substructures of a large model U.)
We wish to classify the 1-types over models of T, or, more generally, over
substructures of models of T, namely over subsets of U closed under f.
Hence let A be such a subset, p SI(A). Then p satisfies exactly one of the
following conditions.

(i) There is a A such that v a p.
(ii) There are a A, n to {0}, P0 $1() such that p contains

{fn(v) a} t2 {fn-l(v) * b" b A} t2 P0.

Notice that these conditions completely determine p. In fact, let x, y satisfy
them; we claim that tp(xlA)= tp(ylA). With no loss of generality we can
assume x y. Notice that, for all h < n and rn to {0}, fmfh(x) =/= fh(x)
(otherwise fh(x) Z), and, similarly, fmfh(y) =/= fh(y). AS X y, there
exists an automorphism # of U such that (x)= y. Therefore p(fh(x))=
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fh(y) for all h to and, in particular, cp(a) a. Let h < n be minimal such
that fh(x) fh( y); then

z(fh-(X), U) tq .(fh-(y), U) .
Furthermore maps (fh-l(x), U)onto "r(fh-l(y), U). Replace q by the
function q’ defined in the following way: for all b U,

q(b) if b "r(fh-l(x), U),
q’(b) (#-l(b) if b (fh-l(y), U),

b otherwise.

Then q’ is an automorphism of U, q’(x) y and q’(b) b for all b A. It
follows that tp(x IA) tp(y IA).

(iii) There is P0 S1() such that p contains

{fn(v) :#: b: b A, n to} LJ Po.

Again, these conditions completely determine p. In fact, let x, y satisfy them.
In particular x y, and hence there exists an automorphism q of U such
that q(x) y. As both z(x, U) and z(y, U) are disjoint from A, by proceed-
ing as in (ii) we can assume q(b) b for all b A. Then tp(x IA) tp(y IA).

Notice that the types satisfying (ii) or (iii) are not algebraic when A is a
model of T. The following lemma will play an important role in the whole
paper.

LEMMA 1. Let M T, A
_
M, A closed under f, p SI(M) p’ SI(A),

p’ __p.
(i) If there are a M, n to {0} such that p is defined by

{fn(v) a} {fn-l(v) b: b M} U p re,

(ii)

then p’ does not fork over M if and only if p’ does not represent
fn-l(v) W.

Ifp is defined by

{f"(v) :a:n to, a M} tp[’,

then p’ does not fork over M if and only if, for all n to, p’ does not
represent fn(v ) w.
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Proof (i) If p’ represents fn-l(u)---W and p’ does not fork over M,
then also p represents the same formula.

Conversely, assume that. p’ does not represent fn-l(v)= w. Notice that
any non-forking extension of p in SI(A) must contain

{fn(v) a} U {fn-l(v) * b" b A} U p re.
On the other hand, there is only one type over A satisfying this property, and
this type is p’. It follows that p’ does not fork over M.

(ii) This can be shown in a similar way.

PROPOSITION 1. Let T be a theory of a 1-ary function f. Then T is
superstable and, for all M T and p SI(M), RU(p) _< to.

Proof. First let us show that T is superstable. Recall that a theory T is
superstable if and only if:

(3) for all M < M’ T and p SI(M), there is only one non-forking
extension of p in SI(M’)(namely T is stable);

(4) there is no sequence P0C-PlC- _pnc_ ...(nto) where, for
all n to, pn is a 1-type over a suitable model of T and Pn+l is a forking
extension of Pn"

In our case both these conditions follow from Lemma 1 (and its proof).
Hence it remains to show that, for all M W T and p SI(M), RU(p) < to

(the definition of RU and its properties can be found, for instance, in [B]).
Consider the following function r" for every M, p as above,

r(p) ( to ifVa M, l n . to, fn( v ) q= a p,

min{n to" =1 a M such that fn(v) a p} otherwise.

Then r is a rank in the sense of Lascar since, for all M1, M2 T, 191 SI(M1)
/92 S1(M2):

(5) if Pl P2, then r(pl)= r(p2);
(6) if M < M2 and Pl -----P2, then r(pl)> r(P2) and r(pl)= r(p2) if

and only if P2 does not fork over M1.

As RU is the minimal Lascar rank, for every M, p as above, RU(p) < r(p)

Let us give an example of a theory T of a 1-ary function such that there
are M T, p SI(M) satisfying RU(p) to. Let T be the theory of a 1-ary
function f such that

(7)
(8)

for all a, f-l(a) is infinite, and
for all a, and n to {0}, f"(a) 4: a.



6 CARLO TOFFALORI

Then T is complete and to-stable. Moreover IS()1 l. Let M be a model
of T (for instance, assume that M has only one connected component). For
all a M and n to {0}, let pn(a) be the 1-type over M containing

{fn(v) a} LJ {fn-l(v) * b: b M}

(as IS(O)l 1, pn(a) is unique); let p be the 1-type over M containing

{fn(v) b: n to, b M}

(again 151()1 1 implies that p is unique). Then:

(9) For all a M and n to {0}, RU(pn(a)) > n. This is trivial when
n 1, because pl(a) is not algebraic. Let n >_ 1, assume our claim true for n,
and consider pn / l(a). Let b pl(a), M’ M(b); then there is a type
p,,(b) SI(M’) such that Pn(b) is a forking extension of pn+l(a) and
RU(p,(b)) > n. It follows RU(p,+ l(a)) >_ n + 1.

