
ILLINOIS JOURNAL OF MATHEMATICS
Volume 35, Number 2, Summer 1991

SOME BOUNDEDNESS RESULTS FOR
ZERO-CYCLES ON SURFACES

BY

JAMES D. LEWIS

Introduction

Let X be a smooth, complex projective algebraic surface (which will be
assumed throughout the rest of this paper). For any smooth variety V of
dimension n, we will denote by CHk(V) the corresponding Chow group of
algebraic cycles of codimension k in V (modulo rational equivalence), and
write CHn_k(V) CHk(V). Our main focus of attention is on the subgroup
Ao(X) of zero-cycles of degree 0 in CHo(X), and more particularly on
T(X) kernel of the Albanese map : Ao(X) Alb(X). Before stating the
main theorem ((0.3)), we introduce the following terminology.

(0.1) DEFINITION. Let Bo(X) be a subgroup of Ao(X). We say that
Ao(X)/Bo(X) is finite dimensional if there exists a (possibly reducible)
smooth curve E, a cycle z in CH2(E X) such that the composite

y( e) z--z-, Ao( X) ---, Ao( X) /Bo( X)

is surjective.

Example. We can write T(X)= Ao(X)/Bo(X)where Bo(X) is defined
as follows. By Poincar6’s complete reducibility theorem, there exists an
abelian variety B and a homomorphism f such that the composite

B f- Ao(X) AIb(X)

is an isogeny (see [8: (1.2)]). Clearly T(X) + f(B) A0(X), moreover using
T(X) torsionless [7] it follows that f(B) N T(X) 0. Now set Bo(X) f(B).
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270 JAMES D. LEWIS

We remark that in general T(X) is not finite dimensional (see (0.4)(ii)
below).

Let Pic(X) be the Picard variety of X (with Lie algebra H’I(x)), and
consider the following schema setting (see also [1(1): p. 1.11]):

(0.2)

H’I(x) c H’l(x) H’2(X) V’2 0

I I I
PicO(X) (R)z Pic(X) n_ T(X) Coker ----, 0

where V0’2 and Coker are the respective cokernels. We prove:

(0.3) THEOREM. (1) Suppose V0’2 0. Then Coker is infinite dimensional.
(2) Conversely, if Kodaira dimension JU(X) < 1, then Coker 0 if

V’2 0.

(0.4) Remarks. (i) It is reasonable to conjecture that for all smooth
surfaces X, V’2 0 iff Coker 0.

Some examples in support of this conjecture are the following. If X is the
Fano surface of lines on a smooth cubic threefold (see [1(1): Ex. 1.7)] or [3]),
or X abelian surface (see [1(2): (A.2)]), or say X E C where E, C are
smooth curves (cf. below), then V’2 0 and Coker 0.

(ii) It is a theorem of Mumford ([6]) that H’2(X)4:0 implies T(X)
infinite dimensional, moreover there is a conjecture of Bloch (converse
result) that states "H’2(X)= 0 implies T(X)= 0 (equivalently Ao(X)
finite dimensional by [7(2); 4])", which has been verified in the case
JU(X) < 1 ([1(2)]). Now suppose JU(X)= 2 and H’2(X)= 0. Then by
[2: (5.1), p. 395, i.e. 6r(Ox)> 1] it follows that dim H’I(x)=q < Pg
dim H’Z(x) 0. In particular the conjecture in (0.4)(i) above implies Bloch’s
conjecture.

(iii) Let Y be an abelian surface and X Y/+ 1 the corresponding
Kummer counterpart with rational map /3: Y X. Then H’I(x)--0,
H’Z(x) C; however we do have

H’I(Y) (R) H’I(Y) --A,H,z(y) --,H,2(X);
moreover

PicO(y)+z2 I,of
T(X)

is surjective. One expects a similar phenomena to hold for all smooth
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surfaces X. Specifically, for a surface X and filtration of

CHo( X) CHz( X)" FCHZ(X) CHz( X) FICHZ( X)

Ao(X) FzCHz(X) T(X) O,

one hopes for the situation on the graded,piece Gr2(CH2(X)) below:

Gr(CH2( X)) Z (discrete part);

Grl(CH2(X)) =A*zl =A;

Gr2(CH2(X)) T(X) B*z2

where A AIb(X) and B are abelian varieties. A general boundedness
conjecture for CH*(V)will appear in a future paper.

