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AN ELEMENTARY NONSTANDARD PROOF OF STONE’S
REPRESENTATION THEOREM

BY

BERNARD BRUNET

Summary

A neat nonstandard proof of Stone’s representation theorem is given.
Improving on previous proofs (Loeb [5], Brunet [2]), it uses the remarkably
simple fact that infinitesimal members of a filter on X, in any enlargement,
are always compact for a natural topology on *X.

1. Preliminaries

Let d be an enlargement containing a given set X. Recall the following:
The standard subsets of *X form a base of open (and therefore closed) sets
for a compact topology - on *X (this topology is called "S-topology" by
Luxemburg [6]). Moreover, given any filter - on X, its monad /(-) is
defined as the intersection of all *F where F -, and there exists an
internal subset I of *X such that I *- and I _/z(-). Any such I is
called an infinitesimal member of the filter - (see Machover and Hirschfeld
[7], also Haddad [4]).

THEOREM 1. Any infinitesimal member of a filter on X is z-compact.

Proof Let I be an infinitesimal member of a filter -on X. Let be
any filter on X and suppose that, for any G , the subset *G meets I. It
suffices to prove that the monad /x()meets I. Since any element of
meets every element of z-, there exists a filter on X which is finer than
both -and . Let J be an infinitesimal member of e. Clearly, J ___/(e)
_/x(). Since I *-, it is an element of * and therefore meets J, so
that/z() meets I.
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2. Stone’s representation theorem

The spaces .. and L. Let (X, /) be a measurable space and let M/
be a g-ideal of /, which means //is a subset of /such that:

(i)
(ii)
(iii)

M/and X
for each (A, B) / //, if A

_
B, then A //;

any countable union of elements of M/is again an element of //.

A mapping from X to R is said to belong to .z’ whenever it is
-measurable and is bounded on the complement Nc of some N 4/.

For every f .o, let

Ilfll inf(t R+’(x X" If(x)l > t} //).

Call L the quotient space of o modulo the equivalence relation

f g whenever {x X" f(x) g(x)} 4/.

Notice that the space L thus defined is complete metric.

THEOREM 2 (Stone). There is a compact Hausdorff space (, )^such that
L is isometric to the space C() of real continuous functions on X endowed
with the uniform metric.

In the following, let d be a given enlargement containing both (X, ) and
R. Let -= {Nc" N //}. Clearly - is a filter on X.

Let Y be an infinitesimal member of that filter. Theorem 1 asserts that Y
is r-compact. Moreover, since Y (-), and since {x X: If(x)l < [[fll}- for every f ..oo, we must have I*f(y)l < * Ilfll for every y Y, so that
I(*f(y))l < Ilfll.
For every f o, let f denote the real-valued bounded function defined

on Y such that f(y) o(,f(y)) for each y Y. Consider the coarsest
topology_ on Y for which all functions f^are continuous, and call this topology_
T. Then consider the quotient space X obtained from the space (Y,,T) and
the equivalence x y whenever f(x) f(y) for every f oo.

Let p denote the quotient map from Y onto , and let 3 p(y) for
y Y. For each f , define f such that f() f(y^) for y Y. Then let
7 denote the coarsest topology on . for which every f is continuous.

REMARK 1. Referring to Cutland’s discussion [3, pp. 548-549] of Loeb’s
[5, p. 77], we have to admit that our . is essentially the same as Loeb’s l.
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Note that Anderson’s construction of ) is also essentially the same as that of
Loeb as he himself says [1, p. 676].

REMARK 2. Let Ilfll SUpy yIf(y)l. For every f _Woo, we have Ilfll
Ilfll. Indeed, on one hand, If(y)l -< Ilfll for every y Y as has been noticed
earlier. On the other hand, *{x X: If(x)l > t}

_
yC for every real > Ilfll,

so that Ilfll < Ilfll.
PROPOSITION 2.1. The space (., 7) is compact Hausdorff.

Proof The proof is a series of lemmas.

LEMMA 1.
r-topology.

For each element f .W, the function f is continuous in the

Let a < b in R; then

f-l(]a, b[) *f-l(st-l(]a, b[)) N Y

l,.J *f-l(* 1 1 )a+-ff,b--ff cY
nN

[,..j, f-1 a+-ff,b--ff CY
nN

which is a r-open subset of Y.

LEMMA 2. The space (Y, ) is compact.

It follows from Lemma 1 that the topology T is coarser than the --topol-
ogy on Y which is compact, hence the result.

LEMMA 3. The space (,/) is compact.

Indeed, for each f ..Woo, the map f p f is a continuous real-valued
function on (Y, F). From the definition of the topology 7, it follows that p is
continuous from (Y, F) onto (), 7). The result follows from Lemma 2.

LEMMA 4. The space (, ) is Hausdorff.

Let 2 4:)3 2; then by definition there is f .oo with f(2)4: f(.).
Hence {f: f .W=} separates the points in ,, and since R is Hausdorff, so is
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REMARK 3.
Indeed, let

Let f.= and g .=. If f= g, thenf=.

A {x X" f(x) g(x)}.

Since A -, we know^ that Y __. *A, so that *f(y) *(y) for^each y Y.
Thus we may regard as a mapping from L to C(X). Let (L) be the
image of L under this mapping.

PROPOSITION 2.2. The spaces L and C(,) are isometric.

Proof By construction (see Remark 2), the mapping is an isometry
between L and ^(L). Since L is a complete metric space, clearly ^(L) is a
closed subset in C(,). Moreover, ^(L) is separating and contains the
constants. So by the Stone-Weierstrass Theorem, C() is equal to ^(L).
This ends the proof of Proposition 2.2, whence the proof of Theorem 2.
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