(10) RU(p) > tO. In fact, let b p, M’ M(b) and, for all n to {0},
consider the type p(b) SI(M’); then pn(b) is a forking extension of p and
RU(p.(b)) > n. Hence RU(p) > n + 1 for all n to.

Consequently RU(p) to.

PROPOSITION 2. Let T be a theory of a 1-ary function. Then T is to-stable if
and only if SI() is countable in T.

Proof. (=) is obvious. () follows from the analysis of non-algebraic
types over a model M of T. In fact, recall that a non-algebraic p SI(M) is
defined by

(11) An element a M, a natural number n > 0 and a 1-type P0 over
(with the conditions f"(v) a p, fn-l(v) b p for all b M, p __Dp
or by

(12) a 1-type P0 over IJ (with the conditions f’(v) a p for all a M
and n to, p

_
P0).

If ISl(b)l _< 0, then ISI(M)I IMI.

It may be worth exhibiting an example of a non to-stable theory T of a
1-ary function. Then consider the L-structure M containing a unique con-
nected component, and satisfying the following further conditions:

(13)
(14)

there is a (unique) element c M such that f(c) c;
f-l(c) is infinite while, for all b M- {c}, 1 < If-l(b)l < 2;
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(15) for all n to and k {1,2}n+l, there is b M such that f(b) a,
b has exactly k(0) preimages, each of them has exactly k(1) preimages,...,
each of them has exactly k(n) preimages;

(16) finally, if b0, b M and fn(bo) fn(b1) c for some n to, then
If-l(b0)l- [f-l(bl)l.

Let T Th(M). We already saw that T is superstable. On the other hand,
T is not to-stable, as, in T, IS1()1 2 (it suffices to consider, for every
k {1, 2}’, the type of an element b such that b c, f(b) cmnotice that
c is 0-definablemand b has exactly k(0) preimages, each of them has exactly
k(1) preimages,..., and so on).

PROPOSITION 3. Let T be a theory of a 1-ary function, M T, p a
non-algebraic 1-type over M. Then p is regular and its associated geometry is
degenerate.

Proof. First let us show that, for all M T and p SI(M), if p is not
algebraic, then p is regular. It suffices to prove that, if M’> M is an
a-model of T, p’ SI(M’), p’ __. p and p’ plM’, then p’ Ia plM’.

Case 1. There are a M, n to {0} such that p contai_ns

{fn(v) a} U {fn-l(v) 4= b: b M}.

Then p IM’ is the only type over M’ containing

{fn(u) a} t2 {fn-l(u) :/: b" b M’} t3 p re,

while there exists a’ M’ such that fn-l(v) a’ p’. Let < n be minimal
such that there is a’ M’ satisfying f(v)= a’ p’. Then a’ M. Let
x p’, y plM’. We have to show that x $t, Y. Let q tp(ylM’ {fh(x):
h < i}); then q

_
p lM’, and hence q contains

{fn(u) a} t3 {fn-l(v) =/= b: b M’} t3 p .
Suppose there is h < such that fn-l(v) "-fh(x) q. Then

fn-l+i-h( u) a’ q,

hence

fn-l+i-h(u) a’ e pIM’.
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Since n- 1 + i- h > n, it follows that a’ M, a contradiction. Conse-
quently, for all h < i,

f (x) q,

and so q is a non-forking extension of p IM’. In particular x $r Y.
Case 2. p contains {fk(v) #: a: a M, k to}. Then plM’ is the only

type over M’ containing

{fk(v) a" a M’, K to} U p ,
whereas there are n to, a M’ such that fn(v) a p’ (with no loss of
generality we can assume n minimal with respect to this property). Let
x w p’, y p [M’, we claim x SM, Y. Let

q tp(ylM’D {f(x)" h < n});

then q

_
pIM’, hence, for all k to and a’ M’, fk(v) a’ q. Suppose

that there are h < n, k to such that fk(v) fh(x) . q. Then

and so

fk+n-h( v) a e q

fk+n-h( u) a plM’,

a contradiction. Hence, for all h < n and k to,

fk( v) fh( x) q,

so that q is a non-forking extension of p lM’. In particular x $t, Y. Then
every non-algebraic 1-type over a model of T is regular.

Let us turn now to the second of our claims. Let M T, p SI(M) be
non-algebraic (hence regular), and consider the pregeometry associated with
p, namely the structure having

(i) domain p(U),
(ii) a closure operator cl defined in the following way: for every S

_
p(U),

cl(S) {y p(U): y ’t S}
(see [M], comments after D.7). This pregeometry is a geometry if, for every
x p(U), cl(x) {x} (here cl(x) abbreviates, as usual, cl({x})).

Case 1. There are a M, n to {0} such that p contains

{fn(v) a} L; {fn-l(v) : b: b M}.
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First notice that, for every x p(U),

CI(x) {y p(U): fn-l(y) =fn-l(x))"

In fact, if y p(U) and fn-l(y) f,-X(x), then the formula fn-l(v) w
is represented in tp(ylM {x}) but it is not represented in p; hence yt x.
Conversely, suppose y p(U),

fn-l( y) 4: fn-l( x).

For every j < n 1, f,-l(y) 4 fJ(x); otherwise

fn(y) =fj+l(x ) . a and f"(v) a p.

