SOME BOUNDEDNESS RESULTS FOR ZERO-CYCLES ON SURFACES

BY
James D. Lewis ${ }^{1}$

Introduction

Let X be a smooth, complex projective algebraic surface (which will be assumed throughout the rest of this paper). For any smooth variety V of dimension n, we will denote by $C H^{k}(V)$ the corresponding Chow group of algebraic cycles of codimension k in V (modulo rational equivalence), and write $C H_{n-k}(V)=C H^{k}(V)$. Our main focus of attention is on the subgroup $A_{0}(X)$ of zero-cycles of degree 0 in $\mathrm{CH}_{0}(X)$, and more particularly on $T(X)=$ kernel of the Albanese map $\dot{a}: A_{0}(X) \rightarrow \operatorname{Alb}(X)$. Before stating the main theorem ((0.3)), we introduce the following terminology.
(0.1) Definition. Let $B_{0}(X)$ be a subgroup of $A_{0}(X)$. We say that $A_{0}(X) / B_{0}(X)$ is finite dimensional if there exists a (possibly reducible) smooth curve E, a cycle z in $C H^{2}(E \times X)$ such that the composite

$$
J(E) \xrightarrow{z_{*}} A_{0}(X) \longrightarrow A_{0}(X) / B_{0}(X)
$$

is surjective.
Example. We can write $T(X)=A_{0}(X) / B_{0}(X)$ where $B_{0}(X)$ is defined as follows. By Poincarés complete reducibility theorem, there exists an abelian variety B and a homomorphism f such that the composite

$$
B \xrightarrow{f} A_{0}(X) \xrightarrow{\stackrel{\AA}{b}} A l b(X)
$$

is an isogeny (see [8: (1.2)]). Clearly $T(X)+f(B)=A_{0}(X)$, moreover using $T(X)$ torsionless [7] it follows that $f(B) \cap T(X)=0$. Now set $B_{0}(X)=f(B)$.

[^0]We remark that in general $T(X)$ is not finite dimensional (see (0.4)(ii) below).

Let $\operatorname{Pic}^{0}(X)$ be the Picard variety of X (with Lie algebra $H^{0,1}(X)$), and consider the following schema setting (see also [1(1): p. 1.11]):

where $V^{0,2}$ and Coker are the respective cokernels. We prove:
(0.3) Theorem. (1) Suppose $V^{0,2} \neq 0$. Then Coker is infinite dimensional.
(2) Conversely, if Kodaira dimension $\mathscr{K}(X) \leq 1$, then Coker $=0$ if $V^{0,2}=0$.
(0.4) Remarks. (i) It is reasonable to conjecture that for all smooth surfaces $X, V^{0,2}=0$ iff Coker $=0$.

Some examples in support of this conjecture are the following. If X is the Fano surface of lines on a smooth cubic threefold (see [1(1): Ex. 1.7)] or [3]), or $X=$ abelian surface (see [1(2): (A.2)]), or say $X=E \times C$ where E, C are smooth curves (cf. below), then $V^{0,2}=0$ and Coker $=0$.
(ii) It is a theorem of Mumford ([6]) that $H^{0,2}(X) \neq 0$ implies $T(X)$ infinite dimensional, moreover there is a conjecture of Bloch (converse result) that states " $H^{0,2}(X)=0$ implies $T(X)=0$ (equivalently $A_{0}(X)$ finite dimensional by [7(2); §4])", which has been verified in the case $\mathscr{K}(X) \leq 1$ ([1(2)]). Now suppose $\mathscr{K}(X)=2$ and $H^{0,2}(X)=0$. Then by [2: (5.1), p. 395, i.e. $\left.\mathscr{X}\left(O_{X}\right) \geq 1\right]$ it follows that $\operatorname{dim} H^{0,1}(X)=q \leq P g=$ $\operatorname{dim} H^{0,2}(X)=0$. In particular the conjecture in (0.4)(i) above implies Bloch's conjecture.
(iii) Let Y be an abelian surface and $X \approx Y / \pm 1$ the corresponding Kummer counterpart with rational map $\beta: Y \rightarrow X$. Then $H^{0,1}(X)=0$, $H^{0,2}(X) \cong \mathbf{C}$; however we do have

$$
H^{0,1}(Y) \otimes H^{0,1}(Y) \xrightarrow{\wedge} H^{0,2}(Y) \xrightarrow{\beta_{*}} H^{0,2}(X)
$$

moreover

$$
\operatorname{Pic}^{0}(Y)^{\otimes_{\mathbf{Z}} 2 \underline{\beta_{*} \circ \cap}} T(X)
$$

is surjective. One expects a similar phenomena to hold for all smooth
surfaces X. Specifically, for a surface X and filtration of

$$
\begin{aligned}
C H_{0}(X) & =C H^{2}(X): F^{0} C H^{2}(X)=C H^{2}(X) \supset F^{1} C H^{2}(X) \\
& =A_{0}(X) \supset F^{2} C H^{2}(X)=T(X) \supset 0,
\end{aligned}
$$

one hopes for the situation on the graded piece $G r^{2}\left(C H^{2}(X)\right)$ below:

$$
\begin{gathered}
G r^{0}\left(C H^{2}(X)\right)=\mathbf{Z} \text { (discrete part) } \\
G r^{1}\left(C H^{2}(X)\right)=A^{\otimes_{\mathbf{Z}} 1}=A ; \\
G r^{2}\left(C H^{2}(X)\right)=T(X) \leftrightarrow B^{\otimes_{\mathbf{Z}} 2}
\end{gathered}
$$

where $A=\operatorname{Alb}(X)$ and B are abelian varieties. A general boundedness conjecture for $C H^{k}(V)$ will appear in a future paper.