Acknowledgement. Shortly after this paper was completed, we discovered
a thesis by T. Fatemi (cf. [3]) cited in [1], which overlaps with some of the
results of this paper. To be specific, Theorem (0.3) part (2) above is proven in
[3; 1], and the example of the Fano surface of lines in (0.4)(i) above is
established in [3; 2]. In regard to the conjecture in (0.4)(i) above, we should
remark that the surjectivity of the cup product (i.e., V’2= 0) should imply
Coker 0 is cited in [3; p. 1] as a conjecture of Bloch. Finally our proof of
(0.3)(2) (given in Section 2 of this paper) is different in character to that given
in [3; 1]. Our desire to include a proof of (0.3)(2) is based on our under-
standing that [3] doesn’t appear to be published in the literature, and that
these results should be accessible to a larger group of mathematicians.

1. Proof of main theorem, part (1)

Let Lx be the fundamental class of a hyperplane section of X. Recall that
by cup product, there is an isomorphism

LX" Hi(x, Q) -- H3(X, Q) (hard Lefschetz)

with inverse denoted by Fx. Note that Fx determines a corresponding class
Fx in H3(X, Q)]* (R) HI(X, Q) HI(X, Q) (R) HI(X, Q) (Poincar6 duality),
and in particular since Fx respects Hodge type, it follows from the Kiinneth
formula that Fx] lies in H2(X (R) X, Q) N H1, I(X (R) X). By the Lefschetz
(1, 1) theorem, [Fx] is algebraic (over Q). Choose an integer N 0 for which
N[Fx] is integral algebraic, and in particular lets view (by abuse of notation)
NFx as a divisor on X X. If Prj: X X X are the projections onto the
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first and second factors (j 1, 2), then NFx determines a homomorphism

(NFx} , CHo(X) CHI(X) Pic(X)

by the formula

{NFx} , ( Y) Pr2, ({Pr( y ) NFx}x).

Since taking intersections is an algebraic operation (explicitly {Yl CI Y2}X
A*(y X Y2) where A: X X X is the diagonal), it follows from Poincar6
duality that there is a cycle E in CHE(XX X X) and commutative
diagrams below:

(1.1)
{NFx}*,

CHo(X) (R)z Cno(X) Pic ( X) (R)z Pic(X)

E,
CHo(X X) CHo( X)

(1.2)
HI’2(X) @c HI’2(X)

H6(XXX)

H’I(x) c H’I(x) - H’2(X) + V’2

[El,
H2(X),

where the corresponding [E], can be defined via the Kfinneth formula on
H4(X x X X) together with Poincar6 duality (e.g., see [5: (2.3)]). We
remark that since

[NFx] ," Hi’2() - H’I(x)

is an isomorphism with NFx integral, it follows that there is an induced
isogeny NFx], Alb(X) PicO(x), and therefore

{NFx} , (Ao( X)) Pic( X)

by universality of {a" Ao(X) -+ Alb(X)}. From (1.1) we deduce"

(1.3) COROLLARY.
E, {CHo(X X)}.