It follows that y Sm x, and hence y cl(x). More generally, for every
s c_ p(U),

cl(S) [,.J cl(s) y p(U): :! s S such that fn- 1(y) fn- 1(S) }.
sS

In fact, if y p(U) and there is s S such that

f.-l(y) =f.-l(s),

then y SM S; namely y cl(S). Conversely, let y p(U) be such that
fn-l(y) 4: fn-l(s) for all s S. By proceeding as above, one sees that

tp(ylM t3 {fJ(s)’s e S, j < n})
cannot represent f"-l(v) w, so that y tS.
Then notice that the pregeometry associated with p is not in general a

geometry. However, consider the binary relation R on p(U) such that, for all
x, y p(U), xRy iff x M Y. Then R is an equivalence relation and the
structure having the following is a geometry:

(i) domain p(U)/R,
(ii) the closure operator defined in the following way: for all S c_ p(U),

cl({slR: s S}) {xlR: x cl(S)}

(it is well known that this definition is correct).

The previous remarks ensure that this geometry is degenerate. Namely the
closure operator is trivial in p(U)/R: for all S

_
p(U),

cl({slR: s S}) {siR: s S}.



10 CARLO TOFFALORI

Case 2. For all a M and n to, f(v) #: a p. First notice that, for
every x p(U), cl(x) p(U) c3 y(x, U). In fact, if y p(U) C3 y(x, U),
then there are i, j to such that if(y) fi(x); then tp(y[M U {x}) repre-
sents if(v) fi(w), and y ’u x. Conversely, suppose y p(U) and if(y)
fi(x) for all i, j to; then, for any j to, tp(ylM {fi(x): to}) cannot
represent if(v) w, and hence y Su x.

Therefore the pregeometry associated with p is not always a geometry;
however, by proceeding as before, one can easily show that its quotient
geometry (defined as in case 1) is again degenerate.

3. Orthogonal types

Let T be a theory of a 1-ary function f, M T, p be a regular 1-type over
M. Let us try to characterize the class of p with respect to the equivalence
relation J_. Recall that, if p, q SI(M), then

p la q a Wp,

p _L q , V M’ > M,

PROPOSITION 4. Let M T, p, q be non-algebraic (hence regular) types in
SI(M).

(i) If there are a M, n to {0} such that p contains

{fn(u) a} L) {fn-l(u) 4 b: b M},

and, for every x p, ro denotes tp(fn l(x)[), then p .I_ q if and only if there
/s h to {0} such that q contains

{fh(v) a} U {fh-l(v) * b: b M},

and, for all y q,

tp(fh-( y)lk) ro.

(ii) If for all a M and n to f"(v) 4: a p, then p .L q if and only
if, for all a M and h to, fh(v) 4: a q and there are n, h to such that,
V x p, V y q,

tp( f"( x)lfJ) tp( fa( y)l).

Proof (i) First assume p J_ q. Then there are a’ M, h to such that
fh(v) a’ q. Otherwise, let x p, y q, and consider

tp( ylM to {fi( x). j < n}).
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This type is a non-forking extension of q, as it includes q and, if there are
h to, < n such that

fS( v) f( x) tp( ylM t3 {fJ( x)" j < n}),

then fh+n-i(u)= a q, a contradiction. It follows that x $t Y, so that
p _t_ a q. Similarly for M’ > M, plM’, qlM’. Then p _t_ q, a contradiction.

Hence, as q is not algebraic, there are a’ M, h to- {0} such that q
contains {fh(v) a’} t3 {fh-l(t3) b: b M}. We claim that a a’. In
fact, as p J_ q, there are M’ > M, x p lM’, y q lM’ such that x ’t, Y. In
particular tp(ylM’ u {fJ(x): j < n}) forks over M’. Since this type includes
q lM’, there exist < h, j < n such that fi(y) f(x). Therefore

fj+h-i( x) a’ M,

hence

j+h-i>n;

and

fi+n-j( y) a M,

hence

i+n-j>h and j+h-i<n.

Thenj+h-i=nanda’=f"(x)=a.
Finally let us show that, for every y q, tp(fh-l(y)l)= ro. Suppose

towards a contradiction that there is y w q such that

tp(fh-l(y)l) SO * ro

(then, for all y q, fh-l(y) So). Let x p, y q,

r tp(fn-(x)lM), s tp(fh-l(y)lM).

Then r is the only type over M containing

{f(v) =a} U {v4=b:bM} tdr0

and s is the only type over M containing

{f(v) =a} t3 {v4=b:bM} so

Clearly r, s are regular and p ./_ r, q J_ s, so that p ,/_ q implies r ./_ s. Hence
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there are M’ > M, x’ riM’, y’ slM’ such that x’’M, y’. Then tp(y’lM’ U
{x’}) contains v x’; but this contradicts

W(x’[O) * W(Y’IO).

Hence, for all y q, fh-l(y) r0 and this concludes the first part of the
proof.
Now suppose that there is h to {0} such that q contains

{fh(v) a} t3 {fh-l(v) * b: b M}

and, for all y q, fh-l(y) I= ro. Let x p; for any o(v) q ,
=! w (fh-l(W) V A 9(W)) ro,

hence

t=: ::1W (fh-l(w) fn-l(x) A q(W)).

A compactness argument gives an element y U satisfying

{fh-l(v) fn-l(x)} 1,3 q .
Furthermore y q, because

fh(y) fn(x) a and fh-l(y) fn-l(x) q M.

But x,gM y as tp(ylM t {x})represents fh-l(v)-fn-l(w). Hence p .l_ aq
and consequently p ./_ q.