Acknowledgement. Shortly after this paper was completed, we discovered a thesis by T. Fatemi (cf. [3]) cited in [1], which overlaps with some of the results of this paper. To be specific, Theorem (0.3) part (2) above is proven in [$3 ; \S 1$], and the example of the Fano surface of lines in (0.4)(i) above is established in [3; §2]. In regard to the conjecture in (0.4)(i) above, we should remark that the surjectivity of the cup product (i.e., $V^{0,2}=0$) should imply Coker $=0$ is cited in [3; p. 1] as a conjecture of Bloch. Finally our proof of $(0.3)(2)$ (given in Section 2 of this paper) is different in character to that given in [3; $\S 1]$. Our desire to include a proof of $(0.3)(2)$ is based on our understanding that [3] doesn't appear to be published in the literature, and that these results should be accessible to a larger group of mathematicians.

1. Proof of main theorem, part (1)

Let L_{X} be the fundamental class of a hyperplane section of X. Recall that by cup product, there is an isomorphism

$$
L_{X}: H^{1}(X, \mathbf{Q}) \xrightarrow{\sim} H^{3}(X, \mathbf{Q}) \quad \text { (hard Lefschetz) }
$$

with inverse denoted by F_{X}. Note that F_{X} determines a corresponding class $\left[F_{X}\right]$ in $\left[H^{3}(X, \mathbf{Q})\right]^{*} \otimes H^{1}(X, \mathbf{Q})=H^{1}(X, \mathbf{Q}) \otimes H^{1}(X, \mathbf{Q})$ (Poincaré duality), and in particular since F_{X} respects Hodge type, it follows from the Künneth formula that $\left[F_{X}\right.$] lies in $H^{2}(X \otimes X, \mathbf{Q}) \cap H^{1,1}(X \otimes X)$. By the Lefschetz $(1,1)$ theorem, $\left[F_{X}\right]$ is algebraic (over \mathbf{Q}). Choose an integer $N \neq 0$ for which $N\left[F_{X}\right]$ is integral algebraic, and in particular lets view (by abuse of notation) $N F_{X}$ as a divisor on $X \times X$. If $P r_{j}: X \times X \rightarrow X$ are the projections onto the
first and second factors $(j=1,2)$, then $N F_{X}$ determines a homomorphism

$$
\left\{N F_{X}\right\}_{*}: C H_{0}(X) \rightarrow C H^{1}(X)=\operatorname{Pic}(X)
$$

by the formula

$$
\left\{N F_{X}\right\}_{*}(y)=\operatorname{Pr}_{2 *}\left(\left\{\operatorname{Pr}_{1}^{*}(y) \cap N F_{X}\right\}_{X}\right)
$$

Since taking intersections is an algebraic operation (explicitly $\left\{y_{1} \cap y_{2}\right\}_{X}=$ $\Delta^{*}\left(y_{1} \times y_{2}\right)$ where $\Delta: X \hookrightarrow X \times X$ is the diagonal), it follows from Poincaré duality that there is a cycle E in $C H^{2}(X \times X \times X)$ and commutative diagrams below:

where the corresponding $[E]_{*}$ can be defined via the Künneth formula on $H^{4}(X \times X \times X)$ together with Poincaré duality (e.g., see [5: (2.3)]). We remark that since

$$
\left[N F_{X}\right]_{*}: H^{1,2}(X) \xrightarrow{\sim} H^{0,1}(X)
$$

is an isomorphism with $N F_{X}$ integral, it follows that there is an induced isogeny $\left[N F_{X}\right]_{*}: \operatorname{Alb}(X) \xrightarrow{\approx} \operatorname{Pic}^{0}(X)$, and therefore

$$
\left\{N F_{X}\right\}_{*}\left(A_{0}(X)\right)=\operatorname{Pic}^{0}(X)
$$

by universality of $\left\{\dot{a}: A_{0}(X) \rightarrow \operatorname{Alb}(X)\right\}$. From (1.1) we deduce:
(1.3) Corollary. The image of $\cap \circ\left\{\operatorname{Pic}^{0}(X)^{\left.\otimes_{\mathbf{Z}}{ }^{2}\right\}}\right.$ is contained in $E_{*}\left\{C H_{0}(X \times X)\right\}$.

We now apply Serre duality to (1.2) to arrive at the exact sequence

$$
0 \longrightarrow V^{2,0} \longrightarrow H^{2,0}(X) \xrightarrow{[E]^{*}} H^{1,0}(X) \otimes_{\mathbf{C}} H^{1,0}(X) \subset H^{2,0}(X \times X),
$$

where $V^{2,0}=\operatorname{ker}[E]^{*}$ is dual to $V^{0,2}$. We introduce the following objects. If V is a smooth variety, we denote by $\rho^{m}(V)$ the $m^{\text {th }}$-symmetric product of V. The singular set of $\mathscr{\rho}^{m}(V)$ will be concentrated on $\left\{p_{1}+\cdots+p_{m} \mid\right.$ not all the p_{i} 's are distinct\}. Likewise we define

$$
\mathscr{\rho}^{n, m}(V)=\mathscr{\rho}^{n}(V) \times \mathscr{\Omega}^{m}(V)
$$

and corresponding maps

$$
T_{m}: \rho^{m}(V) \rightarrow C H_{0}(V) \text { and } T_{n, m}: \rho^{n, m}(V) \rightarrow C H_{0}(V)
$$

where $T_{n, m}\left(y_{1}, y_{2}\right)=\left\{y_{1}-y_{2}\right\} \in C H_{0}(V)$. It is clear that

$$
C H_{0}(V)=\bigcup\left\{T_{n, m}\left(\rho^{n, m}(V)\right) \mid n, m \geq 1\right\} .
$$

