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Summary

A neat nonstandard proof of Stone’s representation theorem is given.
Improving on previous proofs (Loeb [5], Brunet [2]), it uses the remarkably
simple fact that infinitesimal members of a filter on X, in any enlargement,
are always compact for a natural topology on *X.

1. Preliminaries

Let & be an enlargement containing a given set X. Recall the following:
The standard subsets of *X form a base of open (and therefore closed) sets
for a compact topology  on *X (this topology is called “S-topology” by
Luxemburg [6]). Moreover, given any filter % on X, its monad w(%) is
defined as the intersection of all *F where F € %, and there exists an
internal subset I of *X such that [ € *% and I c u(%). Any such I is
called an infinitesimal member of the filter & (see Machover and Hirschfeld
[7], also Haddad [4]).

THEOREM 1. Any infinitesimal member of a filter on X is T-compact.

Proof. Let I be an infinitesimal member of a filter % on X. Let £ be
any filter on X and suppose that, for any G € &, the subset *G meets I. It
suffices to prove that the monad u(#) meets I. Since any element of &
meets every element of ., there exists a filter &# on X which is finer than
both % and #. Let J be an infinitesimal member of . Clearly, J € u(#)
c u(£). Since I € *&, it is an element of *s# and therefore meets J, so
that u(#) meets 1.
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2. Stone’s representation theorem

The spaces -Z* and L”. Let (X,.#) be a measurable space and let .4
be a o-ideal of .#, which means .#  is a subset of .# such that:

(i) et and X & A
(ii) foreach (A,B)e.#X A,if ACB,then A € 4
(iii) any countable union of elements of .#  is again an element of .7

A mapping from X to R is said to belong to .Z* whenever it is
.#measurable and is bounded on the complement N€ of some N € .+
For every f € £, let

lIfll = inf{z € R,: {x € X: |f(x)| >t} € #}.
Call L” the quotient space of .2 modulo the equivalence relation
f =g whenever {x € X: f(x) #g(x)} € A"

Notice that the space L” thus defined is complete metric.

TuEOREM 2 (Stone). There is a compact Hausdorff space (X, T) such that
L* is isometric to the space C(X) of real continuous functions on X endowed
with the uniform metric.

In the following, let & be a given enlargement containing both (X, .#) and
R. Let ¥={N¢ N € #}. Clearly & is a filter on X.

Let Y be an infinitesimal member of that filter. Theorem 1 asserts that Y
is 7-compact. Moreover, since Y € u(%), and since {x € X: [f(x)| < lIfll}
F for every f € £, we must have |*f(y)| < *|/f|| for every y €Y, so that
lSCFO| < i )

For every f € .Z~, let f denote the real-valued bounded function defined
on Y such that f(y) =°(*f(y)) for each y € Y. Consider the coarsest
topology on Y for which all functions f are continuous, and call this topology
T. Then consider the quotient space X obtained from the space (Y, T) and
the equivalence x =y whenever f(x) = f(y) for evety f € L™

Let p denote the quotient map from Y onto X and let y = p(y) for
y € Y. For each f € #, define £ such that f() = f( y) for y € Y. Then let
T denote the coarsest topology on X for which every f is continuous.

Remark 1. Referring to Cutland’s discussion [3, pp. 548-549] of Loeb’s
Q [5, p. 77], we have to admit that our X is essentially the same as Loeb’s Q.
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Note that Anderson’s construction of X is also essentially the same as that of
Loeb as he himself says [1, p. 676].

Remark 2. Let £l = sup, < ylf(»)|. For every f € £~ we have |f| =
Ifll. Indeed, on one hand, |f(y)| < I|fll for every y € Y as has been noticed
earlier. On the other hand, *{x € X: [f(x)| > ¢} c Y for every real ¢ > I£1,
so that [|fll < IIf]l

PROPOSITION 2.1. The space (X, T) is compact Hausdorff.

Proof. The proof is a series of lemmas.

LemMma 1. For each element f € £, the function f is continuous in the
T-topology .

Let a < b in R; then

f'(Ja,b) = *f'(st™'(la, b)) N Y

(e ba- ) o

YRR

which is a 7-open subset of Y.

LemMA 2. The space (Y, T) is compact.

It follows from Lemma 1 that the topology T is coarser than the 7-topol-
ogy on Y which is compact, hence the result.

Lemma 3. The space (X, T) is compact.

Indeed, for each f & £, the map fop =f is a continuous real-valued
function on (Y, T). From the deﬁmtlon of the topology T it follows that p is
continuous from (Y, T) onto (X, T). The result follows from Lemma 2.

LemMma 4. The space X R 1) is Hausdorff.

Let £ #J € X; then by definition there is fe./‘” with f(£) # f(P).

Hence { f f € £} separates the points in X, and since R is Hausdorff, so is
(X, D).
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REMARK 3. Let f€_#° and g€ #~. If f=g, then f = 2.
Indeed, let

={x e X: f(x) =g(x)}.

Since 4 € ¥, we know that Y C *4, so that *f(y) = *g(y) for each y € Y.
Thus we may regard ~ as a mapping from L* to C(X). Let (L*) be the
image of L” under this mapping.

PROPOSITION 2.2. The spaces L* and C(X) are isometric.

Proof. By constructlon (see Remark 2), the mappmg is an _Isometry
between L* and " (L* ) Since L” is a complete metric space, clearly (IMisa
closed subset in C(X). Moreover, (L% is separating and contains the
constants. So by the Stone-Weierstrass Theorem, C(X) is equal to ~(L%).
This ends the proof of Proposition 2.2, whence the proof of Theorem 2.
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