(ii) First suppose p ./_ q. Then, for all a M and h to, fh(v) 4: a q;
otherwise (i) gives p _t_ q. Moreover there exist M’ > M, x p lM’, y q lM’
such that X.M, Y; hence

tp(ylM’ {fn(x): n to})

forks over M’, so that there are n, h to satisfying fh(y) fn(x). Hence

tP(f( Y)IO) tp( f( x)lO),

and the same holds for all x p, y q.
Conversely, assume that, for all a M and h to, fh(v)4 a q and

there exist n, h to such that, for all x p and y q,

tlg(fn(x)lO) tp(fh(y)lO) (= ro, Say).
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Let x p; for every q(v) q , ::l w (fh(w) 13 / q(W)) . ro. Then

w =f"(x) ^
and a compactness argument provides an element y U satisfying {fh(v)

Then y q, because, if there is k to such that fk(y) M,fn(x)} q re.
fh+k(then f"+k(x) y) M. But y-gM X as tp(ylM {x}) represents

fh(v) f"(W). Then p J_" q and p J_ q.

COROLLARY.
only ifp +/-a q.

Let M T, p, q SI(M) p, q regular. Then p +/- q if and

Proof. (=) is trivial; () follows from Proposition 4 and its proof.

4. The main theorems

THEOREM 1. Let T be a theory of a 1-ary function. Then"
(i) T is presentable;
(ii) T satisfies the existence property.

Proof (i) Let Mo, Mr, M2 be a-models of T satisfying M0

_
M1, M0

_
M2, M1 SMo M2" We have to show that if M is an a-model a-prime over

M1 u M2 and p SI(M) is not algebraic, then either p J_ M or p J_ M2.

First we claim that M M u M2. Suppose towards a contradiction that
this is not true, then there is b M- M t2 M2, moreover (see [M], B.9)

b -gM M2, b ’Mz M1.
Case 1. There are a M1, n to {0} such that tp(blM1) contains

{fn(v) al) LI {fn-l(v) a" a M}.

As b ’M1 M2, there exists a2 M2 such that

fn-l(v ) a2 - tp(blM - M2);

hence fn-l(v)----a2 tp(blM2). Let i< n be minimal such that there is
a2 Mz satisfying fi(v) a. tp(blM2); notice that > 0 because b q Mz.
As b ;M2 M1, there exists a M such that

fi-l(v) a tp(blM1)

where 1 < n, a contradiction.
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Case 2. For all a 5 M and n o, fn(v) a tp(bIM1). As bM
there are a 2 M2, n 0 (n 0 since b M2) such that

fn(v) a2 tp(blM2).

Without loss of generality we can assume that, for every a M2,

fn-l(u) a tp(blM2).

As b ’M2 M1, there is a M such that fn-l(v) a tp(b[M1), a contra-
diction.
Then M M U M2. Let now p be a non-algebraic 1-type over M. If there

area M, n o {0} such that p contains

{fn(v) a} t3 {fn-l(v) . c" c M},

then we have p ,/_ M or p J_ M2, according to whether a M or M2.
Otherwise we have both p ,/_ M and p ./_ M2. In any case T is presentable.

(ii) Let Mo, M1, M2 T with M0 _c MI, M0 c_ M2, M Smo M2; we need
show that there is a model M of T prime and atomic over M I,A M2.
Obviously it suffices to show that M U M2viewed as a structure of Lis a
model of T. Build an independent diagram

where No, N1, N2 are a-models of T (see [M] after A.13, [HM] Proposition
1.3). In particular N ’v0 N2. Furthermore (see [M], B.11):

(1) For every L-formula (,) and every M M2, if there exists
NIN2 such that p(,J), then there is ’M1UM2 such that
(’, ).
Using this fact and recalling that N1 N2 (as a structure of L) is a model

of T (in fact equals the a-model a-prime over N t N2), one can easily prove
that also M tD M2 is a model of T. D

COROLLARY. Let T be a theory of a 1-ary function. Then T is classifiable if
and only if T is shallow.

Hence we now need to study the depth Dp T of such a theory T (we follow
here the definition of Dp given in [Sa]).
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DEFINITION.
on M,

Let M T; for every ordinal a, we define a 1-ary relation

Dp,r(a,M) > a, (a e M)

in the following way:
(2) If ct 0, then Dp -(a, M) >_ a for any a M;
(3) If a is a limit ordinal, then

Dp’r(a, M) > a * Dp,r(a, M) > a + 1

for ally<a, Dpz(a,M) >v;

(4) If a=v+ 1 where v=0 or v is a successor ordinal, then
Dp z(a, M) >_ a iff there is b -(a, M) such that there exist infinitely many
c M satisfying f(c) b, Dp z(c, M) >_ v and whose trees in M are pair-
wise isomorphic.

(Notice that, for every M, c as above, z(c, M) can be considered as a
structure of L provided we pretend f(c)= c when f(c) ’(c, M); in this
sense we can introduce the isomorphism type of z(c, M)). One can easily see
that, if M T, a M, a,/3 are ordinals and a </3, then Dp z(a, M) >
implies Dp -(a, M) > a. Then the following definition is well given.

DEFINITION. Let M T, a M. Then the depth of z(a, M) Dp -(a, M)
is the least ordinal a such that Dp z(a, M) >_ a but Dp z(a, M) a / 1 if
such an ordinal exists, and is oo otherwise.