Let w be a holomorphic k-form on V. There are canonically defined " k-forms" ω_{m} and $\omega_{n, m}$ which are regular outside the respective singular sets of $\mathscr{\rho}^{m}(V), \mathscr{\rho}^{n, m}(V)$, defined as follows (see [7(2): §3]). For any cartesian product, let Pr_{j} be the j th projection. Then $w_{m}=\Sigma_{j} \operatorname{Pr}_{j}^{*}(w)$ defines a k-form on V^{m} invariant under the action of the symmetric group on m letters, hence there is an induced ω_{m} on $\rho^{m}(V)$. Likewise on $\rho^{n, m}(V)$, we define $\omega_{n, m}=\operatorname{Pr}_{1}^{*}\left(\omega_{n}\right)-\operatorname{Pr}_{2}^{*}\left(\omega_{m}^{m}\right)$, and for convenience of notation in the discussion below, we will suppress the $\operatorname{Pr}_{j}^{*}$'s and for example write $u_{n, m}=u_{n}-u_{m}$.

We also make use of the terminology " c-closed" from [7(2)] which means "countable union of closed subvarieties".
(1.4) Proposition. $T_{n, m}^{-1}\left(E_{*}\left(C H_{0}(X \times X)\right)\right.$ is c-closed in $\rho^{n, m}(X)$.

Proof. Immediate from [7(2): Lemma 5].
We now choose w to be a non-zero (two)-form in $V^{2,0}$ (i.e., $[E]^{*}(w)=0$). Let $\underline{\Sigma}_{n, m}$ be an irreducible component of $T_{n, m}^{-1}\left(E_{*}\left(\mathrm{CH}_{0}(X \times X)\right)\right.$ with desingularization $\Sigma_{n, m}$ and corresponding morphism

$$
j_{n, m}: \Sigma_{n, m} \rightarrow \rho^{n, m}(X)
$$

The main technical assertion is:
(1.5) Lemma. $j_{n, m}^{*}\left(\omega_{n, m}\right)=0$.

Remark. Assuming the lemma, it follows from Mumford's theory (e.g., see [7(2): §3]) that $\mathrm{CH}_{0}(X) / \operatorname{Im}\left(E_{*}\right)$ is "infinite dimensional", under the assumption $V^{0,2} \neq 0$.

Proof of Lemma. Using countability arguments, it follows that for given positive integers n and m, there exist positive integers q and r such that

$$
T_{n, m}\left(j_{n, m}\left(\Sigma_{n, m}\right)\right) \subset E_{*}\left(T_{q, r}\left(\rho^{q, r}(X \times X)\right)\right)
$$

Set

$$
\mathscr{W}=\left\{\left(y_{1}, y_{2}\right) \in \mathscr{\rho}^{q, r}(X \times X) \times \Sigma_{n, m} \mid E_{*}\left(T_{q, r}\left(y_{1}\right)\right)=T_{n, m}\left(j_{n, m}\left(y_{2}\right)\right)\right\}
$$

a c-closed subset of $\rho^{q, r}(X \times X) \times \Sigma_{n, m}$ [7(2): Lemma 3]. It follows that there exists an irreducible component $\mathbf{W} \subset \mathscr{W}$ for which $\operatorname{Pr}_{2}(\mathbf{W})=\Sigma_{n, m}$. Let W be the desingularization of \mathbf{W}. By taking generic hyperplane sections of W and applying Bertini's theorem, there is no loss of generality in assuming $\operatorname{dim} W=\operatorname{dim} \Sigma_{n, m}$. It follows that there exists morphisms f and g and the commutative diagram below:

To prove the lemma, it suffices to show that $\left(j_{n, m} \circ f\right) *\left(\omega_{n, m}\right)=0$. Now viewing E as a codimension 2-cycle in $X \times X \times X$, we may assume the irreducible components of E are in "sufficiently general" position (via rational equivalence \& Chow's moving lemma). Specifically, on $\mathcal{S}^{a, r}(X \times X)$, E defines a corresponding rational map

$$
\{E\}: \mathscr{\rho}^{q, r}(X \times X) \rightarrow \mathscr{\rho}^{u, v}(X)
$$

for some positive integers u and v, moreover we may assume the restriction of $\{E\}$ to $g(W)$ is also rational. Let

$$
H: \rho^{u, v}(X) \times \rho^{n, m}(X) \rightarrow \rho^{u+m, v+n}(X)
$$

be the map given by

$$
H\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(y_{1}+y_{4}, y_{2}+y_{3}\right)
$$

and

$$
\mathbf{J}: W \rightarrow \rho^{u+m, v+n}(X)
$$

the rational map given by the formula

$$
\mathbf{J}=H\left(\{E\} \circ g, j_{n, m} \circ f\right) .
$$

By construction of \mathbf{J} and the commutivity of (1.6) it follows that $T_{u+m, v+n} \circ \mathbf{J}$ maps a non-empty Zariski open subset of W to a point in $\mathrm{CH}_{0}(X)$. Therefore the pullback of $\omega_{u+m, v+n}$ to $\mathbf{J}(W)$ is zero [7(2): §3], a fortiori $\mathbf{J}^{*}\left(w_{u+m, v+n}\right)=0$ in W. However

$$
H^{*}\left(w_{u+m, v+n}\right)=w_{u, v}-w_{n, m}
$$

and therefore

$$
0=\mathbf{J}^{*}\left(w_{u+m, v+n}\right)=(\{E\} \circ g)^{*}\left(w_{u, v}\right)-\left(j_{n, m} \circ f\right)^{*}\left(w_{n, m}\right) ;
$$

moreover

$$
(\{E\} \circ g)^{*}\left(\varkappa_{u, v}\right)=g^{*}\left(\{E\}^{*}\left(\varkappa_{u, v}\right)\right)
$$

