AN ELEMENTARY NONSTANDARD PROOF OF STONE'S REPRESENTATION THEOREM

BY

BERNARD BRUNET

Summary

A neat nonstandard proof of Stone's representation theorem is given. Improving on previous proofs (Loeb [5], Brunet [2]), it uses the remarkably simple fact that infinitesimal members of a filter on X, in any enlargement, are always compact for a natural topology on *X.

1. Preliminaries

Let $\mathscr E$ be an enlargement containing a given set X. Recall the following: The standard subsets of *X form a base of open (and therefore closed) sets for a compact topology τ on *X (this topology is called "S-topology" by Luxemburg [6]). Moreover, given any filter $\mathscr F$ on X, its monad $\mu(\mathscr F)$ is defined as the intersection of all *F where $F \in \mathscr F$, and there exists an internal subset I of *X such that $I \in {}^*\mathscr F$ and $I \subseteq \mu(\mathscr F)$. Any such I is called an *infinitesimal member* of the filter $\mathscr F$ (see Machover and Hirschfeld [7], also Haddad [4]).

THEOREM 1. Any infinitesimal member of a filter on X is τ -compact.

Proof. Let I be an infinitesimal member of a filter \mathscr{F} on X. Let \mathscr{G} be any filter on X and suppose that, for any $G \in \mathscr{G}$, the subset *G meets I. It suffices to prove that the monad $\mu(\mathscr{G})$ meets I. Since any element of \mathscr{G} meets every element of \mathscr{F} , there exists a filter \mathscr{H} on X which is finer than both \mathscr{F} and \mathscr{G} . Let I be an infinitesimal member of \mathscr{H} . Clearly, $I \subseteq \mu(\mathscr{H}) \subseteq \mu(\mathscr{G})$. Since $I \in {}^*\mathscr{F}$, it is an element of ${}^*\mathscr{H}$ and therefore meets I, so that $\mu(\mathscr{G})$ meets I.

Received March 23, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46Q05; Secondary 54J05.

2. Stone's representation theorem

The spaces \mathscr{L}^{∞} and L^{∞} . Let (X, \mathscr{M}) be a measurable space and let \mathscr{N} be a σ -ideal of \mathscr{M} , which means \mathscr{N} is a subset of \mathscr{M} such that:

- (i) $\emptyset \in \mathcal{N}$ and $X \notin \mathcal{N}$;
- (ii) for each $(A, B) \in \mathcal{M} \times \mathcal{N}$, if $A \subseteq B$, then $A \in \mathcal{N}$;
- (iii) any countable union of elements of \mathcal{N} is again an element of \mathcal{N} .

A mapping from X to \mathbb{R} is said to belong to \mathscr{L}^{∞} whenever it is \mathscr{M} -measurable and is bounded on the complement N^C of some $N \in \mathscr{N}$. For every $f \in \mathscr{L}^{\infty}$, let

$$||f|| = \inf\{t \in \mathbf{R}_+ : \{x \in X : |f(x)| > t\} \in \mathcal{N}\}.$$

Call L^{∞} the quotient space of \mathscr{L}^{∞} modulo the equivalence relation

$$f \equiv g$$
 whenever $\{x \in X : f(x) \neq g(x)\} \in \mathcal{N}$.

Notice that the space L^{∞} thus defined is complete metric.

Theorem 2 (Stone). There is a compact Hausdorff space (\hat{X}, \hat{T}) such that L^{∞} is isometric to the space $C(\hat{X})$ of real continuous functions on \hat{X} endowed with the uniform metric.

In the following, let \mathscr{E} be a given enlargement containing both (X, \mathscr{M}) and **R**. Let $\mathscr{F} = \{N^C : N \in \mathscr{N}\}$. Clearly \mathscr{F} is a filter on X.

Let Y be an infinitesimal member of that filter. Theorem 1 asserts that Y is τ -compact. Moreover, since $Y \subseteq \mu(\mathcal{F})$, and since $\{x \in X : |f(x)| \le \|f\|\} \in \mathcal{F}$ for every $f \in \mathcal{L}^{\infty}$, we must have $|*f(y)| \le *\|f\|$ for every $y \in Y$, so that $|°(*f(y))| \le \|f\|$.

For every $\tilde{f} \in \mathscr{L}^{\infty}$, let \bar{f} denote the real-valued bounded function defined on Y such that $\bar{f}(y) = {}^{\circ}({}^*f(y))$ for each $y \in Y$. Consider the coarsest topology on Y for which all functions \bar{f} are continuous, and call this topology \bar{T} . Then consider the quotient space \hat{X} obtained from the space (Y, \bar{T}) and the equivalence $x \equiv y$ whenever $\bar{f}(x) = \bar{f}(y)$ for every $f \in \mathscr{L}^{\infty}$.

Let p denote the quotient map from Y onto \hat{X} , and let $\hat{y} = p(y)$ for $y \in Y$. For each $f \in \mathcal{L}^{\infty}$, define \hat{f} such that $\hat{f}(\hat{y}) = \bar{f}(y)$ for $y \in Y$. Then let \hat{T} denote the coarsest topology on \hat{X} for which every \hat{f} is continuous.

REMARK 1. Referring to Cutland's discussion [3, pp. 548-549] of Loeb's Ω [5, p. 77], we have to admit that our \hat{X} is essentially the same as Loeb's Ω .