LEMMA 2. Let M T, a, b M. If b z(a, M), then Dp z(a, M) >_
Dp z(b, M). If z(a, M) and z(b M) are isomorphic, then Dp (a, M)
Dpz(b,M).

Proof In both cases it suffices to show that for any ordinal a, Dp ’(b, M)
_> a implies Dp z(a, M)>_ a. This can be shown by induction on a. The
details are left to the reader, rq

LEMMA 3. Let M T, MRo-saturated, a, b M, a =- b. Then Dp (a, M)
Dp -(b, M) (in fact -(a, M) and (b, M) are isomorphic).

Proof As a b and M is R0-saturated (hence R0-homogeneous), there is
an automorphism of M mapping a into b and consequently z(a, M)onto
z(b,M). D
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LEMMA 4. Let M be an a-model of T, a M, p SI(M) p regular,
fn(v) a p for all n to, x p. Then

r(a,M) =r(a,M[x]).

(Recall that M[x] denotes the a-model of T a-prime over M to {x}).

Proof. Suppose towards a contradiction that there exists

b r(a,M[x]) M.

Then tp(blM) is regular, and tp(blM) J_ p. Moreover there are c r(a, M),
k to {0} such that tp(b [M) contains

{fk(v) C} to {fk-(V) * C’: C’ M}.

For Proposition 4(i) there is h to- {0} such that fh(v)= c p, and
consequently there is n to {0} such that fn(v) a, a contradiction, r3

For every a-model M of T and for every regular p SI(M) we want to
compare Dp(p) and Dp r(x, M[x]) where x p. First we assume that there
are a M, n to {0} such that p contains

{fn(v) a} to {fn-l(o) 4 b" b M}.

Without loss of generality n 1 (it suffices to replace p with

q= tp(fn-’(x)lM)

where x w p; in fact q J_ p and hence Dp(q) Dp(p)). Let x p, M’=
M[x ]. Then notice that, for every y M’ M, tp(y [M) is regular and J_ p.
Hence Proposition 4(i) implies that there exists h to- {0} such that
tp(y IM) contains

{fh(v) a} tO {fh-(V) * b" b M}

and

tp( fh-l( Y)])

Put y’ fh-l(y); therefore y’ p and r(y’, M’) is isomorphic to z(x, M’)
(this follows from Lemma 3, recalling that any a-model of T is 0-saturated).
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PROPOSITION 5. Let M, p, x be as above. Then

Dp(p) Dp v(x, M[x]).

Proof. It suffices to show that, for every ordinal a,

Dp(p) >_ a if and only if Dp -(x, M’) >_ a

(where M’ abbreviates M[x]). We proceed by induction on a. The cases
a 0 and a v or v + 1 for v a limit ordinal are trivial. Hence assume
a v + 1 where v 0 or v is a successor ordinal.

First suppose Dp(p) >_ a, then there is q SI(M’) such that q is regular,
q 2. M and Dp(q) >_ v. If q contains fk(v) y for all y M’ and k to,
then q ,/_ M; then there exist y M’ and k to {0} such that q contains

{fk(v) y} {fk-’(V) * b: b M’}.

Without loss of generality we can assume k 1. Moreover y M, otherwise
q ,L M. Let h be the least natural number such that fh(y) M, and put
y,= fh-l(y); recall that y’w p and z(y’, M’) is isomorphic to z(x, M’). As
M’ is 0-saturated, for all b0,..., bn M’ satisfying {f(v)= y} t2 q, the
set of formulas

{f(v) y} t2 {v * bi: < n} w q

is realized in M’; in fact this set is realized in M’[c] with c W q and so it is
finitely satisfiable in M’. Consequently there exist infinitely many elements of
M’ satisfying

{f(v) y} v ar
(notice that all these elements have the same type over , hence Lemma 3
implies that their trees in M’ are pairwise isomorphic). Now let c q; using
Lemma 3 again, for every z M’ satisfying

{f(v) y} t2 q re,
we have

Dp ’( z, M’[ c ]) Dp ’(c, M’[ c ]).

As fn(u) :# Z ( q for all n to, z(z, M’) z(z, M’[c]) (Lemma 4), and
hence Dp -(z, M’) Dp z(z, M’[c]). The induction hypothesis ensures
Dp ,r(z, M’[c]) > v because Dp(q) > v. Hence we can conclude that there is
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y z(y’, M’) such that y admits infinitely many preimages whose trees are
isomorphic and have Dp > v. It follows that Dp -(y’, M’) > a. Since z(x, M’)
is isomorphic to -(y’, M’), Dp z(x, M’) > a.

Conversely, let Dp z(x, M’) > a, then there is y ’(x, M’) (= y M)
such that y admits infinitely many preimages whose trees are pairwise
isomorphic and have Dp > v; we can assume that y does not occur among
these preimages. Then we claim that all these preimages satisfy the same
type q0 over . In fact let z, z’ be two of these preimages, with z 4: z’; then

z(z,M’) z(z’,M’) .
The isomorphism q of z(z, M’) onto v(z’,M’) can be extended to get an
automorphism of M’ (it suffices to map z(z, M’) onto z(z’, M’) by q, and
z(z’, M’) onto r(z, M’) by q-x, and to complete by the identity elsewhere).
Let q be the only 1-type over M’ containing

{f(v) y} L/ {v 4: b: b M’} L) qo.