But recall $[E]^{*}(w)=0$, and therefore $\{E\}^{*}\left(w_{u, v}\right)=0$, a fortiori

$$
\left(j_{n, m} \circ f\right) *\left(w_{n, m}\right)=0
$$

which concludes the proof of the lemma.
(1.7) Corollary. Let m be a positive integer. Let Σ be an irreducible subvariety passing through a generic point of $\mathscr{\rho}^{m, m}(X)$ and contained in a fiber of the map

$$
\pi \circ T_{m, m}: \mathscr{\rho}^{m, m}(X) \xrightarrow{T_{m, m}} A_{0}(X) \xrightarrow{\pi} A_{0}(X) /\left\{\cap \circ \operatorname{Pic}^{0}(X)^{\otimes_{\mathrm{Z}} 2}\right\}
$$

Then $\operatorname{dim} \Sigma \leq 2 m$.
Proof. Immediate from (1.3), (1.5) and [7(2): §3].
We now pretend $(0.3)(1)$ is false, i.e., Coker in (0.2) is finite dimensional, and arrive at a contradiction. By a standard argument, there exists a (possibly reducible) smooth curve E and $z \in C H^{2}(E \times X)$ such that

$$
z_{*}: J(E) \rightarrow A_{0}(X) /\left\{\cap \circ \operatorname{Pic}^{0}(X)^{\otimes_{\mathbf{Z}}^{2}}\right\}
$$

is surjective. Let

$$
\mathbf{H}=\left\{(a, b) \in \rho^{m, m}(X) \times J(E) \mid \pi \circ T_{m, m}(a)=z_{*}(b)\right\},
$$

which is c-closed using the general results in [7(2)]. As in the proof of the above lemma, we can find an irreducible $H \subset \mathbf{H}$ for which

$$
\operatorname{Pr}_{1}(H)=\rho^{m, m}(X) \text { and } \operatorname{dim} H=\operatorname{dim} \mathscr{\rho}^{m, m}(X)(=4 m)
$$

Let N be the degree of $\left.\operatorname{Pr}_{1}\right|_{H}: H \rightarrow \mathscr{\rho}^{m, m}(X)$ and if we denote by [] the Pontryagin sum on $J(E)$, then define a rational map $f: \mathscr{\rho}^{m, m}(X) \rightarrow J(E)$ by the formula

$$
f(p)=\left[\operatorname{Pr}_{2} \circ\left(\left.P r_{1}\right|_{H}\right)^{-1}(p)\right]
$$

Note that by construction, $z_{*} \circ f(p)=N \cdot \pi \circ T_{m, m}(p)$ for generic $p \in$ $\rho^{m, m}(X)$. The results of this paper apply equally if we replace $T_{n, m}$ by $N \cdot T_{n, m}$, specifically if we replace $T_{m, m}$ by $N \cdot T_{m, m}$ in Corollary (1.7) (hence $\pi \circ T_{m, m}$ by $N \cdot \pi \circ T_{m, m}$), the conclusion of (1.7) remains the same.

Now let $p \in \rho^{m, m}(X)$ be a generic point and Σ a subvariety of maximal dimension passing through p for which Σ is contained in a fiber of $N \cdot T_{m, m}$. By (1.7), $\operatorname{dim} \Sigma \leq 2 m$, on the other hand Σ contains an irreducible component of a fiber of f, hence

$$
\operatorname{dim} \Sigma \geq \operatorname{dim} \rho^{m, m}(X)-\operatorname{dim} J(E)=4 m-\operatorname{dim} J(E)
$$

The desired contradiction is obtained by choosing $m>(\operatorname{dim} J(E)) / 2$.

2. Proof of main theorem, part (2)

We begin with an analysis of the simplest prototypical case of X mentioned in (0.4)(i), namely $X=E \times F$ where E, F are smooth curves, and prove:
(2.1) Proposition. The following maps are onto:

$$
\begin{gather*}
H^{0,1}(X) \otimes_{\mathbf{C}} H^{0,1}(X) \xrightarrow{\wedge} H^{0,2}(X) \tag{1}\\
\operatorname{Pic}^{0}(X) \otimes_{\mathbf{Z}} \operatorname{Pic}^{0}(X) \xrightarrow{\cap} T(X) \tag{2}
\end{gather*}
$$

Proof. Part (1). By the Künneth formula

$$
\begin{aligned}
H^{0,2}(X) & =H^{0,1}(E) \otimes H^{0,1}(F) \\
& =\left(H^{0,1}(E) \otimes H^{0}(F)\right) \wedge\left(H^{0}(E) \otimes H^{0,1}(F)\right) \\
& =H^{0,1}(X) \wedge H^{0,1}(X)
\end{aligned}
$$