The image of [’ PicO(x)(R)z 2 is contained in
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We now apply Serre duality to (1.2) to arrive at the exact sequence

0 -----) V2’ ---) H2’(X) [E_]* Hi,0(X) (R)c HI’(X) c H2’(X X),

where V2’0 ker[E]* is dual to V0’2. We introduce the following objects. If
V is a smooth variety, we denote by ’m(v) the mthsymmetric product of
V. The singular set of m(v) will be concentrated on {Pl + +Pm[ not all
the pg’s are distinct}. Likewise we define

,_n,m( v) ,_n( v ) ,_.m( v)

and corresponding maps

Tm" ’m(v) + CHo(V ) and T,,,m" aZ"’m(v) --+ CHo(V )

where Tn, m(Yl, Y2) (Yl Y2} CHo(V). It is clear that

CHo(V) [,J T,,,m(,.’n’m(V))ln, m > 1}.

Let w be a holomorphic k-form on V. There are canonically defined
"k-forms" and which are regular outside the respective singular

m
re(V) defined as follows (see [7(2): {}3]). For any carte-sets of m(v), . n,

sian product, let Prj be the j’th projection. Then wm ,jPrf(w) defines a
k-form on V invariant under the action of the symmetric group on m
letters, hence there is an induced m on ofm(v). Likewise on n’m(v),
we define .4)n, m er(en) er(em) and for convenience of notation in
the discussion below, we will suppress the Pr;’s and for example write

-’On, m
We also make use of the terminology "c-closed" from [7(2)] which means

"countable union of closed subvarieties".

(1.4) PROPOSITION. T,lm(E.(CHo(X X)) is c-closed in n’m(x).

Proof Immediate from [7(2): Lemma 5].

We now choose w to be a non-zero (two)-form in V2’ (i.e., [E]*(w) 0).
Let n,m be an irreducible component of T,lm(E. (CHo(X X))with desin-
gularization En, m and corresponding’morphism

in,m" n,m "-) n’m(s).

The main technical assertion is:

(1.5) LEMMA. in*, m(n,m) 0.
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Remark. Assuming the lemma, it follows from Mumford’s theory (e.g.,
see [7(2): 3]) that CHo(X)/Im(E,) is "infinite dimensional", under the
assumption V’2 0.

Proof of Lemma. Using countability arguments, it follows that for given
positive integers n and m, there exist positive integers q and r such that

Tn,m(Jn,m(n,m) ) c E.(Tq, r(q’r(x xX))).

Set

--" {(Yl, Y2) ’q’r(x X X) X n, mlE.(Tq, r(Yl) ) Tn,m(Jn,m(Y2))}

a c-closed subset of .q’r(x X X) X n,m [7(2): Lemma 3]. It follows that
there exists an irreducible component W c 7//for which Pr2(W) E,m" Let
W be the desingularization of W. By taking generic hyperplane sections of W
and applying Bertini’s theorem, there is no loss of generality in assuming
dim W dim En, m" It follows that there exists morphisms f and g and the
commutative diagram below:

(1.6) W ’>n,m n,m(x)

E,Tq,
rn’m

q,r(x X X) " CHo( X)

To prove the lemma, it suffices to show that (Jn, m f)*(n,m)= 0. NOW
viewing E as a codimension 2-cycle in X X X, we may assume the
irreducible components of E are in "sufficiently general" position (via
rational equivalence & Chow’s moving lemma). Specifically, on q’r(x X),
E defines a corresponding rational map

{E): q,r(x X) + u,v(X)

for some positive integers u and v, moreover we may assume the restriction
of {E} to g(W) is also rational. Let

H: ,u,.( X) n,rn( x) -"> ,_u+m,v+n( x)

be the map given by

H(yl, Y2, Y3, Y4) (Yl + Y4, Y2 "F Y3)
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and

J: W --> ,u+m, v+n(X)

the rational map given by the formula

J=H({E}g,jn,mf).

By construction of J and the commutivity of (1.6) it follows that Tu +m, +n j
maps a non-empty Zariski open subset of W to a point in CHo(X). There-
fore the pullback of u+m,+n to J(W) is zero [7(2): 3], a fortiori

J*(eX,u+m,v+n) 0 in W. However

* ’u+m,v+n u,v n,m

and therefore

0 J*(e.Ou+m,v+n) ((E}o g)*(eO.u,v) (Jn,mOf)*(en,m);
moreover

({E}o g)*(u,v) g*({E}*(eu,v))"
But recall [E]*(w) 0, and therefore {E}*(u,) 0, a fortiori

( Jn,m f)*(n,m) O,

which concludes the proof of the lemma.