Then q is non-algebraic, hence regular. Moreover q _k M as y M. Finally
Dp(q) > v; in fact, if c q, then, for all z as above,

Dp ’(-c, M’[ c ]) Dp z( z, M’[ c ]).

On the other hand, "r(z, M’[c]) z(z, M’) as f"(v) z q for all n o
(Lemma 4). Hence Dp z(c, M’[c]) Dp z(z, M’) > v and the induction hy-
pothesis gives Dp(q) > v. It follows that Dp(p) > a. D

We turn now to the case that f"(v) 4. a p for all a M and n o. Let
x p, and put M’ M[x]. We claim that, for all y M’ M, y(y, M’) is
isomorphic to y(x, M’) and

y( y, M’) M J.

In fact tp(ylM) ,l_ p; hence, for all a M and n o,

fn(v) a tp( ylM),

and there are n, m o such that

tp( f"( y)]J) tp( fm( x)]j).

Then, for every q(v) p ,
M’ =l w (fro(W) f"(y) A q(w)).
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As M’ is rio-Saturated, there is x’ M’ such that fm(x’)=fn(y) and
x’ p . Consequently there is an automorphism of M’ mapping x into
x’, and hence y(x, M’) onto y(x’, M’) y(y, M’). Moreover y(x’, M’) (3 M, hence x’p.

PROPOSITION 6. Let M, p be as above, x p, M’ M[x]. Then Dp(p) is

max{Dp "r(fi(x), M’)" to}

if this set has a greatest element (in case z), and is

sup{Dp ’(fi(x), M’)" to} + 1

otherwise.

Proof. First we claim that, if t, 0 or v is a successor ordinal, then

Dp(p) > v + 1 iff =l to such that Dp 7"(fi(x), M’) > v + 1.

In fact, assume Dp(p) t, + 1, then there is q SI(M’) such that q is
regular, q _t. M and Dp(q)>_ t,. As in the previous Proposition 5, we can
assume that there is y M’ such that q contains

{f(v) y} {v * b" b M’}.

Then y M, and so there are x’ M’, to such that

x’ p, y . ’r( fi( x’), M’).

Let Zo,..., zn M’ satisfy {f(v) y} t3 q (notice that, if there is to

{0} such that ft(y) y and is minimal with this property, then, for all
z q , z fl-l(y)). The set

{f(v) y} t2 {v zi" < n L) q

is realized in M’[c] (where c q), and consequently, as M’ is tt0-saturated, is
realized also in M’; it follows that M’ contains infinitely many elements
satisfying {f(v)= y} t3 q t. As all these elements admit the same type
over , Lemma 3 implies that their trees in M’ are pairwise isomorphic.
Furthermore, if c q, then, for every z M’ satisfying q (and f(v) y),
we again have

Dp ’(c, M’[ c ]) Dp ’( z, M’[ c ]).

As f"(v) z q for all n to, z(z, M’) -(z, M’[c]). Then, for all z as
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above,

Dp z(z, M’) Dp z(c, M’[c]) Dp(q) > v.

We can conclude that there is y r(fi(x,), M’) such that y admits infinitely
many preimages having isomorphic trees of depth > u. Then

Dp z(fi(x’), M’) > + 1

and so

Dp z(fi(x), M’) > + 1.

Now let

Dpz(fi(x),M’) >v+ 1 for someito.

Then there is y e z(f(x), M’) with infinitely many preimages having isomor-
phic trees of depth > , (as above, if there is to such that fl+ l(y) y
but fl(y) y, then there is no loss of generality in excluding f/(y) among
these preimages). Let z, z’ be two of these preimages, with z z’; as in
Proposition 5, we can extend the isomorphism between -(z, M’) and z(z’, M’)
to get an automorphism of M’. In particular tp(zl) tp(z’lJ) (= qo, say).
Consider the unique type q SI(M’) containing

{f(v) =y} {v Cb:beM’} t2qo.

Then q is regular, and q 2. M since y M. Moreover Dp(q) > v. In fact, let
z be as above, c q; then both z and c realize q0, hence

Dpr(c,M’[c]) Dpr(z,M’[c]).

But z(z, M’[c]) ’(z, M’) as fn(v) z - q for all n to, and consequently
Dp r(c, M’[c]) Dp r(z, M’) > v. As

Dp r(c,M’[c]) Dp(q)

(see Proposition 5), it follows that Dp(p) > v + 1, and this concludes the
proof of our claim.
At this point we have the following:

(5) Dp(p) 0 , Dp(p) 7 1

, for all to,

* for all i to,

Dp v(fi(x), M’) 1

Dp z(fi(x), M’) O.
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(6) If u 0 or u is a successor ordinal, then Dp(p) v + 1 ** Dp(p) _>
u + 1, Dp(p) u + 2 * ! to such that Dp-(fi(x), M’) _> u + 1 but,

Dp "r(fi(x), M’) 3’ v + 2 {Dp ,r(fi(x), M’)" to}
has a greatest element, and this element is v + 1.

(7) If u is a limit ordinal, then Dp(p) u + 1 ** V/z < u, lz successor,
Dp(p) >_/z + 1 but Dp(p) u + 2 * for every/z < u,/ successor, there is

to such that Dp -(fi(x), M’) >_/z + 1 but, for all to, Dp -(fi(x), M’)
7 u + 2; then either {Dp -(fi(x), M’): to} has a greatest element, and
this element equals u + 1, or {Dp-(fi(x),M’): to} does not have a
greatest element, but in this case sup{Dp z(fi(x), M’): to} u.