Part (2). Let $\mu=k_{1}\left(e_{1}, f_{1}\right)+\cdots+k_{N}\left(e_{N}, f_{N}\right) \in T(X)$. This means in particular that $\Sigma_{j} k_{j}=0$ and that $\Sigma_{j} k_{j} e_{j}=0$ in $J(E)$ and $\Sigma_{j} k_{j} f_{j}=0$ in $J(F)$, using $\operatorname{Alb}(X)=J(E) \oplus J(F)$. By Abel's theorem, under rational equivalence

$$
k_{1} e_{1}=-\left(k_{2} e_{2}+\cdots+k_{N} e_{n}\right), \quad k_{1} f_{1}=-\left(k_{2} f_{2}+\cdots+k_{N} f_{N}\right)
$$

Using both of these equalities, we end up with

$$
\mu=\sum_{2 \leq j \leq N} k_{j}\left\{\left(e_{j}, f_{j}\right)-\left(e_{j}, f_{1}\right)\right\}=\sum_{2 \leq j \leq N} k_{j}\left\{\left(e_{j}, f_{j}\right)-\left(e_{1}, f_{j}\right)\right\}
$$

and therefore

$$
2 \mu=\sum_{2 \leq j \leq N} k_{j}\left\{2\left(e_{j}, f_{j}\right)-\left(e_{j}, f_{1}\right)-\left(e_{1}, f_{j}\right)\right\}
$$

Now set

$$
\begin{aligned}
\beta_{j} & =\left\{\left(e_{j}, f_{j}\right)-\left(e_{j}, f_{1}\right)-\left(e_{1}, f_{j}\right)+\left(e_{1}, f_{1}\right)\right\} \\
& =\left\{\left(E \times f_{j}\right)-\left(E \times f_{1}\right)\right\} \cap\left\{\left(e_{j} \times F\right)-\left(e_{1} \times F\right)\right\} \\
& \in \operatorname{Pic}^{0}(X) \cap \operatorname{Pic}^{0}(X)
\end{aligned}
$$

and

$$
\beta=k_{1} \beta_{1}+\cdots+k_{N} \beta_{N} \in \cap \circ \operatorname{Pic}^{0}(X)^{\otimes_{\mathbf{Z}}^{2}}
$$

Then

$$
\begin{aligned}
2 \mu-\beta & =\sum_{2 \leq j \leq N} k_{j}\left\{\left(e_{j}, f_{j}\right)-\left(e_{1}, f_{1}\right)\right\} \\
& =\sum_{2 \leq j \leq N} k_{j}\left(e_{j}, f_{j}\right)-\left(\sum_{2 \leq j \leq N} k_{j}\right)\left(e_{1}, f_{1}\right)
\end{aligned}
$$

moreover $k_{1}=-\left(\sum_{2 \leq j \leq N} k_{j}\right)$, a fortiori $2 \mu-\beta=\mu$, i.e. $\mu=\beta$. \quad Q.E.D.

We now attend to the proof of (0.3)(2), namely, "if $\mathscr{K}(X) \leq 1$, then $\mathbf{V}^{0,2}=0$ implies Coker $=0$ ". If $\mathscr{K}((X) \leq 1$ and $\operatorname{Pg}(X)=0$ then $T(X)=0$ [1(2)] hence nothing to prove here. Likewise if $q(X) \leq 1$, then $V^{0,2}=0$ implies $\operatorname{Pg}(X)=0$. Therefore:
(2.2) We will assume the following for $X: \operatorname{Pg}(X)>0, \mathscr{K}(X) \leq 1, q(X) \geq$ 2, and $V^{0,2}=0$; moreover we may assume X is a minimal surface, as $\operatorname{Pg}(X)$, $\mathscr{K}(X), q(X)$ and $T(X)$ (hence $V^{0,2}$) are birational invariants.

It therefore suffices to show Coker $=0$. A tour of the classification of surfaces will reveal that X is either an abelian or an elliptic surface. The case X an abelian surface was established in [1(2): (A.2)]. We are now reduced to the case of an elliptic surface X with fibering $F: X \rightarrow E$, i.e. where F is a morphism, E a smooth curve, and the generic fiber $X_{t}=F^{-1}(t)$ is a smooth elliptic curve. Let $\Sigma \subset E$ be the finite set of singular points of the fibering F; i.e., $t \in \Sigma$ iff X_{t} is singular. Set $U=E-\Sigma$ the so-called smooth set; j : $U \hookrightarrow E$ the inclusion, $X^{\#}=F^{-1}(U)$ and $f=\left.F\right|_{X^{\#}}: X^{\#} \rightarrow U$. There is the local invariant cycle theorem: $R^{i} F_{*} \mathbf{Q} \rightarrow j_{*} R^{i} f_{*} \mathbf{Q}$ surjective ($i \geq 0$) (see [9:(15.12)]), with kernel subsheaf \mathscr{L}_{Σ} supported on Σ. For the remainder of this section, we will assume that X has no multiple fibers. Note that X minimal implies no exceptional curves of the first kind as well. We will handle the general case of elliptic X in Section 3 below. Then $R^{i} F_{*} \mathbf{Q} \xrightarrow{\sim} j_{*} R^{i} f_{*} \mathbf{Q}$ is in fact an isomorphism, due to the following. Let Δ be a small disk in E centered at $s \in \Sigma$. Then $H^{1}\left(X_{s}, \mathbf{Q}\right)$ and $H^{0}\left(\Delta, j_{*} R^{1} f_{*} \mathbf{Q}\right)$ are both either 0 or \mathbf{Q} (cf. Table 1 in [4: p. 604]), moreover

$$
H^{0}\left(\Delta, R^{1} F_{*} \mathbf{Q}\right) \cong H^{1}\left(X_{s}, \mathbf{Q}\right) \cong H^{1}\left(X_{t}, \mathbf{Q}\right)^{T} \cong H^{0}\left(\Delta, j_{*} R^{1} f_{*} \mathbf{Q}\right)
$$

where $t \in \Delta-\{s\}$ and T is the local monodromy transformation. Therefore

$$
H^{i}\left(E, R^{1} F_{*} \mathbf{Q}\right) \cong H^{i}\left(E, j_{*} R^{1} f_{*} \mathbf{Q}\right) \text { for } i \geq 0
$$