Note that Anderson's construction of \hat{X} is also essentially the same as that of Loeb as he himself says [1, p. 676].

REMARK 2. Let $\|\hat{f}\| = \sup_{y \in Y} |\bar{f}(y)|$. For every $f \in \mathscr{L}^{\infty}$, we have $\|f\| = \|\hat{f}\|$. Indeed, on one hand, $|\bar{f}(y)| \leq \|f\|$ for every $y \in Y$ as has been noticed earlier. On the other hand, $*\{x \in X: |f(x)| > t\} \subseteq Y^C$ for every real $t > \|\hat{f}\|$, so that $\|f\| \leq \|\hat{f}\|$.

Proposition 2.1. The space (\hat{X}, \hat{T}) is compact Hausdorff.

Proof. The proof is a series of lemmas.

Lemma 1. For each element $f \in \mathcal{L}^{\infty}$, the function \bar{f} is continuous in the τ -topology.

Let a < b in **R**; then

$$\bar{f}^{-1}(]a,b[) = *f^{-1}(st^{-1}(]a,b[)) \cap Y$$

$$= \bigcup_{n \in \mathbb{N}} *f^{-1}(*\left[a + \frac{1}{n}, b - \frac{1}{n}\right]) \cap Y$$

$$= \bigcup_{n \in \mathbb{N}} *\left(f^{-1}\left(\left[a + \frac{1}{n}, b - \frac{1}{n}\right]\right)\right) \cap Y$$

which is a τ -open subset of Y.

LEMMA 2. The space (Y, \overline{T}) is compact.

It follows from Lemma 1 that the topology \overline{T} is coarser than the τ -topology on Y which is compact, hence the result.

LEMMA 3. The space (\hat{X}, \hat{T}) is compact.

Indeed, for each $f \in \mathscr{L}^{\infty}$, the map $\hat{f} \circ p = \bar{f}$ is a continuous real-valued function on (Y, \bar{T}) . From the definition of the topology \hat{T} , it follows that p is continuous from (Y, \bar{T}) onto (\hat{X}, \hat{T}) . The result follows from Lemma 2.

LEMMA 4. The space (\hat{X}, \hat{T}) is Hausdorff.

Let $\hat{x} \neq \hat{y} \in \hat{X}$; then by definition there is $f \in \mathscr{L}^{\infty}$ with $\hat{f}(\hat{x}) \neq \hat{f}(\hat{y})$. Hence $\{\hat{f}: f \in \mathscr{L}^{\infty}\}$ separates the points in \hat{X} , and since **R** is Hausdorff, so is (\hat{X}, \hat{T}) . REMARK 3. Let $f \in \mathscr{L}^{\infty}$ and $g \in \mathscr{L}^{\infty}$. If $f \equiv g$, then $\hat{f} = \hat{g}$. Indeed, let

$$A = \{x \in X : f(x) = g(x)\}.$$

Since $A \in \mathcal{F}$, we know that $Y \subseteq {}^*A$, so that ${}^*f(y) = {}^*g(y)$ for each $y \in Y$. Thus we may regard $\hat{}$ as a mapping from L^{∞} to $C(\hat{X})$. Let $\hat{}(L^{\infty})$ be the image of L^{∞} under this mapping.

Proposition 2.2. The spaces L^{∞} and $C(\hat{X})$ are isometric.

Proof. By construction (see Remark 2), the mapping $\hat{}$ is an isometry between L^{∞} and $\hat{}(L^{\infty})$. Since L^{∞} is a complete metric space, clearly $\hat{}(L^{\infty})$ is a closed subset in $C(\hat{X})$. Moreover, $\hat{}(L^{\infty})$ is separating and contains the constants. So by the Stone-Weierstrass Theorem, $C(\hat{X})$ is equal to $\hat{}(L^{\infty})$. This ends the proof of Proposition 2.2, whence the proof of Theorem 2.

Acknowledgments. I would like to thank the referee for his or her suggestions, and Professor L. Haddad for many a valuable conversation.

REFERENCES

- R.M. Anderson, Star finite representations of measure spaces, Trans. Amer. Math. Soc., vol. 271 (1982), pp. 667-687.
- B. Brunet, Une démonstration nonstandard du théorème de représentation de Stone, Séminaire d'Analyse de l'Université "Blaise Pascal", 1986-1987, exposé n°19.
- 3. N.J. Cutland, Nonstandard measure theory and its applications, Bull. London Math. Soc., vol. 15 (1983), pp. 529-589.
- L. Haddad, Comments on nonstandard topology, Ann. Sci. Univ. Clermont, Série Math., vol. 16 (1978), pp. 1-25.
- 5. P.A. LOEB, "A nonstandard representation of measurable spaces, L_{∞} and L_{∞} " in Contributions to nonstandard analysis, Eds. W.A.J. Luxemburg and A. Robinson, North-Holland, Amsterdam, 1972, pp. 65–80.
- W.A.J. LUXEMBURG, "A general theory of monads" in Applications of model theory to algebra, analysis, and probability, Ed. W.A.J. Luxemburg, Holt, Rinehart and Winston, 1969, pp. 18-86.
- M. Machover and J. Hirschfeld, Lectures on non-standard analysis, Lect. Notes Math., no. 94, Springer-Verlag, N.Y., 1968, p. 18.

Université Blaise Pascal 63177 Aubiere Cedex, France