(1.7) COROLLARY. Let m be a positive integer. Let be an irreducible
subvariety passing through a generic point of ’m’m(x) and contained in a
fiber of the map

7I Tin, m" ,_)fm’m(x) Ao(X) A0(X)/{[" Pic(X)(R)Z2}.
Then dim E < 2m.

Proof Immediate from (1.3), (1.5) and [7(2): 3].

We now pretend (0.3)(1) is false, i.e., Coker in (0.2) is finite dimensional,
and arrive at a contradiction. By a standard argument, there exists a (possibly
reducible) smooth curve E and z CH2(E X X)such that

z,. J(e) -,, Ao(X)/{ p/cO(x) :}
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is surjective. Let

I-I= {(a,b) ,.m’m(g) J(E)lroTm,m(a) z.(b)},

which is c-closed using the general results in [7(2)]. As in the proof of the
above lemma, we can find an irreducible H c I-I for which

Prl(H) ,fro,re(X) and dim H dim ,fm,m(s) ( 4m).

Let N be the degree of Pr In: H ,fm’m(s) and if we denote by the
Pontryagin sum on J(E), then define a rational map f: ’m’m(x) -’ J(E) by
the formula

Note that by construction, z. of(p)= N. "n-Zm, m(p) for generic p
"’m(x). The results of this paper apply equally if we replace Tn, m by
N" Tn, m, specifically if we replace Tm, m by N" Zm, m in Corollary (1.7) (hence
7r Tm, m by N" 7r Tin, m), the conclusion of (1.7) remains the same.
Now let p ,m’m(x) be a generic point and E a subvariety of maximal

dimension passing through p for which E is contained in a fiber of N. Tm, m"
By (1.7), dim E < 2m, on the other hand E contains an irreducible compo-
nent of a fiber of f, hence

dim > dim am,m(X) dim J(E) 4rn dim J(E).

The desired contradiction is obtained by choosing rn > (dim J(E))/2.

2..Proof of main theorem, part (2)

We begin with an analysis of the simplest prototypical case of X men-
tioned in (0.4)(i), namely X--E F where E, F are smooth curves, and
prove:

(2.1) PROPOSITION. The following maps are onto:

(1)

(2)

H’l(x) (R)c H’I(x) HO,2(X)

Pic( X) *z Pic( X) T( X)
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Proof Part (1). By the Kiinneth formula

9’2(X) H’l(E) (R) H’l(F)
(H’l(E) (R) H(F)) A (H(E) (R) H’I(F))
H’I(x) A H’I(x).

Part (2). Let /z kl(el, fl) + +kN(eN, fN) T(X). This means in
particular that E;k; 0 and that Z;k;e; 0 in J(E) and ,;k;f; 0 in J(F),
using Alb(X) J(E) J(F). By Abel’s theorem, under rational equivalence

klel- -(k2e2 + +kNen) klfl -(kzf2 +’.. +kNfN).

Using both of these equalities, we end up with

Z kj((ej, f;) (ej, fl)} E
2<_j<_N 2<j<N

k;{(e;, f;) (el, f;)}.

and therefore

k;{2(e;, f;) (e;, fl) (el, f;)}.

Now set

/3 {(e;, f;) (e;, fl) (el, f;) + (el, fl)}
{(E X f;) (E X fl)} ("1 {(ej F) (e F)}
Pic(X) Pic(X),

and

Then

kl q-... d-kNN 0 oPico(x) (R)z2.