The Leray spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(E, R^{q} F_{*} \mathbf{Q}\right) \Rightarrow H^{p+q}(X, \mathbf{Q})
$$

degenerates at E_{2} [9: (15.15)]; moreover from this spectral sequence is an induced s.e.s.

$$
0 \rightarrow E_{2}^{1,0} \rightarrow H^{1}(X, \mathbf{Q}) \rightarrow E_{2}^{0,1} \rightarrow 0
$$

Using our assumption on X in (2.2) we prove:
(2.3) Proposition. $\quad E_{2}^{0,1} \neq 0$.

Proof. Suppose to the contrary that $E_{2}^{0,1}=0$. Then

$$
H^{1}(X, \mathbf{Q}) \cong H^{1}\left(E, j_{*} R^{0} f_{*} \mathbf{Q}\right) ;
$$

moreover $j_{*} R^{0} f_{*} \mathbf{Q}$ is the constant sheaf over E. If we work on the cycle level viz Poincaré duality: $H^{1}(X, \mathbf{Q}) \cong H_{3}(X, \mathbf{Q})$, it follows that every cycle μ in $H_{3}(X, \mathbf{Q})$ is of the form $\mu=f^{-1}(\beta)$ for some 1 -cycle β in U. Let $\beta_{1}, \beta_{2} \in H_{1}(U, \mathbf{Q})$ with corresponding $\mu_{j}=f^{-1}\left(\beta_{j}\right), j=1,2$. Then $\beta_{1} \cap \beta_{2} \sim r\{t\}$ for some $r \in \mathbf{Q}$ and $t \in U$; therefore $\mu_{1} \cap \mu_{2} \sim r\left\{X_{t}\right\}$ which is algebraic. It follows that

$$
H^{1}(X, \mathbf{Q}) \wedge H^{1}(X, \mathbf{Q}) \subset H^{2}(X, \mathbf{Q})_{a l g} \subset H^{1,1}(X) ;
$$

hence $V^{0,2} \neq 0$, a contradiction.
(2.4) Corollary. (i) For $t \in E$, the natural restriction map

$$
E_{2}^{0,1} \rightarrow H^{1}\left(X_{t}, \mathbf{Q}\right)
$$

is an isomorphism (of Hodge structures); hence $R^{1} F_{*} \mathbf{Q}$ is the constant sheaf \mathbf{Q}^{2} over E, and the functional invariant is trivial.

In particular:
(ii) $F: X \rightarrow E$ is an analytic fibration of smooth elliptic curves.

Proof. Since $j_{*} R^{0} f_{*} \mathbf{Q}$ is the constant sheaf, it follows that $E_{2}^{1,0} \cong$ $H^{1}(E, \mathbf{Q})$ and hence $E_{2}^{0,1} \cong H^{1}(X, \mathbf{Q}) / E_{2}^{1,0}$ has a Hodge structure of weight 1 (this is also true for general reasons [9]), a fortiori $E_{2}^{0,1}$ even dimensional. Therefore by (2.3), there exists global independent sections s_{1}, s_{2} of $j_{*} R^{1} f_{*} \mathbf{Q}$ over E. Since any section of $j_{*} R^{1} f_{*} \mathbf{Q}$ is the same thing as a horizontal displacement of a cycle $\beta_{t} \in H^{1}\left(X_{t}, \mathbf{Q}\right)$ over $t \in E$, it follows that $j_{*} R^{1} f_{*} \mathbf{Q} \cong R^{1} F_{*} \mathbf{Q}$ is a constant sheaf (trivial monodromy group); moreover, by [4: p. 604, Table 1]), $\Sigma=\varnothing$. Parts (i) and (ii) of (2.4) easily follow from this.
(2.5) Now recall that $F: X \rightarrow E$ is called Jacobian-elliptic if there is a holomorphic section $\mu: E \rightarrow X$, i.e., $F \circ \mu=\operatorname{Id}_{E}$.

We conclude:
(2.6) Corollary. If X is Jacobian-elliptic, then $X \cong E \times C$, where C is any fiber of $F: X \rightarrow E$.

First proof. $F: X \rightarrow E$ and $\operatorname{Pr}_{1}: E \times C \rightarrow E$ have the same homological and functional invariants; moreover $E \times C$ is also Jacobian-elliptic. By
uniqueness of Jacobian-elliptic for the given homological and functional invariants [4], it follows that $X \cong E \times C$.