(8) Finally, let Dp(p) 0% if there is to such that Dp -(fi(x), M’)
0% then we are done. Otherwise, for all to, Dp z(fi(x), M’) is an ordinal
(ai, say); let a be a successor ordinal such that a >_ a for all to. Then
Dp(p) >_ a + 1, and hence there exists to such that Dp z(fi(x), M’) > a
/ 1 > ai, a contradiction. D

It is easy to give an example of a deep theory of a 1-ary function (see [Sa]).
With a good deal of patience, one could find, for every successor ordinal
a < to1, a shallow theory of a 1-ary function with depth a. We prefer to omit
here the corresponding list of examples, and to concentrate our attention on
the theories T such that Dp T 1 (namely, the so-called non-multidimen-
sional theories).

5. The non-multidimensional case

PROPOSITION 7. Let T be a theory of a 1-ary function. Then Dp T 1 if
and only if {a: f-l(a) is infinite} is O-definable and finite.

Proof () Let M be an a-model of T, and let p SI(M)satisfy
Dp(p) > 1. Then there is q SI(M[x]) (for x p) such that q is regular
and q 2.M. Hence there are y M[x]- M and n to- {0} such that q
contains

{fn(v) y} W {fn-l(u) b: b M[x]}.

With no loss of generality n 1. As q is not algebraic,

{z M[x]: f(z) y}

is infinite, and this contradicts our hypothesis since y M.
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(=) Let M be an a-model of T; first assume that {a M: f-l(a) is
infinite} is not finite. We distinguish two cases.

Case 1. For all a M and n to, there are at most finitely many
elements b M satisfying fn(b) a and f-x(b) infinite.
As {b M: f-X(b) is infinite} is not finite, the set

{fn(u) * a" a (. M, n (. to} i,.) { >n w(f(w) u)" n . to}

is finitely satisfiable in M, and hence can be extended to a (non-algebraic)
type p SI(M). Let x p, and consider M[x]. The set

{f(v) =x} {vb’bM[x])

is finitely satisfiable in M[x]; let q be a 1-type over M[x] extending this set.
Then q is not algebraic and hence regular; q +/- M as x M. Then Dp(p) >_ 1
and Dp T >_ 2; but this contradicts the hypothesis.

Case 2. There are a M and n to such that there exist infinitely many
elements b M satisfying fn(b) a and f-l(b) infinite.
Choose a, n such that n is minimal (n > 0, of course), and consider the set

{fn(v) a} IO {fn-l(v) * d" d . M} Io {::] >k W (f(w) V)" k to}.

This set is finitely satisfiable in M; in fact, for every d M such that
f(d) a, the minimality of n entails that there are only finitely many b M
satisfying fn-l(b) d, f-l(b) infinite. Consequently, for all h to,

do,...,dh M with f(do) f(dh)---a, there is b M such that
f"(b) a, f-l(b) do,..., dh, f-l(b) infinite.

Let p be a 1-type over M extending the foregoing set, and put x p.
Consider

{f(v) x} U {v * b" b M[x]}

in M[x ]. This set is finitely satisfiable in M[x ], and hence can be extended to
get a 1-type q S(M[x]). q is not algebraic (and consequently is regular);
q+/-M as xM. Then we again have Dp(p)> 1, hence DpT>2, a
contradiction.

It follows that, for any a-model M of T, {a M: f-l(a) is infinite} is
finite. Fix M and let a0,..., ak be the elements of M having infinitely many
preimages. A compactness argument produces a natural number N such that

wVv (=! >Nw(f(w) v) :::t w (f(w) v)),
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otherwise

{v ao,...,ak} U {:! >n w ( f(w) v)" n to}

would be satisfiable. Then {a" f-l(a) is infinite} can be defined without
parameters, for instance by the formula

::1 >g w (f(w) v).

We point out that in the proof of Proposition 7, we have implicitly shown
that if Dp T 1, then there is N such that, for every a, either If-l(a)l < N
or f-(a) is infinite.

COROLLARY. If f is injective (more generally if there is m to such that,
for every a, If-l(a)l <_ m), then Dp T 1.

Proof. {a" f-(a) is infinite)

6. The unidimensional case

Let us take care now of the unidimensional case. We recall that T is
unidimensional if, for any M T, there is a unique J_ -class of regular types
over M; in particular, T is non-multidimensional. Hence, in the case of a
1-ary function, {a" f-(a) is infinite} is 0-definable and finite, moreover there
is R to such that, for every a, either [f-l(a)] _< R or f-(a) is infinite. But
in the unidimensional case a stronger result holds.

LEMMA 5. Let T be a unidimensional theory of a 1-ary function f. Then

I{a" f-l(a) is infinite < 1.

Proof Let M T, ao, a M be such that both f-l(a0) and f-l(a1) are
infinite. Then, for every _< 1,

{f(v) ai} t,3 {v q= b" b M}

can be extended in at least one way to a nonalgebraic, hence regular, type

Pi SI(M)" If a0 = a, then P0 _t_ p (Proposition 4.(i)). It follows that
a0 a 1. IZ!

Notice that in general every }t 1-categorical theory T is unidimensional; the
converse is also true for T to-stable. However there exist non-multidimen-
sional theories T of a 1-ary function which are not to-stable. An example is
just provided by the theory T we exhibit after Proposition 2; in fact T is not



24 CARLO TOFFALORI

to-stable, but Dp T 1, as {a: f-l(a) is infinite} {c} is 0-definable and
finite.