2tz fl Z k;{(e;, f;) (e1, fl)}
2<j<N

E k;(ej, f;) ( Z
2<j<N 2<j<N

k;)(el,fl);
moreover k -(E2<j<Nk;), a fortiori 2/z -/3 =/x, i.e./z =/3. Q.E.D.
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We now attend to the proof of (0.3)(2), namely, "if JU(X)< 1, then
V’2 0 implies Coker 0". If JU((X) < 1 and Pg(X) 0 then T(X) 0
[1(2)] hence nothing to prove here. Likewise if q(X)< 1, then V’2= 0
implies Pg(X) 0. Therefore:

(2.2) We will assume the following for X: Pg(X) > O, JU(X) < 1, q(X) >
2, and V’2 0; moreover we may assume X is a minimal surface, as Pg(X),
JU(X), q(X) and T(X) (hence V’2) are birational invariants.

It therefore suffices to show Coker 0. A tour of the classification of
surfaces will reveal that X is either an abelian or an elliptic surface. The case
X an abelian surface was established in [1(2): (A.2)]. We are now reduced to
the case of an elliptic surface X with fibering F: X E, i.e. where F is a
morphism, E a smooth curve, and the generic fiber Xt F-l(t) is a smooth
elliptic curve. Let E c E be the finite set of singular points of the fibering F;
i.e., t E iff X is singular. Set U--E- the so-called smooth set; j:
U E the inclusion, X# F-I(u) and f Flxo: S# U. There is the
local invariant cycle theorem: RiF, Q j, Rif, Q surjective (i > 0) (see
[9:(15.12)]), with kernel subsheaf .o supported on . For the remainder of
this section, we will assume that Xhas no multiple fibers. Note that Xminimal
implies no exceptional curves of the first kind as well. We will handle the
general case of elliptic X in Section 3 below. Then RiF, Q j, Rif, Q is in
fact an isomorphism, due to the following. Let A be a small disk in E
centered at s . Then HI(Xs, Q) and H(A, j, Rlf, Q) are both either 0
or Q (cf. Table 1 in [4: p. 604]), moreover

H(A,RIF, Q) HI(Xs,Q) =_ H(Xt,Q)r=_ H(A,j, Rlf, Q)

where t A {s} and T is the local monodromy transformation. Therefore

Hi(E, RIF, Q) Hi(E, j, Rlf, Q) for _> 0.

The Leray spectral sequence

E’q HP( E, RqF, Q) = H+(X, Q)

degenerates at E2 [9: (15.15)]; moreover from this spectral sequence is an
induced s.e.s.

0 E2’ H’(X,Q) E2’’ 0.

Using our assumption on X in (2.2)we prove:

(2.3) PROPOSITION. E20,1 : 0.



ZERO-CYCLES ON SURFACES 279

Proof Suppose to the contrary that E’ 0. Then

HI(X,Q) HI(E,j,Rf,Q);

moreover j, Rf,Q is the constant sheaf over E. If we work on the cycle
level viz Poincar6 duality: Hi(x, Q) H3(X, Q), it follows that every cycle
/z in H3(X,Q) is of the form g =f-1(/3) for some 1-cycle /3 in U.
Let /31,/32 HI(U Q) with corresponding /zj f-1(/3.), j 1, 2. Then
[1 ("1 [2 r{t} for some r Q and U; therefore /’10 l, 2 r{Xt} which
is algebraic. It follows that

Hi(x, Q) A Hi( X, Q) c H2(X, Q)alg C HI’I(x);

hence V0’2 O, a contradiction.

(2.4) COROLLARY. (i) For t E, the natural restriction map

E’1 .-.)HI(Xt,Q)

is an isomorphism (of Hodge structures); hence RIF, Q is the constant sheaf
Q2 over E, and the functional invariant is trivial.

In particular"
(ii) F: X E is an analytic fibration of smooth elliptic curves.