Second proof. Let $p \in X$ and $t=F(p)$, and let μ be given as in (2.5). There is the Abel-Jacobi (isomorphism) map

$$
\int_{t}: X \rightarrow J\left(X_{t}\right), p \mapsto\{p-\mu(t)\} \in J\left(X_{t}\right)
$$

defined by a process of integration, where $J\left(X_{t}\right)=H^{1}\left(X_{t}, \mathbf{R}\right) / H^{1}\left(X_{t}, \mathbf{Z}\right)$ (with $H^{1}\left(X_{t}, \mathbf{R}\right)$ endowed with a suitable complex structure). However working with integral cohomology modulo torsion, it follows from (2.4)(i) that

$$
J\left(X_{t}\right) \cong C=_{\operatorname{def}} H^{0}\left(E, R^{1} F_{*} \mathbf{R}\right) / H^{0}\left(E, R^{1} F_{*} \mathbf{Z}\right)
$$

again where $H^{0}\left(E, R^{1} F_{*} \mathbf{R}\right)$ is endowed with a suitable complex structure. One then arrives at a global holomorphic (isomorphism) map

$$
\int: X \xrightarrow{\sim} E \times C
$$

defined by the formula

$$
\int(p)=\left(F(p), \int_{F(p)}(p)\right) \in\{t\} \times J\left(X_{t}\right) \cong\{t\} \times C
$$

where $t=F(p)$.
(2.7) Corollary. Let X be Jacobian-elliptic. Then Theorem (0.3)(2) holds for X.

Proof. Use (2.6) and (2.1).
Now recall for every elliptic X with no multiple fibers and exceptional curves, there is a unique associated Jacobian elliptic Y having the same homological and functional invariants as X. According to [1(2): p. 138], one can construct a rational dominating map $g: X \rightarrow Y$ and a correspondence $z \in C H^{2}(Y \times X)$ such that $g_{*}{ }^{\circ} z_{*}=n^{2}$ and $z_{*} \circ g_{*}=n^{2}$ on $A_{0}(X)$, for some fixed integer n. Next, we may assume w.l.o.g. that g is a morphism, via a suitable blow-up of X, using the fact that $\operatorname{Pic}^{0}(-)$ and $A_{0}(-)$ are birational invariants. Now using (2.7), g and z above, $T(X)$ torsionless [7], $T(X)$ divisible (for all X [1(2): p. 136]), together with the projection formula,
there is a commutative diagram

The conclusion of the proof of (0.3)(2) for all but the general case of elliptic X is obvious via an immediate inspection of (2.8).

3. Conclusion of the proof of (0.3)(2)

We assume X given as in (2.2), elliptic, but with the possiblity of multiple fibers. We prove:
(3.0) Lemma. $\quad j_{*} R^{1} f_{*} \mathbf{Q}$ is the constant sheaf \mathbf{Q}^{2} over E.

Proof. Assume to the contrary. Then using the fact that $H^{0}\left(E, j_{*} R^{1} f_{*} \mathbf{Q}\right)$ admits a Hodge structure of weight 1 [9] together with the same argument as in the proof of (2.4), it follows that

$$
H^{0}\left(E, j_{*} R^{1} f_{*} \mathbf{Q}\right)=0
$$

Therefore via the s.e.s.,

$$
0 \rightarrow \mathscr{L}_{\Sigma} \rightarrow R^{1} F_{*} \mathbf{Q} \rightarrow j_{*} R^{1} f_{*} \mathbf{Q} \rightarrow 0
$$

we arrive at

$$
H^{0}\left(\Sigma, \mathscr{L}_{\Sigma}\right)=E_{2}^{0,1}
$$

Now choose any Cech cocycle $s=\left\{s_{i j}\right\} \in E_{2}^{1,0}$ corresponding to an open cover $\left\{U_{j}\right\}_{j \in J}$ of E, where we may assume via a suitable refinement that $U_{i} \cap U_{j} \cap \Sigma=\varnothing$ for all $i \neq j$ in J. It follows that $s \cup \mathrm{E}_{2}^{0,1}=0$ in $E_{2}^{1,1}$, a fortiori $E_{2}^{1,0} \cup E_{2}^{0,1}=0$. The cup product

$$
E_{2}^{p, q} \smile E_{2}^{r, s} \subset E_{2}^{p+r, q+s}
$$

is compatible with the cup product on $H^{*}(X)$ vis-à-vis a "Leray" filtration on
$H^{*}(X)$; moreover it is easy to check that $E_{2}^{1,0} \cup E_{2}^{0,1}=0$ implies

$$
H^{1}(X, \mathbf{Q}) \cup H^{1}(X, \mathbf{Q}) \subset H^{2}(X, \mathbf{Q})_{\mathrm{alg}} \subset H^{1,1}(X)
$$

contradicting our assumptions on X in (2.2).
Q.E.D.

According to [4: Thm. 6.3, p. 572]) there is induced, over a suitable finite ramified covering $k: S \rightarrow E$, an elliptic surface $G: Y \rightarrow S$ free from multiple fibers and exceptional curves, and commutative diagram

where (i) Y, S are smooth and (ii) $h: Y \rightarrow X$ is a finite abelian covering.
Moreover, we may assume (by slightly enlarging Σ if necessary) that

$$
\Sigma_{0}=\left\{s \in S \mid Y_{s}=G^{-1}(s) \text { singular }\right\}=k^{-1}(\Sigma)
$$