PROPOSITION 8. Let T be the theory of a 1-ary function. Then T is
unidimensional if and only if T is R 1-categorical.

Proof. On account of the previous remarks, it suffices to show that, if T is
unidimensional, then T is to-stable. Hence assume T unidimensional.

Case 1. There exists a (unique) element a U such that f-l(a) is
infinite.

Let M w T; then a M and the set

{f(v) a} tO {v 4: b: b M}

can be enlarged to a regular type p SI(M). This type is uniquely deter-
mined, as, if q SI(M)contains

{f(v) a} tO {v 4: b: b M},

then q J_ p, and hence q 0 =p 0 (see Proposition 4.(i)), so that p q.
Denote by pM the unique 1-type over M extending {f(v)= a} to {v 4: b:
b M}. As T is unidimensional, for all M T, every regular type over M is
not orthogonal to pM.
We claim that"

(i) There is N to such that, for all b U, there are n, rn to such that
n < m < N and fn(b)= fm(b).

Otherwise {f"(v) 4: fro(U): n, m to, n < m} is finitely satisfiable in any
model of T. Hence there are M T, b M such that, for every n, rn to

with n < m, f"(b) 4: fm(b). But in this case

{fn(v) C: n e to, c e M}

is finitely satisfiable. (In fact, let no,..., nk to, Co,... Ck - M, consider

{f"’(v) 4: ci: < k}

and choose h to such that, for all > h, fi(b) does not occur among
co, cl,..., Ck; then f"ifh(b)4: Co,..., Ck.) Then there is a type q SI(M)
extending {fn(v) 4: c" n to, c M}. q is regular, and q _1_ pM, a contra-
diction. Then (i) holds.
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Recall:

(ii) There is R to such that, for all b U with b : a, f-l(b)l -< R.

(i) and (ii) imply that, for every M w T and x, y w pM, ’(X, U) and z(y, U)
are finite and isomorphic.
Now consider M w T and a regular q SI(M). Let z w q. As q J_ pM,

there is n < N such that f"(z) a and fn-l(z) pM. Then there are only
finitely many non-algebraic 1-types over M. Hence T is o-stable.

Case 2. For all a U, If-l(a)l < R. We claim that, in this case, for all
non-algebraic P0, q0 $1(), M 1= T, a po(M), there is b qo(M) such
that a b. Notice that, if this is true, then the proof is accomplished as it
follows that $1() is countable and consequently, owing to Proposition 2, T is
o-stable.

Suppose towards a contradiction that there are non-algebraic P0, q0

S1() M W T and a po(M) such that qo(M)c y(a, M)= . For every
n, rn oo, {b M: fro(b) f"(a)} is finite, hence there is a formula q,,(v)

q0 such that, if b M and fro(b) f"(a), then --n qb,m(b). It follows
that, for every n, rn o,

V W (fro(W) fn(v) "n qnm(W)) PO"

Consequently, for every M w T, a p0(M), we have

qo(M) 0 y(a,M) .
Let now M T. The sets

PO {v4=b:bM}, qot2 {v 4:b:bM}

are finitely satisfiable in M because P0, q0 are not algebraic; let p, q St(M)
extend

Pot2 {v4:b:bM}, qo {v 4=b:bM}

respectively; notice that p, q are uniquely determined (in fact, if x 4: b for all
b M, then f"(x) 4: b for all b M, n o). Then p J_ q, and hence (see
Proposition 4.(ii) and its proof) there are a w p, b w q such that a b, a
contradiction.

In [Si] a characterization of -categorical theories of a 1-ary function is
given; of course this works also for unidimensional theories. We recall that
[Si] includes a characterization of 0-categorical theories of a 1-ary function,
too.



26 CARLO TOFFALORI

REFERENCES

[B] J. BALDWIN, Fundamentals ofstability theory, Perspectives in Mathematical Logic, Springer,
New York, 1988.

[CK] C.C. CHANG and H.J. KEISLER, Model theory, Studies in Logic 73, North Holland,
Amsterdam, 1973.

[HM] L. HARRINGTON and M. MAKKAI, An exposition of Shelah’s "Main Gap": counting
uncountable models of to-stable and superstable theories, Notre Dame J. Formal Logic,
vol. 26 (1985), pp. 139-178.

[M] M. MAKKAI, A survey of basic stability theory, with particular emphasis on orthogonality and
regular types, Israel J. Math., vol. 49 (1984), pp. 181-238.

[R] A. RYASKIN, "The number of models of complete theories of unars" in Model theory and
its applications, Tr. Inst. Mat., vol. 8 (1988), pp. 162-182, Novosibirsk (Russian).

[Sa] J. SAFFE, The number of uncountable models of to-stable theories, Ann. Pure Appl. Logic,
vol. 24 (1983), pp. 231-261.

[Sh] S. SHELAH, Classification offirst order theories which have a structure theorem, Bull. Amer.
Math. Soc., vol. 12 (1985), pp. 227-232.

[Si] Y. SHISHMAREV, Categorical theories of a function,. Math. Zametki, Akad. Nauk SSSR, vol.
11 (1972), pp. 89-98 (Russian); English translation in Math. Notes, Acad. Sci. USSR,
vol. 11 (1972), pp. 58-63.

UNIVERSIT DEGLI STUDI DI L’AOUILA
L’AQUILA, ITALY