Proof Since j,Rf,Q is the constant sheaf, it follows that E21’=
Hi(E, Q) and hence E2’ H(X, Q)/E’ has a Hodge structure of weight
1 (this is also true for general reasons [9]), afortiori E2’1 even dimensional.
Therefore by (2.3), there exists global independent sections s1, s2 of j, Rlf, Q
over E. Since any section of j,Rlf, Q is the same thing as a hori-
zontal displacement of a cycle fit Hi(St, Q) over t E, it follows that
j, Rlf, Q RIF,Q is a constant sheaf (trivial monodromy group); more-
over," by [4: p. 604, Table 1]), E . Parts (i) and (ii) of (2.4) easily follow
from this.

(2.5) Now recall that F" X E is called Jacobian-elliptic if there is a
holomorphic section/x: E X, i.e., Fott Ide.

We conclude:

(2.6) Corollary.
fiber of F: X --, E.

IfX is Jacobian-elliptic, then X -- E C, where C is any

First proof. F: X --, E and Prl: E C --* E have the same homological
and functional invariants; moreover E C is also Jacobian-elliptic. By
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uniqueness of Jacobian-elliptic for the given homological and functional
invariants [4], it follows that X -= E C.

Second proof. Let p X and F(p), and let /x be given as in (2.5).
There is the Abel-Jacobi (isomorphism)map

ft" x --, y(xt), p {p s y(xt),

defined by a process of integration, where J(Xt) HI(Xt, R)/HI(Xt, Z)
(with HI(xt, R) endowed with a suitable complex structure). However work-
ing with integral cohomology modulo torsion, it follows from (2.4)(i) that

J( Xt) C =def H(E, RIF, R)/H(E, RIF, Z),

again where H(E, RIF, R) is endowed with a suitable complex structure.
One then arrives at a global holomorphic (isomorphism) map

"X--->EXC

defined by the formula

f( P) ( F( P)’ fF(p)( p) ) {t} X J(Xt) --{t} X C

where F(p).

(2.7) COROLLARY.
for X.

LetXbe Jacobian-elliptic. Then Theorem (0.3)(2) holds

Proof Use (2.6) and (2.1).

Now recall for every elliptic X with no multiple fibers and exceptional
curves, there is a unique associated Jacobian elliptic Y having the same
homological and functional invariants as X. According to [1(2): p. 138], one
can construct a rational dominating map g: X--, Y and a correspondence
z CH2(y X X) such that g, z, n2 and z, g, n2 on Ao(X), for
some fixed integer n. Next, we may assume w.l.o.g, that g is a morphism, via
a suitable blow-up of X, using the fact that Pie(-) and A0(-) are
birational invariants. Now using (2.7), g and z above, T(X) torsionless [7],
T(X) divisible (for all X [1(2): p. 136]), together with the projection formula,
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there is a commutative diagram

g*(R)l
(2.8t Pic(r) (R)zPic(X) Pic(X) (R)zPic(X) T(X)

l(R)g, g,

PicO(y ) (R)zPicO(y )
a

"T(Y)

The conclusion of the proof of (0.3)(2) for all but the general case of elliptic
X is obvious via an immediate inspection of (2.8).

3. Conclusion of the proof of (0.3)(2)

We assume X given as in (2.2), elliptic, but with the possiblity of multiple
fibers. We prove:

(3.0) LEMMA. j, R f, Q is the constant sheaf Q2 over E.

Proof Assume to the contrary. Then using the fact that H(E, j, Rlf, Q)
admits a Hodge structure of weight 1 [9] together with the same argument as
in the proof of (2.4), it follows that

H(E, j, Rlf, Q) O.

Therefore via the s.e.s.,

we arrive at

H(Y’.,,E) =E20,1.