Also let $j_{0}: \Sigma_{0} \hookrightarrow S$ be the inclusion and $g=\left.G\right|_{G^{-1}\left(S-\Sigma_{0}\right)}$. It follows from (3.0) that $j_{0, *} R^{1} g_{*} \mathbf{Q}$ (and hence $R^{1} G_{*} \mathbf{Q}$) is the constant sheaf \mathbf{Q}^{2} over S, and moreover the same arguments in Section 2 imply that

$$
\operatorname{Pic}^{0}(Y) \otimes \operatorname{Pic}^{0}(Y) \xrightarrow{\cap} T(Y)
$$

is surjective. There is a commutative diagram, with β defined by commutivity below:

Moreover β is surjective by virtue of the commutative diagram

Next, there is a commutative diagram of exact sequences with the top row interpreted as the respective tangent spaces (with suitable complex structure) to the bottom row:

We therefore conclude from (3.4) and the surjectivity of β that:
(3.5) Lemma. The composite

$$
\operatorname{Pic}^{0}(X) \xrightarrow{h^{*}} \operatorname{Pic}^{0}(Y) \longrightarrow\left\{\operatorname{Pic}^{0}(Y) / G^{*}\left(\operatorname{Pic}^{0}(S)\right)\right\}
$$

is surjective.
The projection formula implies the commutative diagram

Now let $\beta_{1}, \beta_{2} \in \operatorname{Pic}^{0}(S)$. By Chow's moving lemma, we may assume $\beta_{1} \cap \beta_{2}=\varnothing$, and therefore $G^{*}\left(\beta_{1}\right) \cap G^{*}\left(\beta_{2}\right)=0$ in $T(Y)$. Now let

$$
\{Z\} \in\left\{\operatorname{Pic}^{0}(Y) / G^{*}\left(\operatorname{Pic}^{0}(S)\right)\right\}
$$

where Z can be chosen so that $Z(t)=G^{-1}(t) \cap Z$ is a 0 -cycle (of degree 0) on $G^{-1}(t)$. Let $\beta \in \operatorname{Pic}^{0}(S)$. By (3.5), there exists $W \in \operatorname{Pic}{ }^{0}(X)$ such that

$$
\left\{h^{*}(W)\right\}=\{Z\} \text { in }\left\{\operatorname{Pic}^{0}(Y) / G^{*}\left(\operatorname{Pic}^{0}(S)\right)\right\}
$$

and therefore

$$
G^{*}(\beta) \cap Z=G^{*}(\beta) \cap h^{*}(W) \text { in } T(Y)
$$

Finally,

$$
h_{*}\left\{\left(G^{*}(\beta) \cap Z\right)_{Y}\right\}=h_{*}\left\{\left(G^{*}(\beta) \cap h^{*}(W)\right)_{Y}\right\}=\left(\left(h_{*} \circ G^{*}(\beta)\right) \cap W\right)_{X}
$$

by the projection formula, i.e., (3.6). It therefore follows from (3.6) that

$$
\operatorname{Pic}^{0}(X) \otimes \operatorname{Pic}^{0}(X) \xrightarrow{\cap} T(X)
$$

is surjective.
The techniques of Sections 2 and 3 imply the following:
(3.7) Corollary. Let X be any surface of $\mathscr{K}(X) \leq 1$ with non-trivial pairing

$$
H^{0,1}(X) \otimes H^{0,1}(X) \xrightarrow{\wedge} H^{0,2}(X)
$$

Then:
(i) This pairing is surjective, and moreover,
(ii) $\operatorname{Pic}^{0}(X) \otimes \operatorname{Pic}^{0}(X) \xrightarrow{\cap} T(X)$ is likewise surjective.

Proof. It follows that $\operatorname{Pg}(X) \neq 0$ and $q(X) \geq 2$. By classification, X is birational to either an abelian surface or an elliptic surface. The rest of the proof, which follows along the line of reasoning in Sections 2 and 3, implies that the mapping in (3.7)(ii) is surjective. Now apply (0.3)(1) to conclude that the pairing in (i) is surjective.

References

1a. S. Bloch, Lectures on algebraic cycles, Duke Univ. Math. Series IV, 1980.
1b. S. Bloch, A. Kas and D. Lieberman, Zero cycles on surfaces with Pg=0, Compositio Math., vol. 33 (1976), pp. 135-145.
2. E. Bombieri and D. Husemoller, Classification and embeddings of surfaces, Proceedings of Symposia in Pure Mathematics, vol. 29, 1975, pp. 329-420.
3. T. Fatemi, L'equivalence rationelle des zéro cycles sur les surfaces algébriques complexes a cup-product surjectif, These du $3^{\text {e }}$ cycle, Universite de Paris VII, 1979.
4. K. Kodaira, On compact analytic surfaces, II, Ann. of Math., vol. 77 (1963), pp. 563-626.
5. J. Lewis, The Hodge conjecture for a certain class of fourfolds, Math. Ann., vol. 268 (1984), pp. 85-90.
6. D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., vol. 9-2 (1969), pp. 195-204.

7a. A.A. Roitman, The torsion of the group of 0 -cycles modulo rational equivalence, Ann. of Math., vol. 111 (1980), pp. 553-569.

7 b. \qquad , Rational equivalence of zero-cycles, Math. USSR Sbornik, vol. 18 (1972), pp. 571-588.
8. H. Saito, Abelian varieties attached to cycles of intermediate dimension, Nagoya Math. J., vol. 75 (1979), pp. 95-119.
9. S. Zucker, Hodge theory with degenerating coefficients: L_{2} cohomology in the Poincaré metric, Ann. of Math., vol. 109 (1979), pp. 415-476.

University of Saskatchewan
Saskatoon, Saskatchewan, Canada

[^0]: Received March 13, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 14C30.
 ${ }^{1}$ Partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