Now choose any Cech ,cocycle s {Sij E1’ corresponding to an open
cover {U.}jj of E, where we may assume via a suitable refinement that
U/n U. n 5; for all 4:j in J. It follows that s E2’1 0 in E’1,
a fortiori E1’ E2’1 0. The cup product

E’q E’s c E+r’q+s

is compatible with the cup product on H*(X)vis-a-vis a "Leray" filtration on
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H*(X); moreover it is easy to check that E’ E2’l 0 implies

Hi( X, Q) Hi( X, Q) c HE(x, Q)a,g c H1’1(X),

contradicting our assumptions on X in (2.2). Q.E.D.

According to [4" Thm. 6.3, p. 572]) there is induced, over a suitable finite
ramified covering k: S E, an elliptic surface G: Y S free from multiple
fibers and exceptional curves, and commutative diagram

y h

where (i) Y, S are smooth and (ii) h" Y X is a finite abelian covering.
Moreover, we may assume (by slightly enlarging E if necessary) that

0 {S sir a-l(s) singular} k-l().

Also let J0:X0 S be the inclusion and g Glo-l(s_xo. It follows from
(3.0) that Jo., Rig,Q (and hence RiG, Q) is the constant sheaf Q2 over $,
and moreover the same arguments in Section 2 imply that

PicO(y ) (R) PicO(y ) n_., T(Y)

is surjective. There is a commutative diagram, with/3 defined by commutivity
below:

(3.2) Hi(x, Q) ,, E2’I(F) --, 0O---E,(F)

Hi(E, Q)

Hi(S, Q)

o --,

h*

Hi(Y,Q) E’I(G) O.
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Moreover/3 is surjective by virtue of the commutative diagram

(3.3) Ez’I(F) ,0, Ez’X(G)

(e, i,I,) ~, (s, io,,g,).

Next, there is a commutative diagram of exact sequences with the top row
interpreted as the respective tangent spaces (with suitable complex structure)
to the bottom row:

(3.4)
Hi(s, R)

o-, E,(a) (R) R

eic(S)
G*

HI(y,R) E’a(G) (R) R 0

ec(r ---, {eic(rl/a*(eic(Sl)} --, o.

We therefore conclude from (3.4) and the surjectivity of/3 that:

(3.5) LEMMA. The composite

Pic( X) h* Pic(Y) {Pic(Y)/G*(Pic(S))}

is surjective.

The projection formula implies the commutative diagram

(3.6) PicO(X ) (R) PicO(y ) h**,l, PicO(y ) (R) PicO(y) O_,T(y)

"Pic( X) (R) Pic( X) T( )

Now let fl1,2 Pi(S). By Chow’s moving lemma, we may assume
O f12 ’ and therefore G*(/31) N G*(fl2) 0 in T(Y). Now let

{Z} {Pic(Y)/G*(Pic(S))},

where Z can be chosen so that Z(t) G-a(t) Z is a 0-cycle (of degree 0)
on G-l(t). Let/3 Pic(S). By (3.5), there exists W Pic(X)such that

{h*(W)} {Z} in {Pic(Y)/G*(Pic(S))},
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and therefore

Finally,

G*(fl) Z G*(fl) (3 h*(W) in T(Y).

h,((G*(/3) nZ)y} h,((G*(fl) n h*(W))r} ((h, oG*(fl)) n W)x

by the projection formula, i.e., (3.6). It therefore follows, from (3.6) that

Pic( X) (R) Pic( X) r( x)

is surjective.

The techniques of Sections 2 and 3 imply the following:

(3.7) COROLLARY.
pairing

Let X be any surface of JU(X) < 1 with non-trivial

H’I(x) (R) H’I(x) H’2(X).
Then:

(i) This pairing is surjectie, and moreover,
(ii) Pic(X) (R) Pic(X) T(X) is likewise surjective.

Proof It follows that Pg(X) 0 and q(X) > 2. By classification, X is
birational to either an abelian surface or an elliptic surface. The rest of the
proof, which follows along the line of reasoning in Sections 2 and 3, implies
that the mapping in (3.7)(ii) is surjective. Now apply (0.3)(1) to conclude that
the pairing in (i) is surjective.
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